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This note is written for understanding the notion of stable envelopes introduced in [MO19, I-3] based
on explicit examples provided in [Smi16]. Let V B C2. For every q ∈ C∗, we have the R-matrix

R(z) B


1 0 0 0

0 q−1(z−1)
z−q−2

1−q−2

z−q−2 0

0 z(1−q−2)
z−q−2

q−1(z−1)
z−q−2 0

0 0 0 1

 ∈ End(V ⊗ V)((z)).

If we take z = eu, q = e
ℏ
2 , and let u, ℏ → 0, then (the 2-by-2 minor in the middle of) the above matrix

reduces to the “Yangian”

(0.1)
1

u + ℏ

u ℏ

ℏ u

 .
As part of our goal in this note, we will recover this matrix via the wall-crossing phenomenon of stable
envelopes for T∗P1.

1. The cotangent bundle of Pn

The space X B T∗Pn has a canonical 1-form η called the Liouville form. Within a local chart U ⊆ X, it
can be written as

η|U =
n∑

i=1

yidxi

where the xi (resp. yi) are coordinates on Pn (resp. along fibers). Its differential

ω B dη

turns X into a symplectic manifold.

Remark 1.1. The space X is also the Nakajima quiver variety A1(1,n + 1) associated to the A1-quiver
with dimension vector (1,n + 1).

1.1. The torus action. Suppose that A B (C∗)n+1 acts on Pn in the following way

a · [z0 : · · · : zn] = [a−1
0 z0 : · · · : a−1

n zn] for every a = (a0, . . . , an) ∈ A.

This induces an action on X as
a · (z, θ) = (a−1

· z, a∗θ),

where z ∈ Pn and θ ∈ T∗pPn, under which the form η (and thus ω) is fixed. Now consider the torus

T B A × C∗

and assume that the additional factor C∗ acts on the fibers with weight ℏ. (Hence it acts on Cω with
weight ℏ as well.) Note that the fixed locus of this action consists of the coordinate points

XT = XA = {p0, . . . , pn}

where pi = [0 : · · · : 1 : · · · : 0] ∈ Pn with 1 being placed at the i-th position.

1.2. Attracting subsets. Set aR := cochar(A) ⊗ R. Let ui be the standard basis of char(A) ⊆ a∗R. For each
fixed point pi ∈ X, the weights of A acting on Npi/X = Tpi P

n
⊕ T∗pi

Pn consist of ±(u j − ui) ∈ a∗ where j , i.

1
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The collection of all these weights
∆ = {u j − ui | i , j} ⊆ a∗R

is called the root system of A⟲ X. (In our case, this is the same as the root system of sl(n).) Each element
of ∆ defines a hyperplane (wall) in aR. The complement of the union of these walls consists of (n + 1)!
chambers Cs ⊆ aR indexed by permutations s ∈ Sym({0, . . . ,n}), where

Cs B {(v0, . . . , vn) ∈ aR | vs(0) > · · · > vs(n)}.

Let C be a chamber. For any x ∈ X and any σ ∈ C ∩ Cochar(A), the limit

lim
z→0
σ(z)x ∈ XA = {p0, . . . , pn}

depends only on x and C. For each fixed point pi ∈ X, this well defines the attracting subset

AttrC(pi) B
{

x ∈ X
∣∣∣∣∣ limz→0

σ(z)x = pi

}
.

For example, when n = 1, we have two chambers

(1.1) C+ B {(v0, v1) ∈ aR | v0 > v1} and C− B {(v0, v1) ∈ aR | v0 < v1}.

The attracting subsets defined by C+ are

Attr+(p0) = T∗p0
P1 and Attr+(p1) = P1

\ {p0}

On the other hand, the attracting subsets defined by C− are

Attr−(p0) = P1
\ {p1} and Attr−(p1) = T∗p1

P1.

1.3. A partial order. Among the fixed points, each chamber C defines a partial order

pi ≤C p j if pi ∈ AttrC(p j).

(Larger means “more attractive”.) For instance, the chamber

Cid = { (v0, . . . , vn) ∈ aR | v0 > v1 > · · · > vn }

defines the partial order
p0 < p1 < · · · < pn.

In general, for every s ∈ Sym({0, . . . ,n}), the chamber Cs defines the partial order

ps(0) < ps(1) < · · · < ps(n).

For each chamber C, the full attracting subset of a fixed point pi is defined as

Attr f
C

(pi) B
⋃
p j≤pi

AttrC(p j).

2. Stable envelops in our setting

As X retracts to Pn equivariantly under the action of T, the equivariant cohomology of X can be
identified as

H•T(X) ≃ H•T(Pn) ≃ C[c,u0, . . . ,un, ℏ]/(c − u0) · · · (c − un),

where c = c1(OPn (−1)). For every fixed point pi, the restriction

H•T(X) −→ H•T(pi) ≃ C[u0, . . . ,un, ℏ]

is defined by substituting c with ti. Our setting satisfies the equivariant formality; see Remark 2.1. This
condition implies that the restriction map

(2.1) res : H•T(X) −→ H•T(XA) ≃
n⊕

i=0

H•T(pi)



STABLE ENVELOPS FOR THE COTANGENT BUNDLE OF P1 3

is an injection, and it becomes an isomorphism after scalar extension to C(u0, . . . ,un, ℏ), that is, the
function field of H•T(pt).

Remark 2.1. Suppose that a torus T acts on a nonsingular variety X with only finitely many fixed points.
Let S ⊆ H•T(pt) be a multiplicative subset containing the element

e B
∏
p∈XT

eT(TpX).

Then the localization theorem tells us the following two properties:

• The localization of the restriction map

(2.2) S−1H•T(X) −→ S−1H•T(XT)

is surjective.
• Assume in addition that T ⟲ X is equivariantly formal, that is,

H•T(X) is a free H•T(pt) module, and has a H•T(pt)-basis that restricts to a Z-basis for H∗(X).

Then (2.2) is injective and thus is an isomorphism.

2.1. Polarization. A stable envelope serves as a map going in the opposite direction of (2.1) whose
localization is an isomorphisms. The construction of each stable envelope relies on the choice of a
chamber C together with a “polarization”. For each fixed point pi, the class

−eA(Npi/X) =
∏
j,i

(u j − ui)2
∈ H•A(pi)

is a square. In this setting, a polarization is the choice of one of the two square roots ±
∏

j,i(u j − ui) for
every pi. For example,

ε B

∏
j,0

(u j − u0), . . . ,
∏
j,n

(u j − un)

 ∈ n⊕
i=0

H•A(pi).

is a polarization.

Remark 2.2. In general, a polarization is a choice ε of a square root of (−1)codim(Z)/2e(NZ) for each
connected component Z ⊆ XA. To justify that this is possible, let us fix a chamber C. Then we get
a decomposition NZ/X = N+ ⊕ N− according to the signs of the pairings of the weights occurring in
A⟲ NZ/X with one (and thus all) v ∈ C. Since A fixes ω, the space NZ/X is symplectic, and both N+,N−
are Lagrangian. Because T ⟲ Cω, both N+,N− are T-stable, and

N∨+ ≃ N− ⊗ ℏ

as T-equivariant bundles over Z. If αi for i = 1, . . . , codim(Z)/2 are the weights of A⟲ N+, then −αi are
the weights of A⟲ N−. Therefore,

(−1)codim(Z)/2eA(NZ) =
codim(Z)/2∏

i=1

α2
i ∈ H•A(Z)

is a square, and the choice of a sign in

±

codim(Z)/2∏
i=1

αi

for each Z ∈ π0(XA) defines a polarization ε. In the definition of a stable envelope, the choice of a
polarization is independent of the choice of a chamber.

2.2. Formulas for the stable envelopes. Let us restrict to the case X = T∗P1 for the sake of simplicity
and let C+,C− be the chambers as in (1.1). Under the choice of the polarization

ε = (u1 − u0, u0 − u1) ∈ H•A(p0) ⊕H•A(p1),
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the stable envelopes with respect to the chambers C± are homomorphisms of H•T(pt)-modules

Stab± : H•T(XA) −→ H•T(X)

defined respectively byStab+(p0) = u1 − c
(
= [T∗p0

P1]
)
,

Stab+(p1) = u0 − c − ℏ
(
= −[P1] − [T∗p0

P1] = −(2c − u0 − u1 + ℏ) − (u1 − c)
)
,

and Stab−(p0) = u1 − c − ℏ
(
= −[P1] − [T∗p1

P1] = −(2c − u0 − u1 + ℏ) − (u0 − c)
)
,

Stab−(p1) = u0 − c
(
= [T∗p1

P1]
)
.

More generally, for arbitrary n, if we take the chamber C = CId, and choose (−1)nε as the product of
the weight of the A-action on T∗pi

Pn, then StabC is defined as

StabC(pk) =
∏
i<k

(ui − c − ℏ)
∏
i>k

(ui − c).

One can check that these expressions define the stable envelopes of Maulik–Okounkov using the
following characterization:

Theorem 2.3. There exists a unique morphism of H•T(pt)-modules

StabC, ε : H•T(XA) −→ H•T(X)

such that for any Z ∈ π0(XA) and any γ ∈ H•T/A(Z), the image Γ := StabC, ε(γ) satisfies

(1) Γ is supported on Attr f
C

(Z). Necessarily, we have Γ|Z′ = 0 for any Z′ ≮ Z,
(2) Γ|Z = ±e(N−)⌣γ, where the sign is chosen so that ±e(N−) restricts to ε in H•A(Z),
(3) degA Γ|Z′ <

1
2 codim(Z′) for any Z′ > Z.

Condition (1) can be easily seen from the expressions within the parentheses. In our special case,
this condition should be the same as verifying the necessary condition. As an example, the chamber C+
defines the partial order p0 < p1, and we have

(2.3)

Stab+(p0)|p0 Stab+(p1)|p0

Stab+(p0)|p1 Stab+(p1)|p1

 = u1 − u0 −ℏ

0 u0 − u1 − ℏ

 .
From the first column, we see that conditions (1) and (2) are satisfied for Z = p0 while (3) is an empty
condition. The second column shows that conditions (3) and (2) are satisfied for Z = p1 while (1) holds
automatically. For the other chamber C−, one can check those conditions using the matrix

(2.4)

Stab−(p0)|p0 Stab−(p1)|p0

Stab−(p0)|p1 Stab−(p1)|p1

 = u1 − u0 − ℏ 0
−ℏ u0 − u1

 .
Note that (2.3) and (2.4) can be understood respectively as the compositions

res ◦ Stab± : H•T(XA) −→ H•T(XA).

If we set u B u0 − u1 and compute over the function field of H•T(pt) the composition

RC−,C+ B Stab−1
− ◦ Stab+ = Stab−1

− ◦ res−1
◦ res ◦ Stab+,

we will get

RC−,C+ =

−u − ℏ 0
−ℏ u

−1 −u −ℏ

0 u − ℏ

 = 1
u + ℏ

u ℏ

ℏ u

 .
This recovers the Yangian in (0.1).

2.3. Uniqueness. Let us first explain why a stable envelope is uniquely determined by the the conditions
in Theorem 2.3. For every Z ∈ π0(XA) and γ ∈ H•T(Z), we can write

γ = γ< + γ≥
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where γ< is the part with A-degree < 1
2 codimZ and γ≥ B γ − γ<.

Proposition 2.4. Suppose that Γ ∈ H•T(X) is supported on the subset⋃
Z∈π0(XA)

AttrC(Z).

Then Γ = 0 provided that (Γ|Z)≥ = 0 for all Z ∈ π0(XA). In other words, the class Γ is uniquely determined by the
collection {(Γ|Z)≥ ∈ H•T(Z) | Z ∈ π0(XA)}.

Sketch of proof. Without loss of generality, we may assume thatΓ is supported on some Attr f
C

(Z). Consider
the inclusions

Z ↪
ι1
−→ AttrC(Z) ↪

ι2
−→ Attr f

C
(Z) ↪

ι3
−→ X.

By hypothesis, Γ = ι3∗α for some class α supported on Attr f
C

(Z). Then

Γ|Z = e(N−)⌣ ι∗1ι
∗

2α.

By assumption, degA Γ|Z <
1
2 codimZ. Since

degA e(N−) =
1
2

codimZ

and e(N−)⌣ is injective, we have ι∗1ι
∗

2α = 0. The affine bundle structure of AttrC(Z) → Z implies that
ι∗1 is an isomorphism. This shows that ι∗2α = 0. Thus α is supported on Attr f

C
(Z′) for some Z′ ≺ Z. We

conclude by induction. □

2.4. Existence. Let us illustrate the idea of constructing a stable envelope by our example. In order to
define a morphism of H•T(pt)-modules

Stab+ : H•T(XA) ≃ H•T(p0) ⊕H•T(p1) −→ H•T(X),

it is sufficient to define the values Stab+(p0) and Stab+(p1) on the basis elements. Condition (1) of
Theorem 2.3 implies thatStab+(p0) = (∗)

[
Attr+(p0)

]
= (∗) [T∗p0

P1],

Stab+(p1) = (∗)
[
Attr+(p1)

]
+ (∗)

[
Attr+(p0)

]
. = (∗) [P1] + (∗) [T∗p0

P1].

The coefficient of the “major term” [T∗p0
P1] in Stab+(p0) (resp. [P1] in Stab+(p1)) is determined by

condition (2). Once the first coefficient is determined, the coefficient of the “minor term” [T∗p0
P1] in

Stab+(p1) is then determined by condition (3).
More generally, if we have a total ordering set of fixed points

p0 < · · · < pi < · · · < pn,

then condition (1) implies that
StabC(pi) =

∑
j≤i

(∗)
[
AttrC(p j)

]
.

The coefficient of
[
AttrC(pi)

]
is determined by condition (2), and all the other coefficients are then

determined inductively by condition (3).
This procedure generalizes to arbitrary (A ⊂ T)⟲ X satisfying the conditions. In general, the stable

envelop is defined by a T-stable effective Lagrangian cycle Z ⊂ XA
× X proper over X.
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