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The phenomena of synchronization are found in a variety of
natural systems. The first reported observation of
synchronization dates back to the 17th century; a Dutch
scientist, Christiaan Huygens has discovered in 1665 that two
pendulum clocks hanging on the wall have always ended up
swinging in exactly the opposite direction from each other.
Since then, various synchronization phenomena have been
observed. These include circadian rhythms, electrical
generators, Josephson junction arrays, intestinal muscles,
menstrual cycles, and fireflies. Yet, the under- lying mechanism
of synchronization has remained a mystery.
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(1) Huygens (26 Feb, 1665):Pendulum

(2) William Strutt (Lord Rayleigh, 1945), The theory of sound
: organ-pipes

(3) W. H. Eccles J. H. Vincent (17, Feb, 1920):
synchronization of triode generators. The work of Eccles
and Vincent was extended by Balthasar van der Pol and
Edward Appleton.

(4) Jean-Jacques Dortous de Martin (1729): haricot bean
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(5) Norbert Wiener (1950s’), Cybernetics : communication
and control, brain waves

(6) Arthur Winfree:The Geometry of biological time

(7) C. S. Peskin’s

(8) Kuramoto: Chemical oscillators, waves, and turbulence

(9) R.E. Mirollo S. H. Strogatz



Synchronization

C.Hsia

2017 Nobel Prize in Physiology or Medicine

C. Hall, Michael Rosbash and Michael W. Young
Main contribution: discoveries of molecular mechanisms
controlling the circadian rhythm
Reference:
https://www.nobelprize.org/prizes/medicine/2017/press-
release/
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(1) Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, R.J.,
Kyriacou, C.P., Rosbash, M., and Hall, J.C. (1984).
P-element transformation with period locus DNA restores
rhythmicity to mutant, arrhythmic Drosophila
melanogaster. Cell 39, 369 - 376.

(2) Bargiello, T.A., Jackson, F.R., and Young, M.W. (1984).
Restoration of circadian behavioural rhythms by gene
transfer in Drosophila. Nature 312, 752 - 754.
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(3) Siwicki, K.K., Eastman, C., Petersen, G., Rosbash, M.,
and Hall, J.C. (1988). Antibodies to the period gene
product of Drosophila reveal diverse tissue distribution and
rhythmic changes in the visual system. Neuron 1, 141
-150.

(4) Hardin, P.E., Hall, J.C., and Rosbash, M. (1990).
Feedback of the Drosophila period gene product on
circadian cycling of its messenger RNA levels. Nature 343,
536 - 540.
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predominantly nuclear protein in adult Drosophila. J
Neurosci 12, 2735 - 2744.

(6) Vosshall, L.B., Price, J.L., Sehgal, A., Saez, L., and
Young, M.W. (1994). Block in nuclear localization of
period protein by a second clock mutation, timeless.
Science 263, 1606 -1609.

(7) Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss,
B., and Young, M.W. (1998). double-time is a novel
Drosophila clock gene that regulates PERIOD protein
accumulation. Cell 94, 83 - 95.
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Life on Earth is adapted to the rotation of our planet. For
many years we have known that living organisms, including
humans, have an internal biological clock that helps them
anticipate and adapt to the regular rhythm of the day. But how
does this clock actually work? Jeffrey C. Hall, Michael Rosbash
and Michael W. Young were able to peek inside our biological
clock and elucidate its inner workings. Their discoveries explain
how plants, animals and humans adapt their biological rhythm
so that it is synchronized with the Earth’s revolutions.
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Using fruit flies as a model organism, 2017’s Nobel laureates
isolated a gene that controls the normal daily biological
rhythm. They showed that this gene encodes a protein that
accumulates in the cell during the night, and is then degraded
during the day. Subsequently, they identified additional protein
components of this machinery, exposing the mechanism
governing the self-sustaining clockwork inside the cell. We now
recognize that biological clocks function by the same principles
in cells of other multicellular organisms, including humans.
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Peskin’s model

Mathematical Aspects of Heart Physiology, Courant Institute of
Mathematical Sciences, (1975) pp268-278.

dxi
dt

= S0 − γxi, 0 ≤ xi ≤ 1, i = 1, 2, · · · , N. (0.1)

As the voltagelike state variable xi reaches 1, it fires and jump
back to zero. Other oscillators follows the rule:

xi(t) = 1 => xj(t
+) = min(1, xj(t) + ε). (0.2)



Synchronization

C.Hsia

Peskin’s conjecture

(1) For arbitrary initial conditions, the system approaches a
state in which all the oscillators are firing synchronously.

(2) This remains true when the oscillators are not quite
identical.

Peskin proved (1) for N = 2.
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The idea of Mirollo and Srogatz

[1990 Siam J. APPL. MATH.]

x = f(φ). (0.3)

f : [0, 1]→ [0, 1] (0.4)

smooth, monotonic increasing (f ′ > 0), and concave down
(f ′′ < 0). f satisfies f(0) = 0 and f(1) = 1.
φ is a phase variable such that

(1) dφ/dt = 1/T , where T is the cycle period,

(2) φ = 0 as x = 0.

(3) φ = 1 as x = 1.
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Return map and firing map

Oscillators A and B.

(a) φ: the phase of B. φ is the moment right after A fires.

(b) Next firing time : (1− φ) which is B’s turn.

(c) xA = f(1− φ)→ f(1− φ) + ε.

Assume f(1− φ) + ε < 1. Namely, 1− φ < g(1− ε), which is
equivalent to

φ > δ := 1− g(1− ε).

The firing map h(φ) = g(ε+ f(1− φ)).
After one firing :

(φA, φB) = (0, φ)→ (φA, φB) = (h(φ), 0).
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Dynamics of return map

The return map is defined as

R(φ) = h(h(φ)).

Dom(R) = (δ, h−1(δ)), δ = 1− g(1− ε).

Lemma :
h′(φ) < −1, R′(φ) > 1

for all φ.
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Theorem

There exists a unique fixed point for R in (δ, h−1(δ)), and it is
a repeller.

It suffices to prove that h has a unique fixed point.

F (φ) = φ− h(φ).

Note :

F (δ) = −g(1− ε) < 0, F (h−1(δ)) = h−1(δ)− δ > 0

F ′(φ) = 1− h′(φ) > 2 > 0.

This implies h has a unique fixed point φ∗.
Since R(φ∗) = φ∗ and R′(φ) > 1, we see

R(φ) > φ if φ > φ∗,

R(φ) < φ if φ < φ∗.
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Chopra and Spong

2009 IEEE Transactions on Automatic Control 54 (2), 353-357

Collective synchronization was first studied by Wiener, who
conjectured its involvement in the generation of alpha rhythms
in the brain. It was then taken up by Winfree who used it to
study circadian rhythms in living organisms. Winfree’s model
was significantly extended by Kuramoto who developed results
for what is now popularly known as the Kuramoto model.
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Winfree’s idea

The only way to capture the common features (biological
oscillators) of chorusing crickets, flashing fireflies, pulsing
pacemaker neurons, and the like was to ignore all their
biochemical differences and to focus instead on the two things
that all biological oscillators share : the ability to send and
receive signals.
Following this idea, as described on Page 56 of SYNC,
Kuramoto considered a very intuitive function of the
aforementioned communication between oscillators :
Picture them (the oscillators) as friends jogging together on a
circular track. Being friends, they want to chat as they jog, so
each makes adjustments to his preferred speed. Kuramoto’s
rule is that the leading one slows down a bit, while the trailing
one speeds up by the same amount.
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Kuramoto model with uniform coupling strength

Classical Kuramoto model reads as

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)), t > 0, i = 1, 2, · · · , N.

Here, the constant vector

Ω = (ω1, ω2, · · · , ωN )

is called the natural frequency and the constant K is called the
coupling strength.
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This model makes assumptions that (i) the oscillators are
all-to-all, weakly coupled, (ii) the interactions between two
oscillators depends sinusoidally on the phase difference. The
Kuramoto model has been successfully used to describe diverse
dynamics of self-synchronizing systems in physics, biology and
chemistry.



Synchronization

C.Hsia

Kuramoto equation with inertia ( be considered for the
synchronization phenomena of firefly flash) :

mθ̈i+θ̇i = ωi+
K

N

N∑
j=1

sin(θj(t)−θi(t)), t > 0, i = 1, 2, · · · , N.
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Notation

Let M ≤ N , define the vector-valued phase function

Θ(t) := (θ1(t), θ2(t), · · · , θN (t)),

ΘM (t) := (θ1(t), θ2(t), · · · , θM (t)),

and the diameter of phase function

D(Θ(t)) = max
1≤i,j≤N

{θi(t)− θj(t)},

D(ΘM (t)) = max
1≤i,j≤M

{θi(t)− θj(t)}.
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Definition (Phase Synchronization)

We say {θi(t)}Ni=1 achieves a phase synchronization
asymptotically if for i, j ∈ {1, 2, · · · , N}, there exist integer kij
such that

lim
t→∞
|θi(t)− θj(t)− 2kijπ| = 0.

Definition (Frequency Synchronization)

We say {θi(t)}Ni=1 achieves a frequency synchronization
asymptotically if

lim
t→∞
|θ̇i(t)− θ̇j(t)| = 0,

for all i, j ∈ {1, 2, · · · , N}.
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1 Chopra, Spong (2009)

2 Ha etc (2010, 2012, 2015, 2016).

3 Hsia etc (2017)

4 F. Dörfler, F. Bullo (2011)
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Theorem

Assume D(Ω) < K sinα for some 0 < α < π
2 . If Θ(t) is a

solution of the classical Kuramoto system with initial condition
D(Θ(0)) < π − α, then

lim
t→∞

D(Θ̇(t)) = 0,

i.e., the oscillator Θ(t) achieves frequency asymptotically.
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Invariants

Set θ̄i(t) = θi(t)− ωt, where

ω = (

N∑
i=1

ωi)/N.

We may rewrite the original Kuramoto system as

˙̄θi(t) = ω̄i +
K

N

N∑
j=1

sin(θ̄j(t)− θ̄i(t)), t > 0, i = 1, 2, · · · , N,

with
N∑
i=1

ω̄i = 0. (0.5)

Note :
θ̄i(t)− θ̄j(t) = θi(t)− θj(t).
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A Lyapunov Functional

Multiplying θ̇i to the i−th equation of the Kuramoto system,
summing over the index i and taking the integration from zero
to t gives

1

2
m

N∑
i=1

(θ̇2i (t)− θ̇2i (0)) +

ˆ t

0

N∑
i=1

θ̇i(s)
2ds

=

N∑
i=1

ωi(θi(t)− θi(0))

+
K

N

∑
i<j

(cos(θi(t)− θj(t))− cos(θi(0)− θj(0)).
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supt>0 D(Θ(t)) <∞ implies the synchronization

1 Since
´ t
0

∑N
i=1 θ̇i(s)

2ds is a non-decreasing function in
time, by the Lyapunov functional, we see that the
boundedness of Θ(t) implies the synchronization.

2 Under the assumption (0.5), Θ(t) is bounded iff D(Θ(t))
is bounded.
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Suppose θi(t)− θj(t) = D(Θ(t)) is one of the representations
of D(Θ(t)) at time t, i.e.,

θj(t) ≤ θk(t) ≤ θi(t), for k = 1, 2, 3, · · · , N.

θ̇i(t)− θ̇j(t) = ωi − ωj

− 2K

N
sin(

θi(t)− θj(t)
2

)

N∑
k=1

cos(θk −
θi + θj

2
)

≤ D(Ω)− 2K

N
sin(

θi(t)− θj(t)
2

)

N∑
k=1

cos(
θi − θj

2
)

≤ D(Ω)−K sin(θi(t)− θj(t)).
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Non uniform coupling strength

The Kuramoto model with non-uniform coupling strength is
considered as

θ̇i(t) = ωi +

N∑
j=1

kij sin(θj(t)− θi(t)), t > 0, i = 1, 2, · · · , N.

1 F. Dörfler, F. Bullo (2011): kij > 0.

2 S-Y, Ha (2012): ωi = 0 and kij =

{
1, if j − i = 1,
0, others.

.

3 J.-G. Dong, X. Xue (2013).

4 S-Y, Ha (2013): symmetric and non-negative kij .

5 A. Banerjee (2017): identical case and piecewise coupling
oscillators.
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Time Delay Model

Semi-delay model :

θ̇l(t) = ωl +
K

N

N∑
k=1

sin(θk(t− τkl)− θl(t) + γkl), (0.6)

and full-delay model:

θ̇l(t) = ωl +
K

N

N∑
k=1

sin(θk(t− τkl)− θl(t− τkl) + γkl) (0.7)

for t > τ, l = 1, 2, 3, · · ·N .
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τkl ≥ 0 for l, k = 1, 2, · · · , N, (0.8)

τ := max
1≤k,l≤N

τkl. (0.9)

γ := max
1≤k,l≤N

|γkl|. (0.10)

The time-delay systems (0.6) and (0.7) are supplemented with
continuous initial history

Θ(t) = Θ0(t) for 0 ≤ t ≤ τ, (0.11)
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0 ≤ 2β ≤ α < π

2
, (0.12)

β + 2α < π, (0.13)

µ := 2 sin(
α

2
− β

8
) cos(

α

2
+

3

8
β), (0.14)

max
1≤l≤N

|ωl| < K, (0.15)

D(Ω) < µK, (0.16)

Kτ + γ ≤ min{ 1

10
cos(α+

β

4
),

β

4(µ+ 2)
}. (0.17)
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Theorem (1)

(Hsia, Jung, Kwon, Ueda) Let Assumption (H1) hold. Let
Θ(t) be a solution of (0.6) with continuous initial history
(0.11) satisfying

D(Θ(τ)) < π − α− β. (0.18)

Then, we have
lim
t→∞

D(Θ̇(t)) = 0.

I.e., The Kuramoto oscillator Θ(t) achieves a complete
frequency synchronization asymptotically.
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Assumption (H2). We assume

0 ≤ 2β ≤ α < π

2
, (0.19)

β + 2α < π, (0.20)

λ := 2 sin(
α

2
− 3β

8
) cos(

α

2
+

5

8
β), (0.21)

D(Ω) < λK, (0.22)

Kτ + γ ≤ min

{
1

10
cos(α+

β

8
),

β

4(λ+ 2)

}
. (0.23)



Synchronization

C.Hsia

Theorem (2)

Let Assumption (H2) hold. Let Θ(t) be a solution of (0.7)
with continuous initial history (0.11) satisfying

D(Θ(τ)) < π − α− β. (0.24)

Then, we have
lim
t→∞

D(Θ̇(t)) = 0. (0.25)



Synchronization

C.Hsia

Remark

We remark that our result includes the case with no time-delay
effect nor phase lag effect, i.e., τkl = 0 and γkl = 0 as a special
case. In such a case, the parameter β can be chosen to be zero
so that λ = sinα, and our theorems recover the existing
synchronization result for the original Kuramoto system.
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Phase synchronization

θ̇l(t) = ω +
K

N

N∑
k=1

sin(θk(t− τkl)− θl(t− τkl) + γ̄) (0.26)

for t > τ, l = 1, 2, 3, · · ·N .
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Theorem

Assume Assumption (H2) holds. Let Θ(t) be a solution of
(0.26) with continuous initial history (0.11) satisfying

D(Θ(τ)) < π − α− β. (0.27)

Then, we have
lim
t→∞

D(Θ(t)) = 0. (0.28)
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Assume the parameters (α, β, γ, λ, τ,K) satisfy Assumption
(H2). Let Θ(t) be a solution of (0.7) with continuous initial
history (0.11) satisfying

D(Θ(τ)) < π − α− β. (0.29)

Then, we have

D(Θ(t)) < α for all t > T ∗0 , (0.30)

where

T ∗0 :=
π − 2α− 3

4β

λK −D(Ω)
+ 2τ. (0.31)
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Proof of Theorem (2)

Set R(t) = Θ̇(t). For t > 2τ , by taking a derivative on (0.7),
we obtain

ṙl(t) =
K

N

N∑
k=1

cos(θk(t− τkl)− θl(t− τkl) + γkl)

× (rk(t− τkl)− rl(t− τkl))

= −K
N

N∑
k=1

cos(θk(t− τkl)− θl(t− τkl) + γkl)(rl(t)− rk(t))

+
K

N

N∑
k=1

cos(θk(t− τkl)− θl(t− τkl) + γkl)

×
(
(rl(t)− rk(t))− (rl(t− τkl)− rk(t− τkl))

)
(0.32)
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By Lemma (1) and Assumption (H2), we have for t > T ∗0 + τ
and k, l ∈ {1, 2, 3, · · · , N},

cos(θk(t− τkl)− θl(t− τkl) + γkl) ≥ cos(α+
β

8
) > 0. (0.33)

Note also

(a) For any l, k ∈ {1, 2, 3, · · · , N} and s > τ ,

|rl(s)−rk(s)| = |θ̇l(s)− θ̇k(s)| ≤ (λ+2)K < 4K. (0.34)

(b)

max
1≤l≤N

|ṙl(t)| ≤ K max
t−τ≤s≤t

D(R(s)). (0.35)
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Suppose at time t > T ∗0 + τ , we have rj(t) ≤ rk(t) ≤ ri(t) for
k = 1, 2, 3, · · · , N , then

ṙi(t) ≤ −
K

N

N∑
k=1

cos(α+
β

8
)(ri(t)− rk(t))

+
K

N

N∑
k=1

cos(θk(t− τki)− θi(t− τki) + γki)

×
(
(ri(t)− rk(t))− (ri(t− τki)− rk(t− τki))

)
(0.36)
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ṙj(t) ≥ −
K

N

N∑
k=1

cos(α+
β

8
)(rj(t)− rk(t))

+
K

N

N∑
k=1

cos(θk(t− τkj)− θj(t− τkj) + γkj)

×
(
(rj(t)− rk(t))− (rj(t− τkj)− rk(t− τkj))

)
(0.37)



Synchronization

C.Hsia

ṙi(t)− ṙj(t)

≤ − cos(α+
β

8
)K(ri(t)− rj(t))

+ 2K max
1≤k,l≤N

|(rl(t)− rk(t))− (rl(t− τkl)− rk(t− τkl))|

≤ − cos(α+
β

8
)K(ri(t)− rj(t))

+ 2K max
1≤k,l≤N

max
t−τ≤s≤t

|ṙl(s)− ṙk(s)|τ

≤ − cos(α+
β

8
)K(ri(t)− rj(t)) + 4K max

1≤l≤N
max

t−τ≤s≤t
|ṙl(s)|τ

≤ − cos(α+
β

8
)K(ri(t)− rj(t)) + 4K2τ max

t−2τ≤s≤t
D(R(s)).

(0.38)
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Step 1.

Plugging (0.34) into the right-hand side of (0.38), for
t ≥ T ∗0 + 3τ , we see

ṙi(t)− ṙj(t) ≤ − cos(α+
β

8
)K(ri(t)− rj(t)) + 4K2(4K)τ.

(0.39)
We observe that in case

ri(t)− rj(t) = D(R(t)) ≥ 5Kτ

cos(α+ β
8 )

(4K), (0.40)

by (0.39), we see that

ṙi(t)− ṙj(t) ≤ −K2τ(4K) < 0. (0.41)
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t > T ∗0 + 3τ .

(i) If D(R(T ∗0 + 3τ)) < 5Kτ

cos(α+β
8
)
(4K), then

D(R(t)) < 5Kτ

cos(α+β
8
)
(4K) for all t > T ∗0 + 3τ .

(ii) If D(R(T ∗0 + 3τ)) ≥ 5Kτ

cos(α+β
8
)
(4K), by (0.41), D(R(t)) is

decreasing at speed greater or equal to 4K3τ .

Note: By Assumption (H2),

5Kτ

cos(α+ β
8 )
≤ 1

2
.
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By induction,

D(R(t)) < (
1

2
)m−2K for all t > T ∗m, (0.42)

where

T ∗m = T ∗m−1 + 3τ +
1− 5Kτ

cos(α+β
8
)

K2τ
. (0.43)
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Semi-delay :

θ̇l(t) = ωl +
K

N

N∑
k=1

sin(θk(t− τ)− θl(t) + γ̄) (0.44)

Full-delay :

θ̇l(t) = ωl +
K

N

N∑
k=1

sin(θk(t− τ)− θl(t− τ) + γ̄) (0.45)
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Assumption (H3). Let N
2 < M ≤ N be a positive integer.

We assume that the parameters (α, β, γ̄, τ,K) appearing in the
theorems satisfy

0 ≤ 2β ≤ α < π

2
, (0.46)

4(Kτ + |γ̄|) ≤ β and (0.47)

M cos(
π − α

2
+ 2Kτ + |γ̄|)− (N −M) > 0. (0.48)

ωl = ω for l = 1, 2, 3, · · · ,M. (0.49)
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Theorem (4)

Let Assumption (H3) hold and |ω| < K. Let Θ(t) be a solution
of (0.44) with continuous initial history (0.11) satisfying

D(ΘM (τ)) < π − α− β. (0.50)

Then we have

D(ΘM (t)) ≤ D(ΘM (2τ))e−A1(K,τ,α)(t−2τ) (0.51)

for all t > 2τ , where

A1(K, τ, α) :=
2K
(
M cos(π−α2 + 2Kτ + |γ̄|)− (N −M)

)
N(π − α)

× sin
π − α

2
> 0.

(0.52)



Synchronization

C.Hsia

Theorem (5)

Let Assumption (H3) hold. Let Θ(t) be a solution of (0.45)
with continuous initial history (0.11) satisfying

D(ΘM (τ)) < π − α− β. (0.53)

Then we have

lim
t→∞

(θi(t)− θj(t)) = 0 for all 1 ≤ i, j ≤M,

i.e., the ensemble of the oscillaters achieves the
complete/partial phase synchronization asymptotically.
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Lemma

Let Assumption (H3) hold. Suppose that Θ(t) is a solution of
(0.45) with continuous initial (0.11) satisfying (0.53). For
fixed j ∈ {2, 3, · · · ,M}, if there holds

|θ1(t)− θj(t)| ≤ c ≤ 4Kτ for all t ∈ [a, a+ 4τ ] (0.54)

for some a > T0 + τ , where T0 is some large positive number,
then there exists a number b ≥ a+ τ such that

|θ1(t)− θj(t)| ≤ c for all t ∈ [a, b], (0.55)

and

|θ1(t)− θj(t)| ≤ (4Kτ)c for all t ∈ [b, b+ 4τ ]. (0.56)
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We remark that in the case M < N , Theorem (4) and
Theorem (5) demonstrate that a proper subset of M oscillators
would achieve a phase synchronization asymptotically, which is
referred to as partial synchronization. For the case where
M = N , the above two theorems exhibit the complete
synchronization.
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Concluding Remark

Our results demonstrate that the Kuramoto models
incorporated with small variation of time-delays and/or phase
lag effect still exhibit the synchronization. This supports the
qualitative robustness of the classical Kuramoto model in the
small perturbation of time-delay and phase lag effects. These
provide a strong mathematical reasoning that the onset of the
synchronization is not too sensitive to small disturbance of
physical conditions, and support the universality of the
synchronization phenomena.
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Reference for general readers

1 Steven Strogatz : SYNC: How order emerges from chaos
in the universe, nature, and daily life.

2 Duncan J. Watts: six degrees

3 A. Pikovsky, M. Rosenblum, and J. Kurths:
Synchronization : A universal concept in nonlinear science
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Thanks for your attention!


