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Modem Data 1s Massive
Structure Is the key

® | arge-volume
® Hign dimensiona

® Noisy

—e MNop-ototionon:

Structure = knowledge!

(from internet)



—-rom data to data science

Model and analysis
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FiNd the structure under the datasets and use |t



Not anything new but
sclentific argument!!!
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Sclence + computer leads to Al
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One motivative problem
Manifold learning — algorithm

Manifold learning — theory

Random matrix theory
Toward manifold + RMT

Some more...



High frequency time series
S everywnere In nealthcare

R W O O O O I T B B

INntensive
Room Care unit

=P/Cath

Emergency Sleep Lab
Room

Room



AISO everywnere outside hospita

......
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PPG Sensor

*Source: WSJ. Where
to Wear Your Technology?
Torso to Toe
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® Foot rest
electrode ® IR camera
® RFID unit



\Votivative clinical application
How to visualize ultra-long signals, like ECG in ICU7?

| | | |
261 2402 485 43 @0 412% 180 3356 140 710145 8 28012 @35 280

14 days ECG = 120,960 segments to read
Good luck! :)




A typical example

® | arge-volume

> |14 days ECG ~ 10° beats

® High dimensional

Only ECG. More channels”
Sampling rate = 1000Hz

3 000 cases ~ 3x107 beats

Fach beat ~ 1000 dim

2316 2317

2318

2319

2320 2321 2322 2323 2324
Time



One motivative problem
Manifold learning — algorithm

Manifold learning — theory

Random matrix theory
Toward manifold + RMT

Some more...



General manifold learming problem

Complicated data structure
Modeled by a low dimensional manifold

) ® o C RP High dimensional data

Data sampled
from manifold

Goal: Recover the
{; }C 3 R/>

High dimensional _ .
data set (usually noisy) | Gan be more general, like bundle, metric space ....

But we will focus on this challenging enough case




lik & W., 2019, arXiv

Sack to the ECG examp\gml
VWave-shape manifold moagel

o JL/\”“

e Physiological facts:
there Is a varation but It

®
does not go crazy or random ‘. ° /\j\ﬂ

e \lodel/parametrize wave-shapes /\j\N
by a low-dim manifold



Sack to the ECG example
Data preparation step

l discretization

%Qj 1 Gogl: Recover thg /

{: forr— 7
ey
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High dimensional
data set/point cloud




nity grapn

Construct a

L1

SOSRTIT

affinity(beat;, beat;) = e~ [IPeati=beatillL2/e —. ),

Similar beats have smaller distance & larger affinity

Can consider more complicated metric & kernel
But we will focus on this simple case




Construct graph Laplacian (GL)

D™ 'Wu(i) =

nxn atfinity matrix

W@ﬂ:{gw G, J) € B

otherwise

nxn diagonal degree matrix
k=1
The normalized graph Laplacian

I —|\D~'W

l Transition matrix!

Random walk on the graph

z%ww_i{ 1,
Z] lww j

j lw’LJ



Diffusion map (DM) e

affinity graph

Take t>0
Diffusion map &,

(i) = [ Mu (D)), € R

n
I-D'W => Nuw/ . Visualize high-dim data
(=1 e Dimensional reduction
Eigendecomposition  Recover nonlinear geometry
e Robust to noise! (later)




affinity graph

Take t>0

Diffusion map &,

Diffusion map (DM) e

D, (i) = [~ (i)|11) € R

e lLarge-volume

v High dimensional ‘?

-+ \isualize high-dim data

-0

v Noisy <«

Dimensional reduction
Recover nonlinear geometry

Robust to noise! (later)

—e—Non-stationarty—




SIg data v.s. computation

Chao & WL, 2019 arXiv
Chao & Lin & WL, 2020 biorXiv

. Eigendecomposition is expensive. O(n?-%?)

. Existing solutions — (1) kNN; (2) Nystrom; (3) randomized.

KNN:
1. Good If the data is clean, with theoretical supports.
2. But not robust to noise.

Nystrom:
1. Loss geometric information.
2. Good for spectral clustering (a lot of applications)

randomization:
1. Do you like to hear “with high probability” when you are seeing a doctor”
2. Under theoretical exploration for geometric information retrieval ...




Our solution — Roselar

RObust & Scalabl

Chao & WL, 2019 arXiv
Chao & Lin & WL, 2020 biorXiv

O

~ LANdmark Diffusio

W, = E :€—||5Ei—yk||2/€€—||yk—$j||2/€

k=1

A

i, M

Landmark set

Geometric interpretation —“landmark constraint” diffusion




Chao & WL, 2019 arXiv
Chao & Lin & WL, 2020 biorXiv

Algorithm & complexity analysis

Step 1) W e R W =Wy,
Step2) DY = e WOWT1
(Step 3) (DEN-L2wWE) —UAVT  (svD)

(Step 4) U := (D(R))_l/ZU (Eigenvectors for DM)
Roseland O (nH‘QB)
m, — nﬁ KNN-DM O(n2+€)
Nystrom O(n1‘|‘5 + TLSB)




One motivative problem
Manifold learning — algorithm

Manifold learning — theory

Random matrix theory
Toward manifold + RMT

Some more...



\Vanifold setup

M be a d-dimensional smooth, closed and connected Riemannian manifold
isometrically embedded in R? through ¢ : M — RP.

We should be able to sample everywhere of M; that is, the sampling density of X :

px satisfies px € C*(M?) and 0 < inf ¢ e px () < SUp,epa px (7).



Spectral convergence

Theorem 1. Suppose the kernel is Gaussian
(Dunson & Wu & WL 2019 arXiv)

2. Suppose A; is simple.

3. € =¢(n) so that e = 0 and ¥ _l(sfﬁeet/glog” >0, as n — 00

4. Fix K € N

2
5. Assume +/e < K1 min min (', 1) 1 .
vesh {(,me G

When e is sufficiently small, 3{a,,} s.t. with probability > 1—n"2, for all : < K,

we have
v —loge+ /logn
andeni = dillL> = O(/?) + O ( etz
v—1 V1
Ay = — N\ Aemi — il = O(€4) + O ( \(;Q%ZdtW?Ogn)
O=Xg < A1 < A < ...

Terrible rate... Numerically it converges faster. How to improve”?



-INite spectral empbeading

"Almost isometric embedding” via finite eigenfunctions

Theorem (portegies CPAM 2015) Ay = — A\ @y
O=XApg < A1 < Ay < ...

e > 0: tolerable error

then, Jtg = to(d, K,1,¢) such that VO < t < tg, ANg = Ng(d, K,i,V,e,t)
such that if N > Ng, the spectral embedding

T —> 2t<d+2)/4\/§(4ﬂ')d/4 [B_Altqbl(x) . 6_>‘Nt¢N($)]T

is| almost isometric (with the error controlled by ¢




Have we solved problems’”? NO!

Q1: Guarantee if dimension reduction can be achieved?

oy nonlinear embedding algorithms, like diffusion maps,
LLE, ISOMAP, t-SNE, etc. .., in the sense that the information is
oreserved geometrically/topologically”?

Q2: Is it possible to faithfully visualize the data?

o
Klein bottle N
Q N —
Y TN
Y \_//
- v
\—*//




DM of the Klein bottle

e )}n C R* —

R 1=1 Diffusion map

with the top three
nontrivial eigenvectors

No matter what algorithm you use or how hard you try,
you cannot visualize the Klein bottle in 3-dim uclidean space.

Data analysis cannot break the topological constraint!



One motivative problem
Manifold learning — algorithm
Manifold learning — theory
Random matrix theory
Toward manifold + RMT

Some more...



VWhole spectrum Is left unanswered

BB

Q1: how does the spectrum of GL looks like
from noisy data”?



VWhole spectrum Is left unanswered

BB

Q1: how does the spectrum of GL looks like
from noisy data”?



VWhat is the problem”? BEverywhnere!

Ti = 2; + &

|ws = a5ll5 = N2 — 2113 + 1€ — &ll5 +2(20 — 25) " (& — &)

Q2: how can we find the “true neighbors”? True similarity?
How to compare objects when the data is noisy?



(Ding & W. 2020, submitted)

A simplified model

i.1.d. /sw{(}aussian sequences of YV := {y;}I_; € RP satisfies

L(yi) =0, cov(y;) = L.

> =diag{\+1,1,---,1}.

A= A(n) >0, and when A\ > 0 we consider

A=nY 0<a<oo.

The random point cloud is X := {x;}7_,, where

X, — 21/2}77;.



(Ding & W. 2020, submitted)

‘High dimensional” Noise

Assume that for some constant 0 < v < 1, we have

n

’ygcn::—gfy_l.
p

NOTE: 1-dim linear manifold

X§1> = VAx;0eq,i=1,....n be the clean cloud points

Clean signal

1
Noisy signal X, — Xg ) —|— yfb

Noise



(Ding & W. 2020, submitted)

Visual llustration / regimes

a =0 O<a<l 1 <a<?2 2 < o
>
Bounded Slowly divergent Moderately divergent Fast divergent
[0, 1] [0, 10] [0, 251] [0, 1e5]
o =10 a = 0.9 a=1.2 o= 2.5

Gaussian noise with SD = 1, n=p=700



(Ding & W. 2020, submitted)

Question to ask...

Recall the affinity/kernel matriz:

% — x;|°

W(@'J)Z@XP( v )JSi,an,

h
/ h = h(n): chosen bandwidth

v > 0: chosen parameter

o~ ]2
Set h =p = W(i,j) = exp (—v 1% = % >
P



(Ding & W. 2020, submitted)

Question to ask...

X,§1> = vVAx;0eq,i=1.....,n be the clean cloud points

1 1
Ix§Y — %2

p

From clean manifold (linear 1-dim)

Wl(iaj):exp (U )7 ].SZ,]STL,

What’s the spectral relationship between W and W17




Key observation & setup

Clean signal

1
Noisy signal X; = X7(; ) +V;

Noise

W=W,;oW,

Classical result (pure noise, null)

For some small ¢ > 0 and ¢ > 0, with probability at least 1 — O(n~1/27¢), when
n is sufficiently large, we have

W, — (clp_lYTY + oI, + R3)|| < n_g,




Classical result (null case)

By the Taylor expansion at 2, when ¢ # J,

W, (i,J) =/ (2 )+f’( >[ (i.3) 2P, ()] + 20, ) — 2P 1,4
f/// ‘
O, (i, /yvzﬂm \\ = (1 6;;) ¥
w, = @1’ - L EyTy i p9)0, +272) (}%diaguryl\\? ..... yal?) - 1)
P, ER g, 4 ot




Classical result (null case)

w, 1r@u’|- LEYTy o, -2 (édiagwylua oyl 1)
I fHQ(Z)Hy | fm(géi’j))Qwag()\)I

Shy(2) = f/(2)[10T + &17]
O = (¢1,...,¢n) with ¢; = ~lyill3 — 1

Shy(2) := £/2 [1(@ 0®)T + (G od)1T 42047 4+ 42H] 11T]

v
Higher order & small

272

W
Y p

Y'Y up to a low/fixed rank perturbation with high probability!

The random matrix theory results kick in & help !




Subcritical
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(Ding & W. 2020, submitted)

neorem: transition phenomena

Supercritical

AT

v

40 80 120

i

| | | | | |
0 50 100 150 200 250 300

0

Ait3(W) — 75, (2)] < 4

With probability > 1 — O(n~Y2), when 0 < A < ,/c,,

.
Cf,n/—l/9—|—2197 1<i< Cln5/6—|—319/2;

)

Similar results hold for ¢ > n/2.

\Cn1/12+92-—1/3 Cynd/6+39/2 < j < n/2.

With probability > 1 — O(n~/2), when a = 0 and A > /¢y,

[Aita(W) = 3 (2)] <

.
Cf,n—l/9—|—2l97 1<i< Cln5/6—|—319/2;

Similar results hold for ¢ > n/2.

\Cn1/12—|—97:—1/3 Cln5/6—|—319/2 <i< TL/Z, .

)




(Ding & W. 2020, submitted)

neorem: transition phenomena

lm

Slow div.0 < a < 0.5

0 20 40 60 80

0 50 100 150 200 250 300

With probability > 1 — O(n~%/2), when 0 < o < 0.5,

Cmax{n~ /%2 p? 2} 1<i < Cpnd/0HI0
C max{n!/12H0i71/3 nf S}, OS2 < i <nf2,

Aia(W) =70, (4)] _{

Similar results hold for i > n/2.




(Ding & W. 2020, submitted)

neorem: transition phenomena

Slow div.0.5 < a <1

AT

0 20 40 60 80

0 50 100 150 200 250 300

When 0.5 < a < 1, denote d = d(« —‘ ‘—I—l K s.t. 5 < K < 029 so
that with high probability, for all 1 <1 < n — K, we have that

A
Mok (W)= (i)] < C max {¢1/3n2/3,p5<a>, —} |
p

where B(a) := (o — 1) ({ﬁ—‘ + 1) +1<0.




(Ding & W. 2020, submitted)

neorem: transition phenomena

C'l = 1;
For some constant T < C,, = .ogn, . “T 5 , with high proba-
min{Cn*~*,n}, 1<a<?2
bility,
sup M| =W | =X | =W, || <n :
1<i<T n n

where W, 1= exp(—2v)W7 + (1 — exp(—2v))I,, Moreover,

1

sup |mwi.(z) —m 2)| < )
ZE%?' w(z) —mw,, (2)] NG

where W, = (QUGXI;(_QU)YTY—I—QU eXp(—4’U)In) o Wi, D =D(1/4,a) :=
{z =F+in:a< FE< %, n—l/4+a < n < %} and 0 < a < 1 1s a small constant.

lAT

. Moderate divergence
' 1<a<?2

1\

I I I I I I I
0 50 100 150 200 250 300




(Ding & W. 2020, submitted)

neorem: transition phenomena

hen a > 2,

sup [ A(W) — A\ (W) <n 2.
1<i<n

Moreover, for any given constant t € (0,1), if a > %+1, we have with probability
> 1 — nl—t(a—l)/27

sup [A(W) — 1] < nexp(—v(A/p)' ™).

1<<n

Fast divergence
2 <«

AT

N ————

o 1 2 3 4 5

0 50 100 150 200 250 300
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High dimensional noise model

(Chao & W. 2019, arXiv)

Fix a compact smooth d-dim Riemannian manifold M, and assume D is
the smallest dimension of the Euclidean space that M can be isometrically
embedded into via «¢.

Assume g = ¢(n) < n when n — oo Clean manifold data

When ¢ is sufficiently large, fix an isometric embedding 7, : RP” — RY so that L ) _|_ .
lq(e;) € RY satisfies |u;(k)] =1/\/q+O(1/q) fori=1,...,.Dand k=1,...,q. :I/"L - :I;’L 1

Assume z; is i.i.d. sampled from z, o ¢(M).

v
Technical condition for non-Gaussian noise » Xy NIy data
Needed for Gaussian approximation
Chernozhukov & Chetverikov & Kato, AoS 2013 i K/P no;se



High dimensional noise model

(Chao & W. 2019, arXiv)

Bi=a+&  B&=0,EgE =3 e RO
1=l)> < o

Assume for all convex 1-Lipschitz function f,

P(|f(&) — mypeyl > 1) < 2exp(—cit?),
where m ¢,y is the median of f(&;) and ¢; > 0.

n (1)|2 Tk ex .
. C1 S # Zi:l Efz(l)z S Cl and maXg=1 2 % Z?:l E['gz(gfg }—FE[ p%ng(lﬂ )} S

4. Moreover, %Bg(log(an))7 < Caq™ .

. C1 S % Z?:l E(gz(l))Q S Cl and manzl,Q % zc'lzl
4. Moreover, %Bg(log(an))7 < Caq™ .




R0oDUSst to Noise

Theorem (Chao & W. 2020)

1. For Gaussian noise, assume

0q = 0g\/logn? [o4\/q+ K| — 0

2. For non-Gaussian noise, assume sup; ; \/ (02)/cij\/logn? — 0, and set

0q = 04/ logn? lsup \/ci_j1 (64v/qV 1)+ VDK
2]

3. Fix ¢ € Nand t > 0.
4. W and W: affinity matrices from clean and noisy datasets respectively.

5. ®Lt € R"*4 and &L € R™*9: DM from clean and noisy datasets respec-
tively.

Then, when € is sufficiently small,

~~ /4! )2t
H(I)OLt _(I)LtHF _ OP (561 q)\2 ) .

where O € R? %4 is an orthogonal matrix, and Ay are the largest non-trivial
eigenvalue from the clean.
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One more application

20 Original EEG signal S025-epoch-141
20 F )

EEG signal after artifact removal

Caroline Lustenberger
Neuroscience
ETH C | | | | | | | L
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

signal length (min)

v Apply the automatic annotation

FRACAE AWAKE I | ‘
Medicine REM =
NYMU N1 ............................ ................................ ...........................................................

N2 - —_— - |

N3 - |

|
60 80 100 120 140 160 180
Time (minute)




Wang & Cahill & Nelson & W. & Estrada, NAU 2020

Jrodynamics analysis

¥ O
% O
Scott Wang %
Boston Children o % A

,._JL~3L ) UDS tracing data (Pdet)
H
Labeled O
/\_\ OC wave-shape
Soston Cnicrer OC wave-shape y / 3 \
/i
o

Wave-shape
manifold

Caleb Nelson
Boston Children

L o %dew




THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

{ |
WHAT IF THE ANSWERS ARE WRONG? /

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT:

Thank you for your
attention!

—/V\ D — w* P -

https://xkcd.com/1838/




