Browse data science with Differential geometry and Random matrix theory

Hau-Tieng Wu, MD., PhD.

Mathematics and Statistical Science

Duke University

Modern Data is Massive Structure is the key

- Large-volume
- High dimensional
- Noisy
- Non stationary

Structure = knowledge!

From data to data science model and analysis

F=ma

 $F=mc^2$

Not anything new but scientific argument!!!

Science + computer leads to Al

- One motivative problem
- Manifold learning algorithm
- Manifold learning theory
- Random matrix theory
- Toward manifold + RMT
- Some more...

High frequency time series is everywhere in healthcare

Operation Room

Intensive Care unit

Holter system

Ambulance System

fMRI

EP/Cath Room

Emergency Room

Sleep Lab

Also everywhere outside hospital

electrode

electrode

electrode

IR camera

RFID unit

Motivative clinical application: How to visualize ultra-long signals, like ECG in ICU?

14 days ECG = 120,960 segments to read Good luck! :)

Q: How to summarize/reduce the dimension?

A typical example

- One motivative problem
- Manifold learning algorithm
- Manifold learning theory
- Random matrix theory
- Toward manifold + RMT
- Some more...

General manifold learning problem

Complicated data structure

Modeled by a low dimensional manifold

High dimensional data set (usually noisy)

Can be more general, like bundle, metric space
But we will focus on this challenging enough case

Back to the ECG example Wave-shape manifold model

Back to the ECG example Data preparation step

High dimensional data set/point cloud

Construct affinity graph

affinity(beat_i, beat_j) =
$$e^{-\|\text{beat}_i - \text{beat}_j\|_{L^2}/\epsilon} =: w_{ij}$$

Similar beats have smaller distance & larger affinity

Can consider more complicated metric & kernel But we will focus on this simple case

Construct graph Laplacian (GL)

*n*x*n* affinity matrix

$$W(i,j) = \begin{cases} w_{ij} & (i,j) \in \mathbb{E} \\ 0 & \text{otherwise} \end{cases}$$

nxn diagonal degree matrix

$$D(i,i) = \sum_{k=1}^{n} w_{ij}$$

The normalized graph Laplacian

$$I-D^{-1}W$$

Transition matrix!

Random walk on the graph

$$D^{-1}Wv(i) = \frac{\sum_{j=1}^{n} w_{ij}v_{j}}{\sum_{j=1}^{n} w_{ij}} = \sum_{j=1}^{n} \left[\frac{w_{ij}}{\sum_{j=1}^{n} w_{ij}} \right] v_{j}$$

Diffusion map (DM)

affinity graph

Take t>0 Diffusion map Φ_t

$$\Phi_t(i) = [e^{-t\lambda_l} u_l(i)]_{l=2}^{q+1} \in \mathbb{R}^q$$

$$I - D^{-1}W = \sum_{l=1}^{n} \lambda_l u_l v_l^{\top}$$

Eigendecomposition

- Visualize high-dim data
- Dimensional reduction
- Recover nonlinear geometry
- Robust to noise! (later)

Diffusion map (DM)

affinity graph

Take t>0 Diffusion map Φ_t

$$\Phi_t(i) = [e^{-t\lambda_l}u_l(i)]_{l=2}^{q+1} \in \mathbb{R}^q$$

Visualize high-dim data

Dimensional reduction

Recover nonlinear geometry

Robust to noise! (later)

Big data v.s. computation

Chao & **W.**, 2019 arXiv Chao & Lin & **W.**, 2020 biorXiv

- 1. Eigendecomposition is expensive. $O(n^{2.89})$
- 2. Existing solutions (1) kNN; (2) Nystrom; (3) randomized.

kNN:

- 1. Good if the data is clean, with theoretical supports.
- 2. But not robust to noise.

Nystrom:

- 1. Loss geometric information.
- 2. Good for spectral clustering (a lot of applications)

randomization:

- 1. Do you like to hear "with high probability" when you are seeing a doctor?
- 2. Under theoretical exploration for geometric information retrieval ...

Our solution — Roseland

RObust & ScalablE LANdmark Diffusion

$$\{y_j\}_{j=1}^m \subset M$$

Landmark set

$$W_{ij} := \sum_{k=1}^{m} e^{-\|x_i - y_k\|_2/\epsilon} e^{-\|y_k - x_j\|_2/\epsilon}$$

Geometric interpretation—"landmark constraint" diffusion

Algorithm & complexity analysis

(Step 1)
$$W^{(r)} \in \mathbb{R}^{n \times m}, \quad W^{(r)}_{ij} = W_{ij}$$

(Step 2) $D^{(R)}_{ii} := e_i^\top W^{(r)} (W^{(r)})^\top \mathbf{1}$
(Step 3) $(D^{(R)})^{-1/2} W^{(r)} = U \Lambda V^\top$ (SVD)
(Step 4) $\bar{U} := (D^{(R)})^{-1/2} U$ (Eigenvectors for DM)

$$m=n^{eta}$$
 Roseland $O(n^{1+2eta})$ KNN-DM $O(n^{2+\epsilon})$ Nystrom $O(n^{1+eta}+n^{3eta})$

- One motivative problem
- Manifold learning algorithm
- Manifold learning theory
- Random matrix theory
- Toward manifold + RMT
- Some more...

Manifold setup

M be a d-dimensional smooth, closed and connected Riemannian manifold isometrically embedded in \mathbb{R}^p through $\iota: M \to \mathbb{R}^p$.

We should be able to sample everywhere of M; that is, the sampling density of X: p_X satisfies $p_X \in \mathcal{C}^4(M^d)$ and $0 < \inf_{x \in M^d} p_X(x) \le \sup_{x \in M^d} p_X(x)$.

Spectral convergence

Theorem

(Dunson & Wu & **W.** 2019 arXiv)

- 1. Suppose the kernel is Gaussian
- 2. Suppose λ_i is simple.

3.
$$\epsilon = \epsilon(n)$$
 so that $\epsilon \to 0$ and $\frac{\sqrt{-\log \epsilon} + \sqrt{\log n}}{\sqrt{n}\epsilon^{d/2}} \to 0$, as $n \to \infty$

4. Fix $K \in \mathbb{N}$

5. Assume
$$\sqrt{\epsilon} \leq \mathcal{K}_1 \min \left\{ \left(\frac{\min(\Gamma_K, 1)}{\mathcal{K}_2 + \lambda_K^{d/2 + 5}} \right)^2, \frac{1}{(2 + \lambda_K^{d+1})^2} \right\}$$
.

When ϵ is sufficiently small, $\exists \{a_n\}$ s.t. with probability $\geq 1 - n^{-2}$, for all i < K, we have

$$\|a_n \phi_{\epsilon,n,i} - \phi_i\|_{L^{\infty}} = \mathcal{O}(\epsilon^{1/2}) + \mathcal{O}\left(\frac{\sqrt{-\log \epsilon} + \sqrt{\log n}}{\sqrt{n} \epsilon^{d+3/2}}\right)$$

$$\Delta \phi_l = -\lambda_l \phi_l \qquad |\lambda_{\epsilon,n,i} - \lambda_i| = \mathcal{O}(\epsilon^{3/4}) + \mathcal{O}\left(\frac{\sqrt{-\log \epsilon} + \sqrt{\log n}}{\sqrt{n} \epsilon^{d+5/2}}\right)$$

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$$

Terrible rate... Numerically it converges faster. How to improve?

Finite spectral embedding

"Almost isometric embedding" via finite eigenfunctions

Theorem (Portegies CPAM 2015)
$$\Delta\phi_l = -\lambda_l\phi_l \\ 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots \\ \varepsilon > 0 \text{: tolerable error}$$

then, $\exists t_0 = t_0(d, K, i, \varepsilon)$ such that $\forall 0 < t < t_0$, $\exists N_E = N_E(d, K, i, V, \varepsilon, t)$ such that if $N > N_E$, the spectral embedding

$$x \mapsto 2t^{(d+2)/4}\sqrt{2}(4\pi)^{d/4} \begin{bmatrix} e^{-\lambda_1 t}\phi_1(x) & \dots & e^{-\lambda_N t}\phi_N(x) \end{bmatrix}^{\top}$$

is almost isometric with the error controlled by ε

Have we solved problems? NO!

Q1: Guarantee if dimension reduction can be achieved? by nonlinear embedding algorithms, like diffusion maps, LLE, ISOMAP, t-SNE, etc..., in the sense that the information is preserved geometrically/topologically?

Q2: Is it possible to faithfully visualize the data?

DM of the Klein bottle

No matter what algorithm you use or how hard you try, you cannot visualize the Klein bottle in 3-dim Euclidean space.

Data analysis cannot break the topological constraint!

- One motivative problem
- Manifold learning algorithm
- Manifold learning theory
- Random matrix theory
- Toward manifold + RMT
- Some more...

Whole spectrum is left unanswered

敲~碗~

0 0 0 C

Where is the promised random matrix theory?

Q1: how does the spectrum of GL looks like from noisy data?

Whole spectrum is left unanswered

敲~碗~

0 0 0 C

Where is the promised random matrix theory?

Q1: how does the spectrum of GL looks like from noisy data?

What is the problem? Everywhere!

$$||x_i - x_j||_2^2 = ||z_i - z_j||_2^2 + ||\xi_i - \xi_j||_2^2 + 2(z_i - z_j)^\top (\xi_i - \xi_j)$$

Q2: how can we find the "true neighbors"? True similarity? How to compare objects when the data is noisy?

A simplified model

i.i.d. sub-Gaussian sequences of $\mathcal{Y} := \{\mathbf{y}_i\}_{i=1}^n \in \mathbb{R}^p$ satisfies

$$\mathbb{E}(\mathbf{y}_i) = \mathbf{0}, \ \operatorname{cov}(\mathbf{y}_i) = \mathbf{I}_p.$$

$$\Sigma = \operatorname{diag}\{\lambda + 1, 1, \cdots, 1\}.$$

 $\lambda := \lambda(n) \geq 0$, and when $\lambda > 0$ we consider

$$\lambda \asymp n^{\alpha}, \ 0 \le \alpha < \infty.$$

The random point cloud is $\mathcal{X} := \{\mathbf{x}_i\}_{i=1}^n$, where

$$\mathbf{x}_i = \Sigma^{1/2} \mathbf{y}_i.$$

"High dimensional" noise

Assume that for some constant $0 < \gamma \le 1$, we have

$$\gamma \le c_n := \frac{n}{p} \le \gamma^{-1} .$$

NOTE: 1-dim linear manifold

$$\mathbf{x}_i^{(1)} = \sqrt{\lambda} \mathbf{x}_i \circ \mathbf{e}_1, i = 1, \dots, n$$
 be the *clean* cloud points

Clean signal

Noisy signal
$$\mathbf{x}_i = \mathbf{x}_i^{(1)} + \mathbf{y}_i$$

Noise

Visual illustration / regimes

Gaussian noise with SD = 1, n=p=100

Question to ask...

Recall the affinity/kernel matrix:

$$\mathbf{W}(i,j) = \exp\left(-v\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{h}\right), \ 1 \le i, j \le n,$$

$$h \equiv h(n): \text{ chosen bandwidth}$$

$$v > 0: \text{ chosen parameter}$$

Set
$$h = p \longrightarrow \mathbf{W}(i, j) = \exp\left(-v \frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{p}\right)$$

Question to ask...

$$\mathbf{x}_{i}^{(1)} = \sqrt{\lambda}\mathbf{x}_{i} \circ \mathbf{e}_{1}, i = 1, \dots, n \text{ be the } clean \text{ cloud points}$$

$$\mathbf{W}_{1}(i,j) = \exp\left(-v \frac{\|\mathbf{x}_{i}^{(1)} - \mathbf{x}_{j}^{(1)}\|^{2}}{p}\right), \ 1 \le i, j \le n,$$

From clean manifold (linear 1-dim)

What's the spectral relationship between \mathbf{W} and \mathbf{W}_1 ?

Key observation & setup

Clean signal

Noisy signal
$$\mathbf{x}_i = \mathbf{x}_i^{(1)} + \mathbf{y}_i$$

Noise

$$\mathbf{W} = \mathbf{W}_1 \circ \mathbf{W}_y$$

Classical result (pure noise, null)

For some small $\zeta > 0$ and $\xi > 0$, with probability at least $1 - O(n^{-1/2 - \zeta})$, when n is sufficiently large, we have

$$\|\mathbf{W}_y - (c_1 p^{-1} \mathbf{Y}^{\top} \mathbf{Y} + c_2 \mathbf{I}_n + R_3)\| \le n^{-\xi},$$

Classical result (null case)

By the Taylor expansion at 2, when $i \neq j$,

$$\mathbf{W}_{y}(i,j) = f(2) + f'(2) \left[\mathbf{O}_{y}(i,j) - 2\mathbf{P}_{y}(i,j) \right] + \frac{f''(2)}{2} \left[\mathbf{O}_{y}(i,j) - 2\mathbf{P}_{y}(i,j) \right]^{2} + \frac{f'''(\xi(i,j))}{6} \left[\mathbf{O}_{y}(i,j) - 2\mathbf{P}_{y}(i,j) \right]^{3},$$

$$\mathbf{O}_{y}(i,j) = (1 - \delta_{ij}) \left(\frac{\|\mathbf{y}_{i}\|_{2}^{2} + \|\mathbf{y}_{j}\|_{2}^{2}}{p} - 2 \right) \qquad \mathbf{P}_{y}(i,j) = (1 - \delta_{ij}) \frac{\mathbf{y}_{i}^{\top} \mathbf{y}_{j}}{p}$$

$$\mathbf{W}_{y} = f(2)\mathbf{1}\mathbf{1}^{\top} - \frac{2f'(2)}{p}\mathbf{Y}^{\top}\mathbf{Y} + f'(2)\mathbf{O}_{y} + 2f'(2)\left(\frac{1}{p}\operatorname{diag}(\|\mathbf{y}_{1}\|^{2}, \dots, \|\mathbf{y}_{n}\|^{2}) - 1\right)$$
$$+ \frac{f''(2)}{2}\mathbf{H}_{y} + \frac{f'''(\xi(i,j))}{6}\mathbf{Q}_{y} + \varsigma(\lambda)\mathbf{I}$$

Classical result (null case)

$$\mathbf{W}_{y} = f(2)\mathbf{1}\mathbf{1}^{\top} - \frac{2f'(2)}{p}\mathbf{Y}^{\top}\mathbf{Y} + f'(2)\mathbf{O}_{y} + 2f'(2)\left(\frac{1}{p}\mathrm{diag}(\|\mathbf{y}_{1}\|^{2}, \dots, \|\mathbf{y}_{n}\|^{2}) - 1\right)$$

$$+ \frac{f''(2)}{2}\mathbf{H}_{y} + \frac{f'''(\xi(i,j))}{6}\mathbf{Q}_{y} + \varsigma(\lambda)\mathbf{I}$$

$$\mathrm{Sh}_{1}(2) := f'(2)[\mathbf{1}\Phi^{\top} + \Phi\mathbf{1}^{\top}]$$

$$\Phi = (\phi_{1}, \dots, \phi_{n}) \text{ with } \phi_{i} = \frac{1}{p}\|\mathbf{y}_{i}\|_{2}^{2} - 1$$

$$\mathrm{Sh}_{2}(2) := \frac{f''(2)}{2}\left[\mathbf{1}(\Phi \circ \Phi)^{\top} + (\Phi \circ \Phi)\mathbf{1}^{\top} + 2\Phi\Phi^{\top} + 4\frac{p+1}{p^{2}}\mathbf{1}\mathbf{1}^{\top}\right]$$

 $\mathbf{W}_y pprox rac{2f'(2)}{p} \mathbf{Y}^ op \mathbf{Y}$ up to a low/fixed rank perturbation with high probability!

The random matrix theory results kick in & help!

With probability
$$\geq 1 - O(n^{-1/2})$$
, when $0 < \lambda \leq \sqrt{c_n}$,

$$|\lambda_{i+3}(\mathbf{W}) - \gamma_{\nu_0}(i)| \le \begin{cases} Cn^{-1/9 + 2\vartheta}, & 1 \le i \le C_1 n^{5/6 + 3\vartheta/2}; \\ Cn^{1/12 + \theta} i^{-1/3}, & C_1 n^{5/6 + 3\vartheta/2} \le i \le n/2. \end{cases}$$

Similar results hold for $i \geq n/2$.

With probability
$$\geq 1 - O(n^{-1/2})$$
, when $\alpha = 0$ and $\lambda > \sqrt{c_n}$,

$$|\lambda_{i+4}(\mathbf{W}) - \gamma_{\nu_0}(i)| \le \begin{cases} Cn^{-1/9 + 2\vartheta}, & 1 \le i \le C_1 n^{5/6 + 3\vartheta/2}; \\ Cn^{1/12 + \theta} i^{-1/3}, & C_1 n^{5/6 + 3\vartheta/2} \le i \le n/2. \end{cases}$$

Similar results hold for $i \geq n/2$.

With probability $\geq 1 - O(n^{-1/2})$, when $0 < \alpha < 0.5$,

$$|\lambda_{i+4}(\mathbf{W}) - \gamma_{\nu_0}(i)| \le \begin{cases} C \max\{n^{-1/9 + 2\vartheta}, n^{\theta} \frac{\lambda}{\sqrt{n}}\}, & 1 \le i \le C_1 n^{5/6 + 3\vartheta/2}; \\ C \max\{n^{1/12 + \theta}i^{-1/3}, n^{\theta} \frac{\lambda}{\sqrt{n}}\}, & C_1 n^{5/6 + 3\vartheta/2} \le i \le n/2. \end{cases}$$

Similar results hold for $i \geq n/2$.

When $0.5 \le \alpha < 1$, denote $d \equiv d(\alpha) := \left\lceil \frac{1}{1-\alpha} \right\rceil + 1$. $\exists \mathsf{K} \text{ s.t. } 5 \le \mathsf{K} \le C2^d \text{ so}$ that with high probability, for all $1 \le i \le n - \mathsf{K}$, we have that

$$|\lambda_{i+\mathsf{K}}(\mathbf{W}) - \gamma_{\nu_0}(i)| \le C \max\left\{i^{-1/3}n^{-2/3}, p^{\mathcal{B}(\alpha)}, \frac{\lambda}{p}\right\},$$

where
$$\mathcal{B}(\alpha) := (\alpha - 1) \left(\left\lceil \frac{1}{1 - \alpha} \right\rceil + 1 \right) + 1 < 0.$$

For some constant
$$\mathsf{T} \leq \mathsf{C}_{\alpha} = \begin{cases} C \log n, & \alpha = 1; \\ \min\{Cn^{\alpha-1}, n\}, & 1 < \alpha \leq 2 \end{cases}$$
, with high probability,
$$\sup_{1 \leq i \leq \mathsf{T}} \left| \lambda_i \left(\frac{1}{n} \mathbf{W} \right) - \lambda_i \left(\frac{1}{n} \mathbf{W}_{a_1} \right) \right| \leq n^{-\alpha/2},$$
 where $\mathbf{W}_{a_1} := \exp(-2v) \mathbf{W}_1 + (1 - \exp(-2v)) \mathbf{I}_n$ Moreover,
$$\sup_{z \in \mathcal{D}} |m_{\mathbf{W}}(z) - m_{\mathbf{W}_{a_2}}(z)| \prec \frac{1}{\sqrt{n}\eta^2},$$
 where $\mathbf{W}_{a_2} := \left(\frac{2v \exp(-2v)}{p} \mathbf{Y}^{\top} \mathbf{Y} + 2v \exp(-4v) \mathbf{I}_n \right) \circ \mathbf{W}_1, \ \mathcal{D} \equiv \mathcal{D}(1/4, \mathsf{a}) := \left\{ z = E + \mathrm{i}\eta : \mathsf{a} \leq E \leq \frac{1}{\mathsf{a}}, \ n^{-1/4 + \mathsf{a}} \leq \eta \leq \frac{1}{\mathsf{a}} \right\} \text{ and } 0 < \mathsf{a} < 1 \text{ is a small constant.}$

When $\alpha > 2$,

$$\sup_{1 \le i \le n} |\lambda_i(\mathbf{W}) - \lambda_i(\mathbf{W}_{a_1})| \prec n^{\frac{2-\alpha}{2}}.$$

Moreover, for any given constant $t \in (0, 1)$, if $\alpha > \frac{2}{t} + 1$, we have with probability $\geq 1 - n^{1 - t(\alpha - 1)/2}$,

$$\sup_{1 \le i \le n} |\lambda_i(\mathbf{W}) - 1| \le n \exp(-\upsilon(\lambda/p)^{1-t}).$$

- One motivative problem
- Manifold learning algorithm
- Manifold learning theory
- Random matrix theory
- Toward manifold + RMT
- Some more...

High dimensional noise model

(Chao & **W.** 2019, arXiv)

Fix a compact smooth d-dim Riemannian manifold M, and assume D is the smallest dimension of the Euclidean space that M can be isometrically embedded into via ι .

Assume $q = q(n) \approx n$ when $n \to \infty$

When q is sufficiently large, fix an isometric embedding $\bar{\iota}_q : \mathbb{R}^D \to \mathbb{R}^q$ so that $\bar{\iota}_q(e_i) \in \mathbb{R}^q$ satisfies $|u_i(k)| = 1/\sqrt{q} + O(1/q)$ for i = 1, ..., D and k = 1, ..., q.

Assume x_i is i.i.d. sampled from $\bar{\iota}_q \circ \iota(M)$.

Clean manifold data

$$\tilde{x}_i = x_i + \xi_i$$

Technical condition for non-Gaussian noise Needed for Gaussian approximation

Chernozhukov & Chetverikov & Kato, AoS 2013

High dimensional noise model

(Chao & **W.** 2019, arXiv)

$$\tilde{x}_i = x_i + \xi_i$$
 $\mathbb{E}\xi_i = 0, \, \mathbb{E}\xi_i \xi_i^{\top} = \Sigma \in \mathbb{R}^{q \times q}$ $\|\Sigma\|_2 \le \sigma_q^2$

Assume for all convex 1-Lipschitz function f, $\mathbb{P}(|f(\xi_i) - m_{f(\xi_i)}| > t) \leq 2 \exp(-c_i t^2)$, where $m_{f(\xi_i)}$ is the median of $f(\xi_i)$ and $c_i > 0$.

- 1. $c_1 \leq \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}\xi_i(l)^2 \leq C_1 \text{ and } \max_{k=1,2} \frac{1}{q} \sum_{l=1}^q \mathbb{E}\left[\frac{|\xi_i(l)|^{2+k}}{B_q^k}\right] + \mathbb{E}\left[\frac{\exp(|\xi_i(l)|}{B_q})\right] \leq$ 4. Moreover, $\frac{1}{q}B_q^2(\log(qn^2))^7 \leq C_2q^{-c_2}$.
- 2. $c_1 \leq \frac{1}{n} \sum_{i=1}^n \mathbb{E}(\xi_i(l))^2 \leq C_1$ and $\max_{k=1,2} \frac{1}{q} \sum_{i=1}^q \mathbb{E}\left[\frac{|\xi_i(l)|^{2+k}}{B_q^k}\right] + \mathbb{E}\left[\left(\max_{i=1,...,n} \frac{|\xi_i(l)|}{B_q}\right)\right] \leq 4$. Moreover, $\frac{1}{q} B_q^4 (\log(qn^2))^7 \leq C_2 q^{-c_2}$.

Robust to noise

Theorem (Chao & **W.** 2020)

1. For Gaussian noise, assume

$$\delta_q := \sigma_q \sqrt{\log n^2} \left[\sigma_q \sqrt{q} + K \right] \to 0$$

2. For non-Gaussian noise, assume $\sup_{i,j} \sqrt{(\sigma_q^2)/c_{ij}} \sqrt{\log n^2} \to 0$, and set

$$\delta_q := \sigma_q \sqrt{\log n^2} \left[\sup_{i,j} \sqrt{c_{ij}^{-1}} \left(\sigma_q \sqrt{q} \vee 1 \right) + \sqrt{D} K \right]$$

- 3. Fix $q' \in \mathbb{N}$ and t > 0.
- 4. W and \widetilde{W} : affinity matrices from clean and noisy datasets respectively.
- 5. $\Phi L^t \in \mathbb{R}^{n \times q'}$ and $\widetilde{\Phi} \widetilde{L}^t \in \mathbb{R}^{n \times q'}$: DM from clean and noisy datasets respectively.

Then, when ϵ is sufficiently small,

$$\|\Phi OL^t - \widetilde{\Phi}\widetilde{L}^t\|_F = \mathcal{O}_P\left(\frac{\delta_q \sqrt{q'\lambda_2^{2t}}}{\epsilon^{3d/4+1}}\right).$$

where $O \in \mathbb{R}^{q' \times q'}$ is an orthogonal matrix, and λ_2 are the largest non-trivial eigenvalue from the clean.

- One motivative problem
- Manifold learning algorithm
- Manifold learning theory
- Random matrix theory
- Toward manifold + RMT
- Some more...

One more application

