An introduction to Multiple zeta values

Nobuo Sato ${ }^{1}$
${ }^{1}$ Department of Mathematics, National Taiwan University

March 15, 2021, Basic Notion Seminar

What is MZV?

- Pietro Mengoli (1644)

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=?
$$

- Leonhard Euler (1735)

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6} .
$$

Euler then found

$$
\begin{gathered}
1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots=\frac{\pi^{4}}{90} \\
1+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\frac{1}{4^{6}}+\cdots=\frac{\pi^{6}}{945} \\
1+\frac{1}{2^{8}}+\frac{1}{3^{8}}+\frac{1}{4^{8}}+\cdots=\frac{\pi^{8}}{9450} \\
1+\frac{1}{2^{10}}+\frac{1}{3^{10}}+\frac{1}{4^{10}}+\cdots=\frac{\pi^{10}}{93555} \\
1+\frac{1}{2^{12}}+\frac{1}{3^{12}}+\frac{1}{4^{12}}+\cdots=\frac{691 \pi^{12}}{638512875}
\end{gathered}
$$

What is MZV?

In general,

$$
\sum_{0<m} \frac{1}{m^{2 k}}=\frac{B_{2 k}}{2(2 k)!}(2 \pi i)^{2 k}
$$

with $B_{2 k} \in \mathbb{Q}$: Bernoulli number.

- Euler also tried to evaluate

$$
\sum_{0<m} \frac{1}{m^{3}}, \sum_{0<m} \frac{1}{m^{5}}, \sum_{0<m} \frac{1}{m^{7}}, \text { etc. }
$$

but could not find any formula in terms of π. In stead, he found formulas like

$$
\sum_{0<m} \frac{1}{m^{3}}=\sum_{0<m<n} \frac{1}{m n^{2}}
$$

- Hoffman (1992) defined Multiple Zeta Values (MZV)

$$
\zeta\left(k_{1}, \ldots, k_{d}\right):=\sum_{0<m_{1}<\cdots<m_{d}} \frac{1}{m_{1}^{k_{1}} \cdots m_{d}^{k_{d}}} \quad\left(k_{1}, \ldots, k_{d-1} \geq 1, k_{d} \geq 2\right)
$$

for general $d \geq 1$ and started to investigate linear/algebraic relations among them.

Algebra of MZV

For $\boldsymbol{k}=\left(k_{1}, \ldots, k_{d}\right)$,

- $\operatorname{wt}(\boldsymbol{k}):=k_{1}+\cdots+k_{d}$ is called the weight,
- $\operatorname{dep}(\boldsymbol{k}):=d$ is called the depth.

Define the space of MZV's

$$
\begin{gathered}
\mathscr{Z}:=\operatorname{span}_{\mathbb{Q}}\left\{\zeta\left(k_{1}, \ldots, k_{d}\right) \mid d \geq 0, k_{1}, \ldots, k_{d-1} \geq 1, k_{d}>1\right\} \\
\mathscr{Z}_{k}:=\operatorname{span}_{\mathbb{Q}}\{\zeta(\boldsymbol{k}) \mid \operatorname{wt}(\boldsymbol{k})=k\}
\end{gathered}
$$

where $\zeta(\emptyset):=1$.

- Product of MZV's is a linear combination of MZV's, e.g.,

$$
\begin{aligned}
\zeta(a) \zeta(b, c) & =\sum_{\substack{0<m \\
0<n<1}} \frac{1}{m^{a} n^{b} / c} \\
& =\sum_{0<m<n<1}+\sum_{0<m=n<1}+\sum_{0<n<m<1}+\sum_{0<n<m=1}+\sum_{0<n<1<m} \\
& =\zeta(a, b, c)+\zeta(a+b, c)+\zeta(b, a, c)+\zeta(b, a+c)+\zeta(b, c, a)
\end{aligned}
$$

which gives $\mathscr{Z}_{k} \mathscr{Z}_{1} \subset \mathscr{Z}_{k+1}$ and turns \mathscr{Z} into a \mathbb{Q}-algebra (harmonic relation).

Iterated integrals

For real numbers $a_{0}<a_{n+1}$ and complex numbers a_{1}, \ldots, a_{n}, we consider the iterated integral

$$
\mathrm{I}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right):=\int_{a_{0}<t_{1}<\cdots<t_{n}<a_{n+1}} \frac{d t_{1}}{t_{1}-a_{1}} \cdots \frac{d t_{n}}{t_{n}-a_{n}} .
$$

- It is convergent iff $a_{0} \neq a_{1}, a_{n} \neq a_{n+1}$ and $a_{1}, \ldots, a_{n} \notin\left(a_{0}, a_{n+1}\right)$.

Examples (logarithms)

If $b<a<c$,

$$
\mathrm{I}(a ; b ; c)=\int_{a<t<c} \frac{d t}{t-b}=[\log (t-b)]_{a}^{c}=\log \left(\frac{c-b}{a-b}\right) .
$$

Examples (polylogarithms)

If $z<1$,

$$
\mathrm{I}\left(0 ; 1,\{0\}^{k-1} ; z\right)=-\sum_{0<m} \frac{z^{m}}{m^{k}}=-\operatorname{Li}_{k}(z) .
$$

Kontsevich (199?) found that MZV's are iterated integrals of $\frac{d t}{t}$ and $\frac{d t}{t-1}$:

$$
\zeta\left(k_{1}, \ldots, k_{d}\right)=(-1)^{d} \mathrm{I}\left(0 ; 1,\{0\}^{k_{1}-1}, \ldots, 1,\{0\}^{k_{d}-1} ; 1\right)
$$

where $\{a\}^{\prime}:=\overbrace{a, a, \ldots, a}^{\prime}$. Note that $k_{d}>1$ corresponds to $\mathrm{I}(0 ; 1, \ldots, \overbrace{0 ; 1})$.

Iterated integrals

Iterated integrals are generalized to

$$
\mathrm{I}_{\gamma}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right):=\int_{0<t_{1}<\cdots<t_{n}<1} \frac{d \gamma\left(t_{1}\right)}{\gamma\left(t_{1}\right)-a_{1}} \cdots \frac{d \gamma\left(t_{n}\right)}{\gamma\left(t_{n}\right)-a_{n}}
$$

for an arbitrary path $\gamma:[0,1] \rightarrow \mathbb{C}$ from a_{0} to a_{n+1} (i.e., $\gamma(0)=a_{0}, \gamma(1)=a_{n+1}$).

- It is convergent iff $a_{0} \neq a_{1}, a_{n} \neq a_{n+1}$ and $a_{1}, \ldots, a_{n} \notin \gamma(0,1)$.
- Using the theory of tangential base points, $\mathrm{I}_{\gamma}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right)$ can be generalized to $a_{0}=a_{1}, a_{n}=a_{n+1}$ case.
- Product of iterated integrals is a linear combination of iterated integrals, e.g.,

$$
\begin{aligned}
\mathrm{I}_{\gamma}(0 ; a ; 1) \mathrm{I}_{\gamma}(0 ; b, c ; 1) & =\int_{0<t_{\mathbf{2}}<t_{3}<1} \frac{d \gamma\left(t_{1}\right)}{\gamma\left(t_{1}\right)-a_{1}} \frac{d \gamma\left(t_{2}\right)}{\gamma\left(t_{2}\right)-a_{2}} \frac{d \gamma\left(t_{3}\right)}{\gamma\left(t_{3}\right)-a_{3}} \\
& =\int_{0<t_{1}<t_{2}<t_{3}<1}+\int_{0<t_{2}<t_{1}<t_{3}<1}+\int_{0<t_{\mathbf{2}}<t_{3}<t_{1}<1} \\
& =\mathrm{I}_{\gamma}(0 ; a, b, c ; 1)+\mathrm{I}_{\gamma}(0 ; b, a, c ; 1)+\mathrm{I}_{\gamma}(0 ; b, c, a ; 1)
\end{aligned}
$$

which again gives $\mathscr{Z}_{k} \mathscr{Z}_{1} \subset \mathscr{Z}_{k+l}$ and turns \mathscr{Z} into a \mathbb{Q}-algebra (shuffle relation).

Relations among MZV's

Euler's relations: $\zeta(2 k) \in \mathbb{Q} \cdot \pi^{2 k}, \zeta(3)=\zeta(1,2)$ etc. are examples of relations among π and MZV's over \mathbb{Q}.
Finding concrete families of relations are one of the main interests in the research of MZV's. The followings are well-known examples:

- Double shuffle relation
- Ohno's relation
- GKZ-relation

Relations among MZV's - Double shuffle relation

There are two ways to expand $\zeta(\boldsymbol{k}) \zeta(\boldsymbol{I})$ as a linear combinations of MZV's, namely, harmonic and shuffle relation. For example

$$
\zeta(2) \zeta(3)=\zeta(2,3)+\zeta(3,2)+\zeta(5)
$$

by harmonic relation, while

$$
\begin{aligned}
\zeta(2) \zeta(3) & =-I(0 ; 1,0 ; 1) I(0 ; 1,0,0 ; 1) \\
& =-6 I(0 ; 1,1,0,0,0 ; 1)-3 I(0 ; 1,0,1,0,0 ; 1)-I(0 ; 1,0,0,1,0 ; 1) \\
& =6 \zeta(1,4)+3 \zeta(2,3)+\zeta(3,2)
\end{aligned}
$$

by shuffle relation. By comparison, we get a \mathbb{Q}-linear relation

$$
6 \zeta(1,4)+2 \zeta(2,3)-\zeta(5)=0
$$

in weight 5 . The relation obtained in this way is called double shuffle relation.

- Regularized double shuffle relation, which is an adequate extension of the double shuffle relation to divergent case, is conjectured to exhaust all the relations among MZV's (Ihara-Kaneko-Zagier).

Relations among MZV's - Ohno's relation

Note that any index can be uniquely expressed as

$$
\boldsymbol{k}=\left(\{1\}^{a_{1}-1}, b_{1}+1, \ldots,\{1\}^{a_{l}-1}, b_{l}+1\right) \quad\left(a_{1}, \ldots, a_{l}, b_{1}, \ldots, b_{l}>0\right) .
$$

The dual index \boldsymbol{k}^{\dagger} of \boldsymbol{k} is then defined as

$$
\boldsymbol{k}^{\dagger}=\left(\{1\}^{b_{l}-1}, a_{l}+1, \ldots,\{1\}^{b_{1}-1}, a_{1}+1\right)
$$

Define

$$
O_{m}\left(k_{1}, \ldots, k_{d}\right):=\sum_{m_{1}+\cdots+m_{d}=m} \zeta\left(k_{1}+m_{1}, \ldots, k_{d}+m_{d}\right) .
$$

For example, $O_{0}(\boldsymbol{k})=\zeta(\boldsymbol{k})$ and
$O_{1}\left(k_{1}, \ldots, k_{d}\right)=\zeta\left(k_{1}+1, k_{2}, \ldots, k_{d}\right)+\zeta\left(k_{1}, k_{2}+1, \ldots, k_{d}\right)+\cdots+\zeta\left(k_{1}, k_{2}, \ldots, k_{d}+1\right)$, etc.

Theorem (Ohno's relation (1999))

For $m \geq 0$,

$$
O_{m}\left(\boldsymbol{k}^{\dagger}\right)=O_{m}(\boldsymbol{k})
$$

- $m=0$ case gives the duality relation $\zeta\left(\boldsymbol{k}^{\dagger}\right)=\zeta(\boldsymbol{k})$ which was originally conjectured by Hoffman. Duality relation became clear by the symmetry of Kontsevich's iterated integral representation.
- $m=1$ case is known as Hoffman's relation, the simplest case of derivation relation by Ihara-Kaneko-Zagier.
- $\boldsymbol{k}=(k)$ (thus, $\left.\boldsymbol{k}=\left(\{1\}^{k-2}, 2\right)\right)$ case is the sum formula by Granville and Zagier.

Relations among MZV's - GKZ-relation

Gangle, Kaneko and Zagier investigated the space of double zeta values and found that for even weight k it is generated by

$$
\left\{\zeta(a, b) \mid a+b=k, a, b: \operatorname{odd}_{\geq 3}\right\} \cup\{\zeta(k)\} .
$$

Moreover, these generators satisfy exactly "extra" relations:

Theorem (Gangl-Kaneko-Zagier (2006))

The values $\zeta\left(\operatorname{odd}_{\geq 3}, \operatorname{odd}_{\geq 3}\right)$ of weight k and $\zeta(k)$ satisfies at least $\operatorname{dim} S_{k}$ linearly independent (explicit) relations, where S_{k} denotes the space of cusp forms of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$.

For example, Ramanujan's delta

$$
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-\cdots \quad\left(q=e^{2 \pi i z}\right)
$$

which is a cusp form of weight 12, gives the relation

$$
28 \zeta(3,9)+150 \zeta(5,7)+168 \zeta(7,5)=\frac{5197}{691} \zeta(12)
$$

in weight 12. Similarly, the unique cusp form in weight 16 is

$$
\Delta(z) E_{4}(z)=q+216 q^{2}-3348 q^{3}+13888 q^{4}+52110 q^{5}-\cdots
$$

which gives the relation

$$
66 \zeta(3,13)+375 \zeta(11,5)+686 \zeta(9,7)+675 \zeta(7,9)+396 \zeta(5,11)=\frac{78967}{3617} \zeta(16)
$$

in weight 16.

Zagier's observation

Knowing that MZV's satisfy various relations over \mathbb{Q}, Zagier wondered "how many" relations there actually are. There seems to be no linear relations between MZV's of different weights i.e.,

$$
\mathscr{Z}=\bigoplus_{k \geq 0} \mathscr{Z}_{k} .
$$

Thus Zagier computed conjectural values of $\operatorname{dim} \mathscr{Z}_{k}$ for small k 's by a numerical method:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\operatorname{dim} \mathscr{Z}_{k}$	1	0	1	1	1	2	2	3	4	5	7	9	12	16	21	28	37

Based on this table he proposed

Conjecture (Zagier's dimension conjecture)

Define $\left\{d_{k}\right\}_{k \geq 0}$ by $d_{0}=1, d_{1}=0, d_{2}=1$ and the recurrence $d_{k+3}=d_{k+1}+d_{k}(k \geq 0)$ (equivalently, $\sum_{k=0}^{\infty} d_{k} t^{k}:=\frac{1}{1-t^{2}-t^{3}}$). Then

$$
\operatorname{dim}_{\mathbb{Q}} \mathscr{Z}_{k}=d_{k} .
$$

If this is the case, $d_{k} \sim C \times(1.32471795 \cdots)^{k} \ll 2^{k-2}(=\#\{$ MZV's of weight $k\})$. Furthermore, put

$$
\mathbb{I}_{k}^{\text {Hoff }}:=\left\{\left(k_{1}, \ldots, k_{d}\right) \mid d \geq 0, k_{1}+\cdots+k_{d}=k, k_{1}, \ldots, k_{d} \in\{2,3\}\right\} .
$$

Hoffman conjectured

Conjecture (Hoffman's basis conjecture)

For $k \geq 0,\left\{\zeta(\boldsymbol{k}) \mid \boldsymbol{k} \in \mathbb{I}_{k}^{\text {Hoff }}\right\}$ forms a \mathbb{Q}-basis of \mathscr{Z}_{k}.

Motivic MZV

To work with Zagier's conjecture, "motivic" framework is very powerful.

- $\mathscr{H}=\bigoplus_{k=0}^{\infty} \mathscr{H}^{(k)} \subset \mathscr{O}\left(\underline{\operatorname{Isom}}_{\mathrm{MT}(\mathbb{Z})}^{\otimes}\left(\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}\right)\right)$ be the graded ring of (real effective) motivic periods of $\mathrm{MT}(\mathbb{Z})$.
- $\mathrm{MT}(\mathbb{Z})$ is a Tannakian category of mixed Tate motives over \mathbb{Z}, introduced by Deligne-Goncharov.
- ω_{dR} and ω_{B} are fiber functors on $\mathrm{MT}(\mathbb{Z})$ called de Rham and Betti realizations.
- There exists a (conjecturally injective) ring homomorphism

$$
\text { per : } \mathscr{H} \longrightarrow \mathbb{C}
$$

called period map.

- For $a_{1}, \ldots, a_{n+1} \in\{0,1\}$, one can construct a framed object $I^{\mathfrak{m}}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right) \in \mathscr{H}^{(n)}$ with the property

$$
\operatorname{per}\left(\mathrm{I}^{\mathrm{m}}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right)\right)=\mathrm{I}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right) .
$$

- Thus, Motivic MZV is defined by

$$
\zeta^{\mathrm{m}}\left(k_{1}, \ldots, k_{d}\right)=(-1)^{d} \mathrm{I}^{\mathrm{m}}\left(0 ; 1,\{0\}^{k_{1}-1}, \ldots, 1,\{0\}^{k_{d}-1} ; 1\right)
$$

and $\mathscr{Z}_{k}^{\mathfrak{m}}:=\operatorname{span}_{\mathbb{Q}}\left\{\zeta^{m}(\boldsymbol{k})\right.$'s $\} \subset \mathscr{H}^{(k)}$.

- By the theory of mixed Tate motives, $\mathscr{H} \simeq \mathbb{Q}\left\langle f_{3}, f_{5}, f_{7}, \ldots\right\rangle \otimes \mathbb{Q}\left[f_{2}\right]$ with $\operatorname{deg} f_{i}=i$.
- This gives $\operatorname{dim} \mathscr{H}^{(k)}=d_{k}$.

Thus, we get "half" of Zagier's dimension conjecture (Terasoma, Goncharov):

$$
\operatorname{dim}_{\mathbb{Q}} \mathscr{Z}_{k} \leq \operatorname{dim}_{\mathbb{Q}} \mathscr{Z}_{k}^{\mathfrak{m}} \leq \operatorname{dim} \mathscr{H}^{(k)}=d_{k} .
$$

Brown's theorem (1/3)

Concerning Hoffman's basis conjecture, Brown proved the following theorem.

Theorem

The motivic version of Hoffman's "basis"

$$
\left\{\zeta^{\mathfrak{m}}(\boldsymbol{k}) \mid \boldsymbol{k} \in \mathbb{I}_{k}^{\text {Hoff }}\right\}
$$

is \mathbb{Q}-basis of $\mathscr{H}^{(k)}$.

Remark

The theorem is equivalent to the \mathbb{Q}-linear independence of $\left\{\zeta^{\mathfrak{m}}(\boldsymbol{k}) \mid \boldsymbol{k} \in \mathbb{I}_{k}^{\text {Hoff }}\right\}$.

Corollary

$\mathscr{H}^{(k)}=\mathscr{Z}_{k}^{\mathrm{m}}$, i.e. all (real effective) motivic periods of $\mathrm{MT}(\mathbb{Z})$ are (linear sums of) motivic multiple zeta values.

```
Corollary
{\zeta(\boldsymbol{k})|\boldsymbol{k}\in\mp@subsup{\mathbb{I}}{k}{\mathrm{ Hoff }}}\mathrm{ spans }\mp@subsup{\mathscr{Z}}{k}{\prime}\mathrm{ : the space of MZV 's of weight }k\mathrm{ .}
```


Brown's theorem $(2 / 3)$

For Brown's theorem we need to look at finer structures of $\mathscr{Z}_{k}^{\mathfrak{m}}$:

- Put $\mathscr{A}:=\mathscr{H} / \zeta^{m}(2) \mathscr{H}$.
- the image of $\zeta^{\mathfrak{m}}(\boldsymbol{k})$ (resp. $\left.\mathrm{I}^{\mathfrak{m}}(-)\right)$ in \mathscr{A} is denoted by $\zeta^{\mathfrak{a}}(\boldsymbol{k})$ (resp. $\mathrm{I}^{\mathfrak{a}}(-)$).
- \mathscr{A} has a structure of Hopf algebra, and \mathscr{H} has a structure of \mathscr{A}-comodule whose coaction is denoted by

$$
\Delta: \mathscr{H} \rightarrow \mathscr{A} \otimes \mathscr{H} .
$$

The explicit formula of Δ was computed by Gocharov:

Theorem (Goncharov's coaction formula)

$$
\begin{aligned}
& \Delta \mathrm{I}^{\mathrm{m}}\left(a_{0} ; a_{1}, \ldots, a_{n} ; a_{n+1}\right) \\
& =\sum_{\substack{0 \leq r \leq k \\
0=i_{0}<\cdots<i_{r+1}=k+1}}\left(\prod_{j=0}^{r} \mathrm{I}^{\mathrm{a}}\left(a_{i_{j}} ; a_{i_{j}+1}, \ldots, a_{i_{j+1}-1} ; a_{i_{j+1}}\right)\right) \otimes \mathrm{I}^{\mathrm{m}}\left(a_{i_{0}} ; a_{i_{\mathbf{1}}}, \ldots, a_{i_{k}} ; a_{i_{k+1}}\right)
\end{aligned}
$$

Brown's theorem (3/3)

Brown's proof is based on the calculation of $\Delta \zeta^{\mathfrak{m}}(\boldsymbol{k})$ for $\boldsymbol{k} \in \mathbb{I}_{k}^{\text {Hoff }}$ using Goncharov's coproduct formula. In the argument, Zagier's 2-3-2 formula plays an essential role.

Theorem (Zagier's 2-3-2 formula)

$$
\zeta(\overbrace{2, \ldots, 2}^{i}, 3, \overbrace{2, \ldots, 2}^{j})=\sum_{\substack{r+s=i+j+1 \\ r>0, s \geq 0}} c_{r, s}^{i, j} \zeta(2 r+1) \frac{\pi^{2 s}}{(2 s+1)!}
$$

where $c_{r, s}^{i, j}=(-1)^{r}\left[\binom{2 r}{2 a+2}-\left(1-\frac{1}{2^{2 r}}\right)\binom{2 r}{2 b+1}\right] \in \mathbb{Q}$.

- The motivic version of this theorem follows by computing coactions of both sides.
- The 2-adic property of $\left(c_{r, s}^{i, j}\right)_{0 \leq j, s \leq n}$ is a key to Brown's proof.

Grothendieck-Teichmüller theory

Brown's theorem has an important implication in Grothendieck-Teichmüller theory, which studies actions of various Galois groups on various fundamental groups of algebraic varieties.
The prototype of such phenomena is

- Galois group:
- $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$: the absolute Galois group of \mathbb{Q}.
- Fundamental group:
- $\pi_{1}^{\text {geom }}\left(\mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\} ; 0^{\prime}, 1^{\prime}\right)$: the geometric fundamental torsor of $\mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\}$ with the tangential base points $0^{\prime}:=0_{\overrightarrow{\mathbf{r}}}, 1^{\prime}:=1_{-\mathbf{1}}$.
\star This is a torsor of the profinite completion of the free group of rank 2.
Then, $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $\pi_{1}^{\text {geom }}\left(\mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\} ; 0_{\overrightarrow{1}}, 1-\overrightarrow{-1}\right)$, which defines a group homomorphism

$$
\phi_{\text {abs }}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(\pi_{1}^{\text {geom }}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\} ; 0^{\prime}, 1^{\prime}\right)\right)
$$

What is the kernel/image of $\phi_{\text {abs }}$?

Theorem (Belyi)

The action above is faithful i.e., $\operatorname{ker} \phi_{\mathrm{abs}}=1$.
Thus the absolute Galois group is realized as automorphisms of some easy group. Unlike kernel, the determination of the image is an open problem.

- As a candidate of im $\phi_{\text {abs }}$, Drinfeld showed:
- The image is contained in GT called profinite Grothendieck-Teichmüller group, which is a subgroup of $\operatorname{Aut}\left(\pi_{\mathbf{1}}^{\text {geom }}\left(\mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\} ; 0^{\prime}, 1^{\prime}\right)\right.$ defined by certain set of defining equations.
- im $\phi_{\text {abs }} \stackrel{?}{=} \widehat{\text { GT }}$ is a very important (but also very hard) problem.

Grothendieck-Teichmüller theory

Now let us consider its motivic analogy. Fix $N=1,2$.

- Galois groups:
- $\mathscr{G}^{(N)}=\operatorname{Gal}(\mathrm{MT}(\mathbb{Z}[1 / N])):=\underline{\operatorname{Aut}}_{\mathrm{MT}(\mathbb{Z}[1 / N])}^{\otimes}\left(\omega_{\mathrm{dR}}, \omega_{\mathrm{dR}}\right)$: Galois group of $\mathrm{MT}(\mathbb{Z}[1 / N])$.
- Then, $\mathscr{G}^{(N)}=\mathscr{U}^{(N)} \rtimes \mathbb{G}_{m}$ with $\mathscr{U}^{(N)}$: unipotent part.
- Fundamental groups:
- $N=1: \Pi^{(\mathbf{1})}=\pi_{\mathbf{1}}^{\mathrm{dR}}\left(\mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\} ; 0^{\prime}, 1^{\prime}\right):=\operatorname{Spec}\left(\mathbb{Q}\left\langle e_{\mathbf{0}}, e_{\mathbf{1}}\right\rangle^{\boldsymbol{W}}\right)$: the de Rham fundamental torsor of $\mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\}$ with the tangential base points $0^{\prime}, 1^{\prime}$.
- $N=2: \Pi^{(\mathbf{2})}=\pi_{\mathbf{1}}^{\mathrm{dR}}\left(\mathbb{P}^{\mathbf{1}} \backslash\{0, \pm 1, \infty\} ; 0^{\prime}, \mathbf{1}^{\prime}\right):=\operatorname{Spec}\left(\mathbb{Q}\left\langle e_{\mathbf{0}}, e_{\mathbf{1}}, e_{-\mathbf{1}}\right\rangle^{\boldsymbol{W}}\right)$: the de Rham fundamental torsor of $\mathbb{P}^{\mathbf{1}} \backslash\{0, \pm 1, \infty\}$ with the tangential base points $0^{\prime}, 1^{\prime}$.
Then, $\mathscr{U}^{(N)}$ acts on $\Pi^{(N)}$, which defines a group homomorphism

$$
\phi_{N}: \mathscr{U}^{(N)} \rightarrow \operatorname{Aut}\left(\Pi^{(N)}\right)
$$

What is the kenel/image of ϕ_{N} ? Brown's theorem implies:

Theorem (Brown)

The action of $\mathscr{U}^{(1)}$ on $\Pi^{(1)}$ is faithful i.e., $\operatorname{ker} \phi_{1}=1$.
Similarly, Deligne showed:

Theorem (Deligne)

The action of $\mathscr{U}^{(2)}$ on $\Pi^{(2)}$ is faithful i.e., $\operatorname{ker} \phi_{2}=1$.
As in the case of absolute Galois group, the motivic Galois groups are realized as automorphisms of some easy groups. Then how about the image of ϕ_{N} ?

Grothendieck-Teichmüller theory

$-\operatorname{Spec}\left(\mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle^{\amalg}\right)\left(\right.$ resp. $\left.\operatorname{Spec}\left(\mathbb{Q}\left\langle e_{0}, e_{1}, e_{-1}\right\rangle{ }^{\omega}\right)\right)$ is canonically identified with the set of group-like elements of $\mathbb{Q}\left\langle\left\langle e^{0}, e^{1}\right\rangle\right\rangle$ (resp. $\mathbb{Q}\left\langle\left\langle e^{0}, e^{1}, e^{-1}\right\rangle\right\rangle$)

- Let $\mathscr{H}^{(2)}$ be the graded ring of (real) effective motivic periods of $\mathrm{MT}(\mathbb{Z}[1 / 2])$ and

$$
L^{\mathrm{m}}: \mathbb{Q}\left\langle e_{0}, e_{1}, e_{-1}\right\rangle^{\Psi} \rightarrow \mathscr{H}^{(2)}
$$

be $L^{\mathfrak{m}}\left(e_{a_{1}} \cdots e_{a_{n}}\right):=I^{m}\left(0 ; a_{1}, \ldots, a_{n} ; 1\right)$.

- The entire action ϕ_{N} is determined by the action on $\phi_{N}\left(01_{1}\right)$ (01_{1} : identity element) as

$$
\begin{aligned}
& \operatorname{im} \phi_{1}=\left\{\sigma_{P}^{(1)} \in \operatorname{Aut}\left(\Pi^{(1)}\right) \mid p \in \operatorname{Spec}\left(\mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle^{ш} /\left(e_{1} e_{0}, \operatorname{ker} L^{\mathfrak{m}} \cap \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle^{ш}\right)\right)\right\} \\
& \operatorname{im} \phi_{2}=\left\{\sigma_{P}^{(2)} \in \operatorname{Aut}\left(\Pi^{(2)}\right) \mid p \in \operatorname{Spec}\left(\mathbb{Q}\left\langle e_{0}, e_{1}, e_{-1}\right\rangle^{ш} /\left(e_{1} e_{0}, \operatorname{ker} L^{\mathfrak{m}}\right)\right)\right\}
\end{aligned}
$$

where $\sigma_{p}^{(N)}\left({ }_{o} 1_{1}\right)={ }_{o} p_{1}$.
For $N=1$, the determination of the image is an open problem.

- As a candidate of $\operatorname{im} \phi_{1}$, Drinfeld showed:
- The image is contained in GRT called graded version of Grothendieck-Teichmüller group, which is a subgroup of $\operatorname{Aut}\left(\Pi^{(1)}\right)$ defined by certain set of defining equations.
- im $\phi_{1} \stackrel{?}{=}$ GRT is a very important (but also very hard) problem.

For $N=2$, we have a complete description of the image:

Theorem (Hirose-S.)

$\operatorname{ker} L^{\mathfrak{m}}=l_{\mathrm{CF}}^{(2)}$ where $l_{\mathrm{CF}}^{(2)}$ denotes the confluence relation of level two. Thus,

$$
\operatorname{im} \phi_{2}=\left\{\sigma_{p}^{(2)} \in \operatorname{Aut}\left(\Pi^{(2)}\right) \mid p \in \operatorname{Spec}\left(\mathbb{Q}\left\langle e_{0}, e_{1}, e_{-1}\right\rangle^{ш} /\left(e_{1} e_{0}, l_{\mathrm{CF}}^{(2)}\right)\right)\right\}
$$

The future directions

- Periods of mixed Tate motives over a general number field F
- For $R \subset F$, we have motivic framework
\# Structure theorem of the ring of effective periods from algebraic K-theory.
\star Gocharov's coaction formula
- The cases with $\operatorname{MT}\left(\mathbb{Z}\left[\mu_{N}, 1 / N\right]\right)$ is closely related to multiple L-values, which has nice depth filtration.
- Goncharov's conjecture: Every period of mixed Tate motive over F is a F-linear sum of motivic iterated integrals over F.
- Periods of mixed motives
- Mixed modular motives
* Multiple modular values
\star Applications to the theory of mixed Tate motives

That's all for today.
Thank you so much for your attention!

