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First example

I A classical question: For which integer n do there exist integers a, b
such that a2 + b2 = n?

I Answer: When n = p is a prime, such a, b exist iff p = 2 or
p = 4k + 1.

I For p = 4k + 3, e.g. p = 7, a2 + b2 = 7 has no solution. Though if
we square 7, then a2 + b2 = 49 obviously has solutions.

I In general, such a, b exist iff n ≥ 0, and for every prime p that
appears in the prime factorization an odd number of times, we have
p = 2 or p = 4k + 1. Identical statement is true when we replace
a, b, n by rational numbers.

I A common number-theoretic phenomenon: a question about
integers or rational numbers (global) can be fully or partially studied
by looking at the R-version and information from each prime
number (local).

I So why the difference between 4k + 1 and 4k + 3?



Second example
I A slightly modern question: for any fixed prime p, when does there

exist an integer x such that p divides x3 − x − 1?
I In other words, when does x3 − x − 1 = 0 has a root in Fp = Z/p,

the field of p elements?
I Even more, we can ask the number of roots in Fp, i.e. the number

of x ∈ {0, 1, ..., p − 1} such that x3 − x − 1 is divisible by p.
I Answer: No root if p can be written as p = 2a2 + ab + 3b2. Three

roots if p = a2 + ab + 6b3. Two roots if p = 23. One root otherwise.
I For any integral polynomial (not only x3 − x − 1) this has a general

type of answer as follows: Consider q = e2πiz our favorite periodic
holomorphic function on C and

f := q
∏∞

n=1(1− qn)(1− q23n) = 1
2 (
∑

a,b∈Z q
a2+ab+6b2 −

∑
a,b∈Z q

2a2+ab+3b2

)

= q−1q2−1q3 + 0q5 + q6 + 0q7 + q8 + 0q11−1q13 − q16+1q23 + ......+2q59 + ...

which converges on the upper half plane H := {z ∈ C | =(z) > 0}.
I At the same time, x3 − x − 1 = 0 has no root in Fp for

p = 2, 3, 13, ..., one root for p = 5, 7, 11, ..., and three roots for
p = 59, ....



Modular forms

f := q
∞∏
n=1

(1− qn)(1− q23n) =
1

2
(
∑
a,b∈Z

qa
2+ab+6b2

−
∑
a,b∈Z

qa
2+ab+6b2

)

I In fact, f is not only periodic, but a so-called modular form.

I Recall that SL2(R), the group of 2× 2 matrices in R with
determinant 1, is the automorphism group of our upper half plane H.

I Let us look at the subgroup of SL2(R) that consists of

[
a b
c d

]
with

a, b, c , d ∈ Z and d − 1 ≡ c ≡ 0 (mod 23). The function f satisfies
(this is not obvious)

f (
az + b

cz + d
) = (cz + d)f (z)

I Another weird(?) example:

f (z) = q
∏∞

n=1(1− qn)2(1− q11n)2

= q−2q2−1q3 + 2q4+1q5 + 2q6−2q7 − 2q9 − 2q10+1q11 − 2q12+4q13 + ...

is also a modular form except that the (mod 23) above is to be
changed to (mod 11).



Third example
f (z) = q

∏∞
n=1(1− qn)2(1− q11n)2 = q−2q2−1q3 + 2q4+1q5 + 2q6−2q7 − 2q9 − 2q10+1q11 −

2q12+4q13+4q14−q15−4q16−2q17+4q18+0q19+2q20+2q21−2q22−1q23−4q25−8q26+5q27+...

I Let us look at the equation y2 − y = x3 − x2 and ask for its
solutions in Fp = Z/p.

I For any fixed value of x , we have a quadratic equation in y which
might have 0, 1 or 2 solutions. In average there seems to be p
solutions. Let ap be the “difference”:

a′p = #{x , y ∈ Fp | y2 − y = x3 − x2}
ap = p − a′p.

I Some examples of these ap:

p 2 3 5 7 11 13 17 19 23 29 31 37
ap −2 −1 1 −2 1 4 −2 0 −1 0 7 3

Aha!



Examples summarized

I Let us summarized the three examples:

1. On one side we ask whether x2 + y2 = p is possible. On the other
we have p modulo 4.

2. On one side we ask the number of roots of x3 − x − 1 in Fp = Z/p.
On the other we have the coefficients of the modular form
f (z) = q

∏∞
n=1(1− qn)(1− q23n), q = e2πiz .

3. On one side we ask how many solutions are there to
y2 − y = x3 − x2 in Fp. On the other we have modular form
f (z) = q

∏∞
n=1(1− qn)2(1− q11n)2.

I How are they related?

I Langlands program starts with Langlands correspondence: a
correspondence between certain representations and certain Galois
monodromies. Can you see which side is which side?



Galois side I: Galois theory

I In the example x2 + y2 = p, the basic strategy of number theory
since 19th century is that we will factor x2 + y2 = (x + iy)(x − iy),
i =
√
−1. In particular adding i into our number system whenever

we like.

I That is, we have the field extension Q(i)/Q.

I Explicit algorithm for solving x2 + y2 = p consists of two steps: (1)
find x ′ ∈ Z such that (x ′)2 + 1 = kp where 0 < k < p. (2) Take
x + iy = gcdZ[i ](x

′ + i , p) then x2 + y2 = p.

I And finding x ′ is solving for
√
−1 in Fp!

I In other words, we want to ask what Fp(i)/Fp looks like: If
(x ′)2 + 1 = 0 has a solution in Fp, then i ∈ Fp and Fp(i) = Fp.
Otherwise it will be a quadratic extension.

I That is, x2 + y2 = p has solution iff Fp(i)/Fp is a trivial extension.



Galois side II: Frobenius

I Galois theory is our first powerful tool to study such extensions:
Gal(Q(i)/Q) = {σ : Q(i)

∼−→ Q(i) | σ|Q = id} is a group of order
2 = dimQ Q(i); σ(i) = ±i .

I There is a way to define an element Frobp ∈ Gal(Q(i)/Q) called
Frobenius element at p that reflects the generator of
Gal(Fp(i)/Fp). In this example Frobp is trivial when Fp(i) = Fp and
the (unique) non-trivial element otherwise.

I That is, Frobp is trivial iff x2 + y2 = p has a solution.

I Warning: Frobp is not always defined (for Gal(Q(i)/Q), not defined
when p = 2), but can be defined for all but finitely many prime
numbers p. Same for K/Q any finite Galois extension.

I In particular, solving x3 − x − 1 = 0 ∈ Fp we can consider the Galois
extension K/Q given by adjointing all roots of x3 − x − 1. We have
Gal(K/Q) ∼= S3. Except for p = 23 (which divides the discriminant
of the polynomial) Frobp ∈ Gal(K/Q) ∼= S3 can be defined.



Galois side III: Trace of a representation
Consider the Galois extension K/Q given by adjointing all roots of x3 − x − 1. We have
Gal(K/Q) ∼= S3

I When Frobp is trivial, x3 − x − 1 = 0 has three roots in Fp, when
Frobp = (12) has order 2, x3 − x − 1 has one root, and when
Frobp = (123) has order 3, x3 − x − 1 has no root.

I The group S3 is the symmetry group of an equilateral triangle.
Putting the triangle at the middle of a 2-dimensional vector space
(over R say) we get an irreducible representation of S3.

I For this action of S3, the trivial element has trace 2, the order 2
element (12) has trace 0, and the order 3 element (123) has trace
−1, always one less than the number of roots/fixed points!

I This matches with our experiment earlier that

f = q−1q2−1q3 + 0q5 + q6 + 0q7 + q8 + 0q11−1q13 + ......+2q59 + ...



Galois side IV: general Galois representation

I We can form the Galois group GQ := Gal(Q̄/Q) where Q̄ is an
algebraic closure of Q (e.g. the field of algebraic numbers in C).
The group GQ has natural quotient map to any Gal(K/Q) (K/Q
finite) and thus any representation of Gal(K/Q) can be viewed as a
representation of GQ, called a Galois representation.

I The example of Q(i)/Q also can be viewed as a 1-dimensional
Galois representation: GQ � Gal(Q(i)/Q) ∼= {±1}.

I It matches with the function f : Z→ {±1, 0} by

f (n) :=

 1 p ≡ 1 (mod 4)
−1 p ≡ −1 (mod 4)
0 else

As a toy example (what?) of modular form this seems way too easy.

I The example y2− y = x3− x over Fp on the other hand is an elliptic
curve E and gives a 2-dimensional Galois representation out of its
`-adic cohomology H1

ét(E ;Q`). We will skip that complicated story.



Representation side I: Qp
I You probably remember that f : Z→ {±1, 0} given by

f (n) :=

 1 p ≡ 1 (mod 4)
−1 p ≡ −1 (mod 4)
0 else

should live in the “representation” side and should generalize to
modular forms. Why representations?

I Notice: The first two cases give an isomorphism (Z/4)× ∼= {±1}.
I We mentioned in the beginning that problems about Q (global) can

be studied over R and at various prime number p (local). At a prime
number p, we may consider the norm on Q given by

|ap
r

b
|p := p−r , a, b, r ∈ Z, ; a, b 6≡ 0 (mod p)

I The key is that it gives a topology in which two elements are very
close if their difference is divisible by p many times.

I One may take the completion of Q by this topology, getting a field
called the field of p-adic numbers and denoted Qp.

I For example, 1
25 + 1 + 3 · 5 + 2 · 52 + 2 · 53 + ... ∈ Q5.



Representation side II: Adéles

I It’s well known that R is the completion of Q under the usual
archimedian norm. This different completion Qp behaves similar to
R in many ways; for example a good portion of manifold and
measure theory works when R is literally replaced by Qp.

I A main difference: Qp has a subring Zp which is the closure (or
equivalently completion) of Z ⊂ Q under the norm | · |p. This
subring is compact and open inside Qp.

I We put notation-wise R = Q∞ = Z∞, and call {∞} ∪ {2, 3, 5, 7, ...}
the set of places of Q.

I Now let us define the so-called ring of adéles

AQ := {(av )v place of Q | av 6∈ Zv for at most finitely many v} ⊂
∏
v

Qv .

It comes with a diagonal embedding Q ↪→ AQ.



Representation side III: Translation
AQ := {(av )v place of Q | av 6∈ Zv for at most finitely many v} ⊂

∏
v Qv .

I The story begins with the approximation theorems:

AQ = Q ·
∑
v

Zv ,

A×Q = Q× ·
∏
v

Z×v (1)

sort of like Chinese Remainder Theorem.

I Consider the subgroup U ⊂ Z×2 given by the closure (under | · |2) of
integers that are ≡ 1 (mod 4). We have natural isomorphism
Z×2 /U ∼= (Z/4)× is a group of order 2 that we saw three slides ago.

I From (1) we have

(Z/4)× ∼= Z×2 /U ∼= Q×\A×Q/
∏
v 6=2

Zv · U (2)

That is, we just form a seemingly silly way to write Z×2 /U (a group
of order 2) as a double quotient of the complicated A×Q .



Representation side IV: Automorphic language
I In our consideration, for any ring R let GL2(R) be the group of 2× 2

matrices, for which all entries and its inverse’ entries are in R. We
have

GL2(AQ) (
∏
v

GL2(Qv ) satisfies GL2(AQ) = GL2(Q) ·
∏
v

GL2(Zv ).

I Consider the subgroup U ⊂ GL2(Z23) consisting of matrices

[
a b
c d

]
where d − 1, c ∈ 23 · Z23, as well as O2 ⊂ GL2(R) the subgroup of
rotations. We have

(GL2(Q) ∩ U ·
∏

v 6=23,∞

GL2(Zv )) \ GL2(R) / R+ · O2

∼= GL2(Q) \ GL2(AQ) / U ·
∏
v 6=23

GL2(Zv ) · R+ · O2

The group GL2(Q) ∩ U ·
∏

v 6=23,∞ GL2(Zv ) is exactly the those[
a b
c d

]
with a, b, c , d ∈ Z, ad − bc = ±1 and

d − 1 ≡ c ≡ 0 (mod 23). The quotient GL2(R)/R+ · O2 is exactly
the upper half plane. So this is in some sense where our previous
modular forms live!



Representation side V: Automorphic forms
I The thing is, we go through translation which seems tedious but

actually works generally. Then a modular form, originally a function
on upper half plane H, becomes a function on GL2(Q)\GL2(AQ).

I Such a function is called an automorphic form of GL2.
I The group GL2(AQ) acts on the space of such functions by right

translation (that is, g .f (h) := f (hg)). This is a big space. An
automorphic representation is an irreducible sub-representation of
this space.

I Our first baby case is the GL1-case; GL1(R) is the group of 1× 1
invertible matrices in R, i.e. R×. The same construction can be
worked out for GLn, any n ≥ 1.

I Langlands correspondence: Automorphic representation of GLn
should correspond to n-dimensional Galois representations, with
some restriction / decorations on both sides.

I Also generalized systematically when GLn is replaced by other
reductive groups, e.g. Automorphic representations of SO2n+1

correspond to 2n-dimensional symplectic Galois representations.



Langlands correspondence

I The correspondence should interchange most important informations
of both sides. For example, we can have on the automorphic side
the representation generated by the automorphic form of GL2

translated from f = q
∏∞

n=1(1− qn)(1− q23n), and on the other side
the 2-dimensional representation of the Galois group of x3 − x − 1.

I The example that everybody talks about: Suppose a, b, c are
integers such that ap + bp = cp for some prime p ≥ 3. Consider the
curve

y2 = x(x − ap)(x + bp)

The 2-dimensional Galois representation associated to this cubic
curve will corresponds (by Wiles and Wiles-Taylor) to some modular
form. Then there is some trick (by Ribet, Serre, ...) that cooks up
another modular form out of the previous one, which has some
property too naive that it cannot exist.



Local Langlands correspondence
I For n = 1 Langlands correspondence is the so-called class field

theory - one of the largest advancement in early 20th century. For
n > 1 only special cases (can be very powerful!) are known.

I The Langlands correspondence we have talked about are also called
global Langlands correspondence; it’s about subspace of functions
on G (Q)\G (AQ) as representations of G (AQ).

I Local Langlands correspondence instead look at representations of
G (Qv ); every irreducible representation of G (AQ) that we looked at
necessarily contains a unique irreducible representation of
G (Qv ) ⊂ G (AQ). Hence a local piece of the global datum.

I For example, the n = 1 case, i.e. local class field theory is equivalent
to that there is a bijection between (1) finite abelian extensions
F/Qp; this reflects 1-dimensional representations of Gal(Q̄p/Qp),
and (2) finite index subgroup of GL1(Qp) = Q×p .

I In fact, the bijection is just given by the image of norms from F× to
Q×p .

I In general from an explicit representation of G (Qp) we hope to get
explicit Galois representations for Gal(Q̄p/Qp) and vice versa.



Template for explicit local Langlands

I Say we begin with a local Galois representation GQp ; this is a

homomorphism ϕ : Gal(Q̄p/Qp)→ G∨ to some reductive group G∨

(typically over Q̄` for a different prime `).

I The highlight is that the wild inertia of Gal(Q̄p/Qp) (a rather large
normal pro-p-subgroup) usually has image in a maximal torus T∨ (a
maximal connected commutative multiplicative subgroup, e.g.
(T∨)o are the diagonal subgroup when G∨ = GLn); this always
happens when p does not divide the order of the Weyl group
NG∨(T∨)/T∨.

I In this case, the local Langlands correspodence for T∨, because of
the commutative nature, is given by local class field theory.

I Having things on the Galois side happening largely around a torus
T , the main challenge is then to get a desired representation of
G (Qp) from a character of of T (Qp). This is probably one of the
most common situation among all different kinds of representation
theories.



Induction from a torus
I For example, we can induce from the diagonal torus of GLn or in

general from a split maximal torus of a reductive group. This is
called parabolic induction and appears the most frequently - from
representations of finite reductive groups, real Lie groups, Lie
algebras, automorphic induction (in the form of Eisenstein series), ...

I Or, we can induce from a maximal torus that splits (say, conjugate
to diagonal) over an unramified extension of Qp. The construction
this case relies on the similar story over Fp, that starts from the
so-called Deligne-Lusztig induction in which the representation is
realized as the `-adic cohomology of Deligne-Lusztig variety over Fp.

I Or, we can induce from a maximal torus that is elliptic over an
unramified extension. In this case, this is the work on harmonic
analysis of p-adic group worked out by many and especially crowned
by the construction of supercuspidal representations by Jiu-Kang Yu.

I These constructions (expectedly) give finite length but not
irreducible representations, and the question of identifying the
components is exactly a problem of the frontier of current researches.



Thank you!


