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Fermat’s Last Theorem (∼1637)

Theorem (Wiles, et.al 1995)

Let n > 2 be an integer. For any non-zero integers X ,Y ,Z ,

X n + Y n 6= Z n.
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In 1816, Gauss wrote: “I confess that Fermat’s Last Theorem, as an
isolated proposition, has very little interest for me, because I could
easily lay down a multitude of such propositions, which one could
neither prove nor dispose of.”

Wiles’s proof was the culmination of decades of work in algebraic number
theory, arithmetic geometry, and commutative algebra.
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Kummer

In 1850, Kummer made the first progress towards Fermat Last Theorem.
He proved that the equation X p + Y p = Z p has no non-trivial integral
solution if p is a regular prime.
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The idea of Kummer

For any positive integer n, let

ζn = e2π
√
−1/n = cos

2π
n

+
√
−1 sin 2π

n
∈ C

be a n-th primitive root of unity.

Consider the Fermat equation X p + Y p = Z p for a prime p. We have

X p = (Z − Y )(Z − ζpY )(Z − ζ2
pY ) · · · (Z − ζp−1

p Y ).

If (X ,Y ,Z ) is a non-trivial integral solution, Kummer observed that the
common divisors of the linear factors Z − ζ ipY are divisors of p in the
ring Z[ζp]. He realized that if the ring Z[ζp] have some property close to
the unique prime factorization, then FLT may be solved.
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Ideal class groups

If K is a finite extension of the rational number field Q, denote by OK

the ring of integers of K . For example, K = Q(
√
−5), then

OK =
{
a + b

√
−5 | a, b integers

}
.

The ideal class group Cl(K ) is defined to be

Cl(K ) = { the set of ideals of OK} / ∼ .

Here we say a ∼ b if a = α · b for some α ∈ K×.
The ideal class group Cl(K ) is a finite group. We call the cardinality
h(K ) := #(Cl(K )) the class number of K .

Fact: h(K ) = 1 if and only if

any element in OK has a unique prime factorization.

Eg: h(Q) = 1 and h(Q(
√
−5)) = 2.
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Definition of regular primes

For each integer n, let Q(ζn) be the finite extension of Q generated by
ζn. We call Q(ζn) the n-th cyclotomic field.

We say a prime p is regular if

p does not divide the class number h(Q(ζp)).

Kummer proved that if p is a regular prime, then X p + Y p = Z p has no
non-trivial integral solution.

Unfortunately, not all primes are regular. For example, p = 691 is not a
regular prime, namely 691 divides h(Q(ζ691)). The smallest non-regular
prime is 37.

Conjecture (Siegel)

About 60.65% of primes are regular.

To compute the class number h(Q(ζp)), we need zeta functions.
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Zeta values

The Riemann zeta function is defined by the series

ζ(s) =
∞∑
n=1

1
ns
,

where s is a complex number with Re (s) > 1.
Euler computed some values of ζ(s) at negative odd integers:

ζ(−1) = −1/12, ζ(−3) = 1/120, ζ(−5) = −1/(22 · 32 · 7),

ζ(−7) = 1/(24 · 3 · 5), ζ(−9) = −1/(22 · 3 · 11)

ζ(−11) = 691/(23 · 32 · 5 · 7 · 13), . . . ,

ζ(−31) = −(37 · 683 · 305065927)/(2 · 3 · 5 · 7), . . . .
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Note that 691 is a prime factor of
the numerator of the zeta value ζ(−11) (analytic value);
the class number h(Q(ζ691)) (arithmetic value).

Similarly, 37 is a prime factor of
the numerator of the zeta value ζ(−31);
the class number h(Q(ζ37)).
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A refined relation

Let Ap := Cl(Q(ζp))⊗Z Zp be the p-primary subgroup of Cl(Q(ζp)).
Then Ap is equipped with a natural Galois action of Gal(Q(ζp)/Q). Let
ω : Gal(Q(ζp)/Q)→ Z×p be the unique character given by

σ(ζp) = ζ
ω(σ)
p . We can decompose Ap into eigenspaces

Ap =

p−1⊕
k=0

Ap(k),

where Ap(k) =
{
x ∈ Ap | σ(x) = ωk(σ)x , σ ∈ Gal(Q(ζp)/Q)

}
.

For p = 691, 37, one can prove a refined relation (Herbrand-Ribet
Theorem)

691 | ζ(−11); 691 | #(A691(−11)).

37 | ζ(−31); 37 | #(A37(−31)).

The aim of Iwasawa theory is to provide a systematic treatment to
understand the above phenomenon and the generalizations. Roughly
speaking, classical Iwasawa theory studies the relation between

the ideal class group with Galois action ⇐⇒ zeta values.
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Dirichlet L-functions

In 1837, Dirichlet generalized Riemann’s zeta function, and for a
character χ : (Z/pZ)× → C×, he introduced the following complex
L-function given by

L(s, χ) =
∞∑

n=1, p-n

χ(n)

ns
, Re s > 1.

This function was invented by Dirichlet to show there are infinitely many
primes in the arithmetic progression {pn + a}n=1,2,... (1 ≤ a < p).
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Zeta values = special values of Dirichlet L-functions

Dirichlet L-functions L(s, χ) has analytic continuation to the whole
complex plane. If χ(−1) = −1, then it is known that L(0, χ) 6= 0 and

L(0, χ) =
1
p

p−1∑
a=1

χ(a)a ∈ Z.

The p-adic character ω : Gal(Q(ζp)/Q)→ Z×p can be viewed as a
Dirichlet character ω : (Z/pZ)× → C× in a natural way. In view of the
above formula, we have L(0, ωk) ∈ Zp for odd k .
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The refined relation between ideal class number and zeta
values

Theorem (Mazur-Wiles, 1984)

Let p be an odd prime. For any odd integer k , we have

#(Ap(k)) = #
(
Zp/(L(0, ωk))

)
.

Remark
For any odd integer k < 0, we have the congruence relation

L(0, ωk) ≡ ζ(k) (mod p).

This explains our example with p = 691 and k = −11

691 | ζ(−11) ⇐⇒ 691 | L(0, ω−11) ⇐⇒ 691 | #(A691(−11)).
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Recall that p is regular if and only if p - #(Ap). Since

Ap =

p−1⊕
k=0

Ap(k),

Mazur-Wiles’ theorem shows that #(Ap(k)) can be computed by
Dirichlet L-values if k is odd. For even k , we have the following

Conjecture (Vandiver)

#(Ap(k)) = 1 if k is even.

This conjecture has been verified for p < 125000.
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Congruent number problem (∼972 A.D.)

A positive square-free integer n is a congruent number if n is the area of
a right-angled triangle with rational length sides. In other words, there
exist positive rational numbers A,B,C such that

n =
1
2
AB, C 2 = A2 + B2.

If A,B,C is a solution to the above equation, setting

x = C 2/4, y =
(A2 − B2)C

2
,

we see immediately that (x , y) ∈ Q2 is a rational solution of the cubic
equation

y2 = x(x − n)(x + n).

This is an example of elliptic curves!
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Elliptic curves

Let a, b ∈ Z such that ∆ := 4a3 + 27b2 6= 0. Let

f (X ,Y ,Z ) = Y 2Z − (X 3 + aXZ 2 + bZ 3)

and let E ⊂ P2 be the zero set of F in P2, which defines a non-singular
projective curve over Q. For a field L, denote by E (L) the set of
L-rational points of E :

E (L) =
{

[a0 : a1 : a2] ∈ P2(L) | f (a0, a1, a2) = 0
}

=
{

(x , y) ∈ L2 | y2 = x3 + ax + b
}
∪ {[0 : 1 : 0]}

We know
O := [0 : 1 : 0] ∈ E (Q).
E (C) is a Riemann surface of genus one.

We call (E ,O) the elliptic curve over Q defined by the cubic equation
y2 = x3 + ax + b.
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Mordell-Weil theorem

We have an isomorphism

E (L) ' Pic0 E (L), P 7→ (P)− (O).

This gives an abelian group structure of E (L).

Theorem (Mordell-Weil)

If L is a finite extension of Q, then E (L) is a finitely generated abelian
group.

We call rankZ E (L) the algebraic rank of E/L.
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The congruent number problem and elliptic curves

For each positive integer n, we let En be the elliptic curve defined by the
cubic equation y2 = x(x − n)(x + n).

Proposition

The integer n is a congruent number if and only if

rankZ En(Q) > 0 ⇐⇒ #(En(Q)) =∞
⇐⇒ En(Q) contains a point of infinite order.
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Finding non-torsion rational points in elliptic curves is
difficult in general

Consider the elliptic curve

E157 : y2 = x(x + 157)(x − 157).

We can show that the torsion points are

E157(Q)tor = {(0, 0), (157, 0), (−157, 0), [0 : 1 : 0]} .

The simplest non-torsion point is given by (x0, y0) with

x0 =
95732359354501581258364453
277487787329244632169121

y0 =
834062764128948944072857085701103222940
146172545791721526568155259438196081

.

Finding this point requires a beautiful combination of tools from
algebraic geometry, algebraic number theory and complex analysis.
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The zeta function of E/Q
If ` is a prime, let F` = Z/`Z and define a`(E ) ∈ Z by

a`(E ) = #(P1(F`))−#(E (F`)) = 1 + `−#(E (F`)) ∈ Z.

Define the zeta function of E/Q

L(E/Q, s) =
∏
`-∆

1
1− a`(E )`−s + `1−2s (Re s >

3
2

).

Theorem (Wiles et.al, 1995)

L(E/Q, s) has holomorphic continuation to the whole complex plane.

We call ords=1L(E/Q, s) the analytic rank of E . Moreover, there is a
unique positive integer NE (the conductor of E ) such that

ΛE (s) :=

(√
NE

2π

)s

· Γ(s) · L(E/Q, s)

satisfies the function equation

ΛE (s) = w(E/Q) · ΛE (2− s), w(E/Q) ∈ {±1} .
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A Millennium Prize Problem

Conjecture (Birch and Swinnerton-Dyer)

rankZ E (Q) = ords=1L(E/Q, s).

Weak version of the conjecture:

L(E/Q, 1) = 0 ⇐⇒ rankZ E (Q) > 0
⇐⇒ E (Q) has infinitely many points.

In our previous example E157, it is not difficult to show L(E157/Q, 1) = 0.
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Known results for the weak version

Theorem (Coates-Wiles, 1977; Kolyvagin, 1995)

rankZ E (Q) = 0 if ords=1L(E/Q, s) = 0.

In other words, E (Q) is a finite group if L(E/Q, 1) 6= 0.

Therefore, if L(En/Q, 1) 6= 0, then n is not a congruent number.

Theorem (Gross-Zagier, 1986; Kolyvagin, 1995)

rankZ E (Q) = 1 if ords=1L(E/Q, s) = 1.

The opposite implication

L(E/Q, 1) = 0⇒ rankZ E (Q) > 0

seems extremely difficult in general. Nonetheless, some conditional
results can be obtained by Iwasawa theory for elliptic curves.
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Tate-Shafarevich and Selmer groups for elliptic curves

The Tate-Shafarevich group X(E/Q) is the class group of E defined by

X(E/Q) ={isomorphism class [C/Q] |
C : genus one curve C/Q ' E/Q and C (Q`) 6= ∅ ∀ primes `.}

In terms of Galois cohomology groups,

X(E/Q) = ker

H1(Q,E )→
∏

`: primes

H1(Q`,E )

 .

Conjecture (Tate-Shafarevich)

X(E/Q) is a finite group.

The Selmer group Sel(E/Q) for E/Q is a discrete subgroup which fits
into the following exact sequence

0→ E (Q)⊗Q/Z→ Sel(E/Q)→X(E/Q)→ 0.

Taking Pontryagin duals (•)∗,

0→X(E/Q)∗ → Sel(E/Q)∗ → E (Q)⊗ Ẑ→ 0.
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Iwasawa theory for elliptic curves

Iwasawa theory for elliptic curves studies the p-adic variations of the
Selmer group Sel(E/Q)∗ as well as the central L-value L(E/Q, 1).

This theory was initiated by Mazur in 1970, generalizing Iwasawa’s ideas
for ideal class groups to elliptic curves. The following is a result of efforts
of four decades in Iwasawa theory for elliptic curves

Theorem (Rubin, 1991; Skinner-Urban, 2014)

Assume that X(E/Q) <∞. Then

L(E/Q, 1) = 0⇒ rankZ E (Q) > 0.
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The case of CM abelian varieties

We can also formulate the BSD conjecture for any abelian variety A/Q
whenever the associated zeta functions L(A/Q, s) has the analytic
continuation to Re (s) > 1−. In particular, this is known for abelian
varieties with complex multiplications.
We used the arithmetic of Picard modular forms to study Iwasawa theory
for CM fields and extended the above results to CM abelian varieties:

Theorem (H-, 2014)

Let A/Q be a simple CM abelian variety. Assume that X(A/Q) <∞
Then

L(A/Q, 1) = 0⇒ rankZ A(Q) > 0.
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Theorem of Gross-Zagier, Kolyvagin and Skinner

Theorem (Gross-Zagier, Kolyvagin and Skinner)

rankZ E (Q) = 1 and X(E/Q) <∞
⇐⇒ ords=1L(E/Q, s) = 1.

The key to the proof is the existence of Heegner points in addition to
Iwasawa theory.
For each imaginary quadratic field K , the theory of complex
multiplication produces a special point PK ∈ E (K )⊗Z Q, which is called
the Heegner point of E/K . Gross and Zagier proved

PK 6= 0 ⇐⇒ ords=1L(E/K , s) = 1.

Using Iwasawa theory, Kolyvagin and Skinner proved that

PK 6= 0 for some K ⇐⇒ rankZ E (Q) = 1 and X(E/Q) <∞.
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An analogue of Heegner points in the rank two case

Heegner points vanish if rankZ E (Q) ≥ 2. It is desirable to find
analogues of Heegner points for elliptic curves of higher ranks.

Inspired by recent works of Darmon and Rotger, we use Iwasawa theory
for the triple product of modular forms to construct an element

κE ∈ E (Q)⊗Z Qp

under the the finiteness of Tate-Shafarevich groups. Unlike Heegner
points, κE does not belong to E (Q)⊗Z Q.

Theorem (Castella and H-, 2019)

Suppose that X(E/Q) <∞. Then

κE 6= 0 ⇐⇒ rankZ E (Q) = 2.

The proof uses the construction of p-adic triple product L-functions and
anticyclotomic Iwasawa theory for elliptic curves over imaginary quadratic
fields.
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Last example: Cursed curve (∼1972)

Let C ⊂ P2 be the plane curve over Q of defined to be the zero set of the
homogenous polynomial of degree 4

F (X ,Y ,Z ) = Y 4 + 5X 4 − 6X 2Y 2 + 6X 3Z + 26X 2YZ + 10XY 2Z

− 10Y 3Z − 32X 2Z 2 − 40XYZ 2 + 24Y 2Z 2 + 32XZ 3 − 16YZ 3.

The genus of C(C) is three, so #(C(Q)) is finite by Faltings’ theorem.

Theorem (Balakrishnan et.al, 2019)

C(Q) consists of the following seven points

{[0 : 1 : 0], [0 : 0 : 1], [−1 : 0 : 1], [1 : 0 : 0], [1 : 1 : 0], [0 : 3 : 2], [1 : 0 : 1]} .

The proof uses Chabauty-Kim method which crucially relies on the
arithmetic structure of the étale and de Rham fundamental groups of X
and theory of p-adic integration over one forms on curves.
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Concluding remarks

The beauty of number theory stems from the contradiction
between the simplicity of the problems and the complexity of
the methods.

Moreover, the solutions usually exhibit the harmony between
various branches of mathematics.
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Thank you for your attention.
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