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A new trend

Figure: Number of published papers containing the word “categorification” on
MathSciNet

!△ The very first paper appeared in 1994
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Mathematical Sciences Classification (MSC)

• The MSC is usually updated every 10 years
(eg MSC1990, MSC2000, MSC2010, ...etc)

• Categorification becomes its own subcategory starting in MSC2020
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It is Very Active

• 2020 Jan – May,
Higher Categories and Categorification,
Mathematical Sciences Research Institute

• 2020 Jan – Apr,
Categorifications: Hecke algebras, finite groups and quantum groups,
Institut Henri Poincaré

• 2020 Nov – Dec,
Workshop: Monoidal and 2-categories in representation theory and
categorification,
Hausdorff Research Institute for Mathematics
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Motivations

• To solve a mathematical problem:
• Typical approach

start with a difficult problem,
simplify it until it becomes easy enough to be solved

• Alternative approach
start with a problem in the “lower level”,
develop a theory on a “higher level” in order to solve the problem
e.g. generating functions, representation theory, ... and categorification
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A quick recall

Introduced by Eilenberg-Mac Lane in 1945, a category C consists of
• a class ob C of objects
• a class mor C of morphisms
• a composition of morphisms satisfying

− Associativity
− Existence of identity
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A quick recall

A functor F : C → D between categories is a mapping that
• sends an object x in C to an object F(x) in D
• sends a morphism x f→ y in C to a morphism F(x) F(f)→ F(y) in D

such that compositions and identity are preserved
A natural transformation is a “2-morphism” between functors, i.e., a mapping α
which assigns each object x in C a morphism αx such that the diagram below to
the right commutes for all x f→ y:

C D

F

G

α
F(x) F(y)

G(x) G(y)

F(f)

αx αy

G(f)
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Categorification

Definition
A categorification of X is a process to replace set-theoretic statement regarding
X by their category-theoretic analogues on a category C

Set Theory Category Theory
set category

element object
relation between elements morphism

map functor
relation between maps natural transformation

Definition
A decategorification is a map that recovers X from C
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A Baby Example

The category FinSet categorifies the natural numbers N = {0, 1, 2, . . .}

category level FinSet ⊔ × ↪→

set level N + ∗ ≤

decat′ncat′n

Decategorification = counting the size
• Information is lost if we only consider N, e.g.,

|X| = |Y| while X may not be equal to Y

!△ Categorification is NOT unique
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Some Categorification is Better

The category FinVect also categorifies the natural numbers N

category level FinVect ⊕ ⊗ ↪→

set level N + ∗ ≤

decat′ncat′n

Decategorification = counting the dimension
• FinVect has a richer structure than FinSet since

mor FinVect is linear algebra!
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Vector Spaces

In order to categorify a given vector space V, we need a category C that
decategorifies to V:

category level C ? ?

set level V + basis

decat′ncat′n

• There can be more than 1 way to (de)categorify. The most common one is
through the Grothendieck group [C]
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Grothendieck Groups

• If C is a small abelian category (e.g. C = R-Mod over ring R), then its
Grothendieck group [C] is the free abelian group generated by the iso classes
[M],M ∈ ob C), subject to the relation

[X] = [Y] + [Z] if 0→ Y→ X→ Z→ 0 is an SES

• If C is a small additive category, then its split Grothendieck group [C]⊕ is
the free abelian group generated by the iso classes [M],M ∈ ob C, subject to
the relation

[X] = [Y] + [Z] if 0→ Y→ X→ Z→ 0 is a split SES
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Vector Spaces (cont’d)

We can categorify a vector space V by constructing a category C such that
[C] ≃ V or [C]⊕ ≃ V.

category level C ⊕ indecomposables

set level V + basis

decat′ncat′n
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Representation

If V has a module structure of X : group, Lie algebra, ...etc, we expect functors
for each generator x of X:

category level C functor Fx : C → C natural trans.

set level V action x : V→ V relations btw actions

decat′ncat′n
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Algebras

If V is an algebra, we look for C that is also a tensor category so [C] or
[C]⊕ ≃ V as an algebra:

category level C ⊕ ⊗

set level V + ·

decat′ncat′n
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Categorification (restrictive)

Definition (Special case)
A categorification of an algebra X is the search of an algebra isomorphism

X ≃ [C] for a suitable category C

in the sense that theory available for C solves problems regarding X.

!△ It turns out that decategorifications can be more than just Grothendieck
groups.
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Ground Zero

• [Crane-Frenkel ’94] Algebraic structures in
Topological quantum field theory (TQFT)
= math physics related to algebraic topology/geometry
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Jones Polynomials

• [Khovanov ’00, ’02] Khovanov homology categorifies Jones polynomials
⇒ [Rassmussen’10] Combinatorial proof of Milnor’s conjecture
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Jones Polynomials (cont’d)

• Let [2]q = q + q−1

• [Jones’84, Kauffman ’87] For each link L there is a bracket polynomial
⟨L⟩ ∈ Z[q, q−1] given by a recursive formula upon resolving knots.

⟨#⟩ = [2]q, ⟨H⟩ = (q3 + q−1)[2]q,

where H = is the Hopf link

• The Jones polynomial is renormalized from ⟨L⟩ by

[2]qJ(L) = (−1)#cr−q#cr+−2#cr−⟨L⟩

Since J(H) = q + q5 ̸= [2]q = J(#), the Hopf link is not trivial
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Khovanov Complexes

• C = category of bounded chain complexes of finite-dimensional graded
vector spaces

• Each link L is associated with a Khovanov complex

Kh(L) ∈ C with graded homology group
⊕
j∈Z

Hj
i(L)

• Decategorification = graded Euler characteristic χq such that

χq(Kh(L)) :=
∑
i,j∈Z

(−1)iqj dimHj
i(L) = [2]qJ(L).
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Application

• The original Euler characteristic χ for CW complexes is not functorial –
Given a map f : X→ Y, it’s not obvious how to relate χ(X), χ(Y)

• The graded Euler characteristic for Khovanov homology is functorial –
Knot cobordisms induce maps between Khovanov homologies

⇒ . . .⇒ Proof of Milnor conjecture by Rassmussen:
The slice genus of the (p, q) torus knot is (p− 1)(q− 1)/2.
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Lie Algebra sl2

• [Chuang-Rouquier ’08] Categorified Lie algebra sl2 in a subtle way
⇒ Broué’s abelian defect group conjecture for symmetric groups
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Lie Algebra sl2

The special linear Lie algebra sl2 = {A ∈ M2(C) | tr(A) = 0} is spanned by

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Its Lie bracket is [A,B] = AB− BA so the relations are

[e, f] = h, [h, e] = 2e, [h, f] = −2f.
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Universal Enveloping Algebra U(sl2)

The representation theory of the Lie algebra of sl2 is the same as the
representation theory of an associative algebra called universal enveloping
algebra U(sl2) generated by

e, f, h,

subject to the relations below:

ef− fe = h, he− eh = 2e, hf− fh = −2f.

!△ Note that we no longer have [−,−], so the relations have to be spelled out
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Finite-dimensional Modules of U(sl2)

Theorem
Let V be a finite-dimensional module of U(sl2). Then h acts on V semisimply
with integer eigenvalues. Thus we have an eigenspace decomposition

V =
⊕
n∈Z

Vn, Vn = {v ∈ V | h.v = nv}.

Pick v ∈ Vn, we compute the h-eigenvalue for e.v as follows:

h.(e.v) = (he).v = (2e + eh).v = 2e.v + e.(h.v)
= 2e.v + ne.v = (n + 2)e.v

Similarly, h.(f.v) = (n− 2)f.v, and hence

e(Vn) ⊆ Vn+2, f(Vn) ⊆ Vn−2
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Categorifying V

In other words, for any n ∈ Z the actions of e, f restrict to
• A linear map e : Vn → Vn+2
• A linear map f : Vn → Vn−2
• A relation (ef− fe)|Vn

= nIVn

To categorify V, one needs to construct, for each n ∈ Z,
• A category Cn
• A functor E : Cn → Cn+2
• A functor F : Cn → Cn−2
• An isomorphism of functors{

EF|Cn
≃ FE|Cn

⊕ I⊕n
Cn

if n ≥ 0
EF|Cn

⊕ I⊕−n
Cn

≃ FE|Cn
if n ≤ 0

!△ Positivity is essential
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Naive Categorification

• This (naive) categorification has been constructed in
[Bernstein-Frenkel-Khovanov ’99]:

− Categories Cn are realized using bounded derived categories of constructible
sheaves on Grassmannian

− Functors E,F are realized using projections of 3-step partial flag varieties
onto Grassmannians

!△ In the naive categorification it is only showed the existence of
isomorphisms between functors without an explicit description.

• The problem was solved in [Chuang-Rouquier ’08] using certain natural
transformations

X : E⇒ E, T : EE⇒ EE,

satisfying so-called nilHecke relations.
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Broué’s Abelian Defect Group Conjecture

Conjecture (Broué)
if A,B are two blocks of a finite group with isomorphic abelian defect groups,
then Db(A) ≃ Db(B).

Theorem (Chuang-Rouquier’08)
If {Cn} categorifies a U(sl2)-representation as above, then there is an
equivalence of categories S : Cn → C−n.
As a consequence, if A,B are two blocks of symmetric groups with isomorphic
defect groups, then Db(A) ≃ Db(B).
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Quantum Groups

• [Lauda ’08, ’11] Categorified idempotented quantum group U̇q(sl2)
• [Khovanov-Lauda ’09, ’10, ’11] Categorified U̇q(sln)
• [Webster, ’10] Categorified U̇q(g) for all symmetrizable Kac-Moody Lie

algebra g
• [Khovanov-Lauda ’09, Rouquier ’08] KLR algebra categorifies U+

q (g)
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Quantum Group Uq(sl2)

The quantum group is a q-deformation of U(sl2) in the sense that the
generators are

E, F, K, K−1,

subject to the relations below:

EF− FE =
K−K−1

q− q−1 , KE = q2EK, KF = q−2FK.

!△ Since positivity is the key – we want to work with Lusztig’s idempotented
QG for which canonical basis is available
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Idempotented Quantum Group U̇q(sl2)

The idempotented quantum group U̇ = U̇(sl2) is generated by

1n, E1n ≡ 1n+2E1n, F1n ≡ 1n−2F1n, (n ∈ Z)

with subject to the relations

1n1m = δn,m1n, E1n−2F1n − F1n+2E1n = [n]q1n,

!△ generators E1n,F1n correspond to functors E : Cn → Cn+2,F : Cn → Cn−2
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Categorifying U̇

• We now want to categorify relations between functors E1n,F1n, and
therefore we need to construct suitable natural transformations that do the
job.

• In other words, to category U̇ we are to view U̇ as a category with
− ob U̇ = Z
− Morphisms HomU̇(m,n) = 1mU̇1n

Then we need to construct a 2-category U̇ that decategorifies to U̇
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2-Category

A 2-category C consists of
• a category C in which morphisms are called 1-morphisms
• a class of morphisms (called 2-morphisms) between 1-morphisms
• A horizontal composition and a vertical composition between

2-morphisms satisfying
− Associativity
− Existence of identity
− Compatibility of 1- and 2- morphisms
− Interchange law
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Diagrammatic Calculus

Computation regarding 2-category can be simplified by manipulating the string
diagrams!

globular diagram string diagram

C D

F

G

α
Poincare duality←→

F

G

C Dα•

nodes regions (right/left)

arrows (source/target) arrows (bottom/top)

double arrows (source/target) nodes
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Compositions become straight-forward
• Horizontal composition = placing string diagrams side by side

• Vertical composition = stacking diagrams on top of each other
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Representing 2-Morphisms

• Interchange law: relative positions of vertices are not relevant

• Upshot: We can construct 2-morphisms of a 2-category using some
“generating string diagrams” up to isotopy
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Presenting 2-Morphisms

• Khovanov-Lauda-Rouquier’s 2-morphisms are generated by the diagrams
below, subject to certain diagrammatic conditions, up to isotopy:

, , , , , , ,

Here

is a 2-morphism E1n → E1n ↔ Chuang-Rouquier’s Tn

is a 2-morphism EE1n → EE1n ↔ Chuang-Rouquier’s Xn

⇒ NilHecke relations
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The key isomorphism

• Using these generators, one can categorify the relation
EF1n − FE1n = [n]qIn as follows:
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The Categorification Theorem

Theorem (Khovanov-Lauda, Webster)
There is a 2-category U(g) that categorifies the idempotented quantum group
U̇(g) in the sense that the indecomposable 1-morphisms are sent to Lusztig’s
canonical basis elements.

There is a version for half of the quantum group.

Theorem (Khovanov-Lauda, Rouquier)
There is a family of KLR algebra {Rν}ν such that their projective module
categories altogether categorify half of the quantum group U+(g) in the sense
that the self-dual projective indecomposables are sent to Lusztig’s canonical
basis elements.
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Hecke Algebras

• [Soergel ’07] Soergel bimodules categorify Hecke algebra under assumptions
• [Elias-Williamson ’13] Diagrammatic Hecke category categorifies Hecke

algebra
⇒ Algebraic proof to Kazhdan-Lusztig conjecture, positivity conjecture
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Kazhdan-Lusztig Conjecture

• The ultimate problem in representation theory is the irreducible character
problem. For simple Lie algebras, it suffices to compute the composition
multiplicities in certain Verma module

• Kazhdan and Lusztig conjectured in 1979 that the multiplicity can be
obtained by the evaluation pµ,λ(1)
where pµ,λ ∈ Z[q] is the Kazhdan-Lusztig polynomial of the Hecke algebra
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Kazhdan-Lusztig Theory

• “A miracle of 20th century math”
KL conjecture is first proved via algebraic geometry and algebraic analysis:

Hecke
algebra ↔ `-adic perverse

sheaves [Kazhdan-Lusztig’80]

↔ perverse
sheaves /C [Belinson-Berstein-Deligne’81]

↔ D-modules Riemann-Hilbert corr.
[Mebkhout’79] [Kashiwara’80]

↔ g-modules [Beilinson-Bernstein’81]
[Brylinski-Kashiwara’81]
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Algebraic Proof of KL Conjecture

Theorem (Soergel)
Under certain assumption, the Soergel bimodules categorify the Hecke algebra
in the sense that some indecomposables are sent to their corresponding
Kazhdan-Lusztig basis elements.

The assumption can be removed, using an diagrammatic approach:

Theorem (Elias-Williamson)
The diagrammatic Hecke category categorifies the Hecke algebra in the sense
that all indecomposables are sent to their corresponding Kazhdan-Lusztig basis
elements.

⇒ An algebraic proof of Kazhdan-Lusztig conjecture
Moreover, coefficients are obtained by counting indecomposables ⇒ positivity
for Kazhdan-Lusztig polynomials
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What is a Categorification?

Definition
A categorification of X is a process to replace set-theoretic statement regarding
X by their category-theoretic analogues on a category C that decategorifies to X

Set Theory Category Theory
set category

element object
relation between elements morphism

map functor
relation between maps natural transformation

Decategorifications include but not limited to

Euler characteristic, Grothendieck group, trace, ...etc
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Why do we categorify?

1 To obtain a richer structure
− Khovanov homology is a strictly stronger knot invariant than Jones

polynomials
2 Surpass geometry

− Elias-Williamson’s algebraic proof of Kazhdan-Lusztig’s conjecture
− Khovanov-Lauda-Rouquier algebra gives rise to positive bases for half

quantum group
3 Applications

− Chuang-Rouquier’s categorical sl2 is used in constructing equivalence of
derived categories, which proves Broué’s conjecture

− Functoriality of Khovanov homology used by Rassmussen to prove Milnor
conjecture

!△ The list is still growing
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When can we categorify?

• Positivity for structural constants, bilinear/sesquilinear forms,
comultiplications, ...etc

• Integrality (say for h-eigenvalue)
• A diagrammatic/combinatorial nature
• Canonical bases, Kazhdan-Lusztig basis, crystal bases
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How to categorify?

It’s art

Thank you for your attention
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