000	0000	00000000	00000	0000000	00000000000	0000	0000

What is a categorification?

Chun-Ju Lai

Academia Sinica, Taiwan

cjlai@gate.sinica.edu.tw

Nov 09, 2020

(Basic Notions Seminar at AS/NTU)

Figure: Number of published papers containing the word "categorification" on MathSciNet

⚠ The very first paper appeared in 1994

- The MSC is usually updated every 10 years (eg MSC1990, MSC2000, MSC2010, ...etc)
- Categorification becomes its own subcategory starting in MSC2020

18Nxx Higher categories and homotopical algebra

18N10 2-categories, bicategories, double categories

- 18N15 2-dimensional monad theory [See also 18C15]
- ${\bf 18N20}\,$ Tricategories, weak $n\text{-}{\rm categories},$ coherence, semi-strictification
- 18N25 Categorification
- 18N30 Strict omega-categories, computads, polygraphs

Overview	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
lt is `	Very A	ctive					

- 2020 Jan May, Higher Categories and Categorification, Mathematical Sciences Research Institute
- 2020 Jan Apr, Categorifications: Hecke algebras, finite groups and quantum groups, Institut Henri Poincaré
- 2020 Nov Dec, Workshop: Monoidal and 2-categories in representation theory and categorification,

Hausdorff Research Institute for Mathematics

Overview	Motivations •••••	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Motiv	vations						

- To solve a mathematical problem:
- **Typical approach** start with a difficult problem, simplify it until it becomes easy enough to be solved

• Alternative approach start with a problem in the "lower level", develop a theory on a "higher level" in order to solve the problem e.g. generating functions, representation theory, ... and categorification

Introduced by Eilenberg-Mac Lane in 1945, a category ${\mathcal C}$ consists of

- a class ob ${\mathcal C}$ of objects
- a class mor $\mathcal C$ of **morphisms**
- a composition of morphisms satisfying
 - Associativity
 - Existence of identity

Overview 000	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
A qui	ick reca	all					

A functor $F: \mathcal{C} \to \mathcal{D}$ between categories is a mapping that

- sends an object x in C to an object F(x) in D
- sends a morphism $x \xrightarrow{f} y$ in C to a morphism $F(x) \xrightarrow{F(f)} F(y)$ in \mathcal{D} such that compositions and identity are preserved

A natural transformation is a "2-morphism" between functors, i.e., a mapping α which assigns each object x in C a morphism α_x such that the diagram below to the right commutes for all $x \xrightarrow{f} y$:

Overview 000	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Cate	gorifica	tion					

Definition

A categorification of X is a process to replace set-theoretic statement regarding X by their category-theoretic analogues on a category $\mathcal C$

Set Theory	Category Theory			
set	category			
element	object			
relation between elements	morphism			
map	functor			
relation between maps	natural transformation			

Definition

A decategorification is a map that recovers X from ${\mathcal C}$

The category **FinSet** categorifies the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$

Decategorification = counting the size

• Information is lost if we only consider \mathbb{N} , e.g.,

|X| = |Y| while X may not be equal to Y

△ Categorification is NOT unique

The category FinVect also categorifies the natural numbers $\mathbb N$

Decategorification = counting the dimension

• FinVect has a richer structure than FinSet since mor FinVect is linear algebra!

In order to categorify a given vector space V, we need a category ${\mathcal C}$ that decategorifies to $V\!\!:$

• There can be more than 1 way to (de)categorify. The most common one is through the Grothendieck group [C]

• If C is a small abelian category (e.g. C = R-**Mod** over ring R), then its Grothendieck group [C] is the free abelian group generated by the iso classes $[M], M \in ob C$), subject to the relation

 $[X] = [Y] + [Z] \quad \text{if} \quad 0 \to Y \to X \to Z \to 0 \quad \text{is an SES}$

• If C is a small additive category, then its *split* Grothendieck group $[C]_{\oplus}$ is the free abelian group generated by the iso classes $[M], M \in \text{ob } C$, subject to the relation

$$[X] = [Y] + [Z]$$
 if $0 \to Y \to X \to Z \to 0$ is a split SES

We can categorify a vector space V by constructing a category C such that $[C] \simeq V$ or $[C]_{\oplus} \simeq V$.

Overview	Motivations	Examples 00000●00	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Repre	esentat	ion					

If V has a module structure of X: group, Lie algebra, ...etc, we expect functors for each generator x of X:

Overview 000	Motivations	Examples 000000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Algeb	oras						

If V is an algebra, we look for C that is also a tensor category so [C] or $[C]_{\oplus} \simeq V$ as an algebra:

Definition (Special case)

A categorification of an algebra X is the search of an algebra isomorphism

$$X \simeq [\mathcal{C}]$$
 for a suitable category \mathcal{C}

in the sense that theory available for C solves problems regarding X.

It turns out that decategorifications can be more than just Grothendieck groups.

#Published Papers on Categorification

 [Crane-Frenkel '94] Algebraic structures in Topological quantum field theory (TQFT) = math physics related to algebraic topology/geometry

#Published Papers on Categorification

[Khovanov '00, '02] Khovanov homology categorifies Jones polynomials
 ⇒ [Rassmussen'10] Combinatorial proof of Milnor's conjecture

- Let $[2]_q = q + q^{-1}$
- [Jones'84, Kauffman '87] For each link L there is a bracket polynomial $\langle L \rangle \in \mathbb{Z}[q, q^{-1}]$ given by a recursive formula upon resolving knots.

$$\langle \bigcirc \rangle = [2]_q, \quad \langle H \rangle = (q^3 + q^{-1})[2]_q,$$

where H = is the Hopf link

• The Jones polynomial is renormalized from $\langle L
angle$ by

$$[2]_q J(L) = (-1)^{\# cr_-} q^{\# cr_+ - 2\# cr_-} \langle L \rangle$$

Since $\mathit{J}(\mathit{H})=\mathit{q}+\mathit{q}^5\neq [2]_{\mathit{q}}=\mathit{J}(\bigcirc),$ the Hopf link is not trivial

Overview 000	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Khov	anov C	Complexe	es				

- $\mathcal{C}=\mathsf{category}$ of bounded chain complexes of finite-dimensional graded vector spaces
- Each link L is associated with a Khovanov complex

$$\mathit{Kh}(L)\in\mathcal{C}$$
 with graded homology group $\displaystyle{igoplus_{j\in\mathbb{Z}}}H_i^j(L)$

• Decategorification = graded Euler characteristic χ_q such that

$$\chi_q(Kh(L)) := \sum_{i,j\in\mathbb{Z}} (-1)^i q^j \dim H_i^j(L) = [2]_q J(L).$$

Overview	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Appli	cation						

- The original Euler characteristic χ for CW complexes is not functorial Given a map f: X → Y, it's not obvious how to relate χ(X), χ(Y)
- The graded Euler characteristic for Khovanov homology is functorial Knot cobordisms induce maps between Khovanov homologies
 ⇒ ... ⇒ Proof of Milnor conjecture by Rassmussen: The slice genus of the (p, q) torus knot is (p - 1)(q - 1)/2.

#Published Papers on Categorification

 [Chuang-Rouquier '08] Categorified Lie algebra sl₂ in a subtle way ⇒ Broué's abelian defect group conjecture for symmetric groups

Overview	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Lie A	lgebra	\mathfrak{sl}_2					

The special linear Lie algebra $\mathfrak{sl}_2=\{A\in\mathsf{M}_2(\mathbb{C})\mid\mathsf{tr}(A)=0\}$ is spanned by

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Its Lie bracket is $\left[A,B\right]=AB-BA$ so the relations are

$$[e, f] = h, \quad [h, e] = 2e, \quad [h, f] = -2f.$$

The representation theory of the Lie algebra of \mathfrak{sl}_2 is the same as the representation theory of an associative algebra called universal enveloping algebra $U(\mathfrak{sl}_2)$ generated by

subject to the relations below:

$$ef - fe = h$$
, $he - eh = 2e$, $hf - fh = -2f$.

 \triangle Note that we no longer have [-,-], so the relations have to be spelled out

Theorem

Let V be a finite-dimensional module of $U(\mathfrak{sl}_2)$. Then h acts on V semisimply with integer eigenvalues. Thus we have an eigenspace decomposition

$$V = \bigoplus_{n \in \mathbb{Z}} V_n, \quad V_n = \{ v \in V \mid h.v = nv \}.$$

Pick $v \in V_n$, we compute the *h*-eigenvalue for e.v as follows:

$$h.(e.v) = (he).v = (2e + eh).v = 2e.v + e.(h.v)$$
$$= 2e.v + ne.v = (n+2)e.v$$

Similarly, h(f.v) = (n-2)f.v, and hence

 $e(V_n) \subseteq V_{n+2}, \quad f(V_n) \subseteq V_{n-2}$

In other words, for any $n\in\mathbb{Z}$ the actions of e,f restrict to

- A linear map $e: V_n \to V_{n+2}$
- A linear map $f: V_n \to V_{n-2}$
- A relation $(ef fe)|_{V_n} = nI_{V_n}$

To categorify V, one needs to construct, for each $n \in \mathbb{Z}$,

- A category \mathcal{C}_n
- A functor $E: \mathcal{C}_n \to \mathcal{C}_{n+2}$
- A functor $F: \mathcal{C}_n \to \mathcal{C}_{n-2}$
- An isomorphism of functors

$$\begin{cases} EF|_{\mathcal{C}_n} \simeq FE|_{\mathcal{C}_n} \oplus I_{\mathcal{C}_n}^{\oplus n} & \text{if } n \ge 0\\ EF|_{\mathcal{C}_n} \oplus I_{\mathcal{C}_n}^{\oplus -n} \simeq FE|_{\mathcal{C}_n} & \text{if } n \le 0 \end{cases}$$

\land Positivity is essential

- This (naive) categorification has been constructed in [Bernstein-Frenkel-Khovanov '99]:
 - Categories \mathcal{C}_n are realized using bounded derived categories of constructible sheaves on Grassmannian
 - Functors E, F are realized using projections of 3-step partial flag varieties onto Grassmannians

 \triangle In the naive categorification it is only showed the existence of isomorphisms between functors without an explicit description.

• The problem was solved in [Chuang-Rouquier '08] using certain natural transformations

$$X: E \Rightarrow E, \quad T: EE \Rightarrow EE,$$

satisfying so-called nilHecke relations.

Conjecture (Broué)

if A,B are two blocks of a finite group with isomorphic abelian defect groups, then $\mathcal{D}^b(A)\simeq \mathcal{D}^b(B).$

Theorem (Chuang-Rouquier'08)

If $\{C_n\}$ categorifies a $U(\mathfrak{sl}_2)$ -representation as above, then there is an equivalence of categories $S: C_n \to C_{-n}$. As a consequence, if A, B are two blocks of symmetric groups with isomorphic defect groups, then $\mathcal{D}^b(A) \simeq \mathcal{D}^b(B)$.

- [Lauda '08, '11] Categorified idempotented quantum group $\dot{U}_q(\mathfrak{sl}_2)$
- [Khovanov-Lauda '09, '10, '11] Categorified $\dot{U}_q(\mathfrak{sl}_n)$
- [Webster, '10] Categorified $\dot{U}_q(\mathfrak{g})$ for all symmetrizable Kac-Moody Lie algebra \mathfrak{g}
- [Khovanov-Lauda '09, Rouquier '08] KLR algebra categorifies $U_q^+(\mathfrak{g})$

The quantum group is a q deformation of $\mathit{U}(\mathfrak{sl}_2)$ in the sense that the generators are

 $E, \quad F, \quad K, \quad K^{-1},$

subject to the relations below:

$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}}, \quad KE = q^2 EK, \quad KF = q^{-2} FK.$$

 \triangle Since positivity is the key – we want to work with Lusztig's idempotented QG for which canonical basis is available

The idempotented quantum group $\dot{U} = \dot{U}(\mathfrak{sl}_2)$ is generated by

$$1_n, \quad E1_n \equiv 1_{n+2}E1_n, \quad F1_n \equiv 1_{n-2}F1_n, \quad (n \in \mathbb{Z})$$

with subject to the relations

$$1_n 1_m = \delta_{n,m} 1_n, \quad E 1_{n-2} F 1_n - F 1_{n+2} E 1_n = [n]_q 1_n,$$

 \triangle generators $E1_n, F1_n$ correspond to functors $E: \mathcal{C}_n \to \mathcal{C}_{n+2}, F: \mathcal{C}_n \to \mathcal{C}_{n-2}$

Overview	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Cate	gorifyin	g \dot{U}					

- We now want to categorify relations between functors $E1_n$, $F1_n$, and therefore we need to construct suitable natural transformations that do the job.
- In other words, to category \dot{U} we are to view \dot{U} as a category with
 - ob $\dot{U} = \mathbb{Z}$
 - Morphisms Hom $_{\dot{U}}(m,n)=1_{m}\dot{U}1_{n}$

Then we need to construct a 2-category $\dot{\mathcal{U}}$ that decategorifies to \dot{U}

A 2-category ${\mathcal C}$ consists of

- a category ${\mathcal C}$ in which morphisms are called 1-morphisms
- a class of morphisms (called 2-morphisms) between 1-morphisms
- A horizontal composition and a vertical composition between 2-morphisms satisfying
 - Associativity
 - Existence of identity
 - Compatibility of 1- and 2- morphisms
 - Interchange law

Computation regarding 2-category can be simplified by manipulating the string diagrams!

Compositions become straight-forward

• Horizontal composition = placing string diagrams side by side

Quantum Groups

• Vertical composition = stacking diagrams on top of each other

• Interchange law: relative positions of vertices are not relevant

• Upshot: We can construct 2-morphisms of a 2-category using some "generating string diagrams" up to isotopy

• Khovanov-Lauda-Rouquier's 2-morphisms are generated by the diagrams below, subject to certain diagrammatic conditions, up to isotopy:

$$\begin{array}{c} & & \\ \hline n+2 & \bullet & n \end{array}, \\ \hline n-2 & \bullet & n \end{array}, \\ \hline \swarrow & n \end{array}, \\ \hline \frown & n \end{array}, \\ \hline \frown & n \end{array}$$

Here

 $\underbrace{\stackrel{n+2}{\frown}_{n}}_{n} \text{ is a 2-morphism } E1_n \to E1_n \quad \leftrightarrow \quad \text{Chuang-Rouquier's } T_n \\ \underbrace{\stackrel{n}{\frown}_{n}}_{n} \text{ is a 2-morphism } EE1_n \to EE1_n \quad \leftrightarrow \quad \text{Chuang-Rouquier's } X_n \\ \Rightarrow \text{ NilHecke relations}$

$$\uparrow \quad \uparrow \quad n \quad = \quad \swarrow \quad n \quad - \quad \swarrow \quad n \quad = \quad \swarrow \quad n \quad - \quad \swarrow \quad n$$

• Using these generators, one can categorify the relation $EF1_n - FE1_n = [n]_q I_n$ as follows:

Theorem (Khovanov-Lauda, Webster)

There is a 2-category $\mathcal{U}(\mathfrak{g})$ that categorifies the idempotented quantum group $\dot{U}(\mathfrak{g})$ in the sense that the indecomposable 1-morphisms are sent to Lusztig's canonical basis elements.

There is a version for half of the quantum group.

Theorem (Khovanov-Lauda, Rouquier)

There is a family of KLR algebra $\{R_{\nu}\}_{\nu}$ such that their projective module categories altogether categorify half of the quantum group $U^{+}(\mathfrak{g})$ in the sense that the self-dual projective indecomposables are sent to Lusztig's canonical basis elements.

#Published Papers on Categorification

- [Soergel '07] Soergel bimodules categorify Hecke algebra under assumptions
- [Elias-Williamson '13] Diagrammatic Hecke category categorifies Hecke algebra
 - \Rightarrow Algebraic proof to Kazhdan-Lusztig conjecture, positivity conjecture

- The ultimate problem in representation theory is the irreducible character problem. For simple Lie algebras, it suffices to compute the composition multiplicities in certain Verma module
- Kazhdan and Lusztig conjectured in 1979 that the multiplicity can be obtained by the evaluation $p_{\mu,\lambda}(1)$ where $p_{\mu,\lambda} \in \mathbb{Z}[q]$ is the Kazhdan-Lusztig polynomial of the Hecke algebra

• "A miracle of 20th century math" KL conjecture is first proved via algebraic geometry and algebraic analysis:

Hecke
algebra \leftrightarrow ℓ -adic perverse
sheaves \leftrightarrow ρ erverse
sheaves / \mathbb{C} \leftrightarrow \mathcal{D} -modules

 $\leftrightarrow \mathfrak{g}$ -modules

[Kazhdan-Lusztig'80]

[Belinson-Berstein-Deligne'81]

Riemann-Hilbert corr. [Mebkhout'79] [Kashiwara'80] [Beilinson-Bernstein'81] [Brylinski-Kashiwara'81]

Algebraic Proof of KL Conjecture

Theorem (Soergel)

Under certain assumption, the Soergel bimodules categorify the Hecke algebra in the sense that some indecomposables are sent to their corresponding Kazhdan-Lusztig basis elements.

Hecke Algebras

The assumption can be removed, using an diagrammatic approach:

Theorem (Elias-Williamson)

The diagrammatic Hecke category categorifies the Hecke algebra in the sense that all indecomposables are sent to their corresponding Kazhdan-Lusztig basis elements.

 \Rightarrow An algebraic proof of Kazhdan-Lusztig conjecture Moreover, coefficients are obtained by counting indecomposables \Rightarrow positivity for Kazhdan-Lusztig polynomials

Overview 000	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
What	: is a C	ategorif	ication?				

Definition

A categorification of X is a process to replace set-theoretic statement regarding X by their category-theoretic analogues on a category C that decategorifies to X

Set Theory	Category Theory		
set	category		
element	object		
relation between elements	morphism		
map	functor		
relation between maps	natural transformation		

Decategorifications include but not limited to

Euler characteristic, Grothendieck group, trace, ... etc

1 To obtain a richer structure

 Khovanov homology is a strictly stronger knot invariant than Jones polynomials

Surpass geometry

- Elias-Williamson's algebraic proof of Kazhdan-Lusztig's conjecture
- Khovanov-Lauda-Rouquier algebra gives rise to positive bases for half quantum group

8 Applications

- Chuang-Rouquier's categorical \mathfrak{sl}_2 is used in constructing equivalence of derived categories, which proves Broué's conjecture
- Functoriality of Khovanov homology used by Rassmussen to prove Milnor conjecture
- \triangle The list is still growing

Overview	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
Wher	n can w	ve categ	orify?				

- Positivity for structural constants, bilinear/sesquilinear forms, comultiplications, ...etc
- Integrality (say for *h*-eigenvalue)
- A diagrammatic/combinatorial nature
- Canonical bases, Kazhdan-Lusztig basis, crystal bases

Overview	Motivations	Examples 00000000	Algebraic Topology	Lie Algebras	Quantum Groups	Hecke Algebras	Summary
How	to cate	egorify?					

lt's art

Thank you for your attention