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What is MZV?
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What is MZV?

In general,

∑
0<m

1
m2k =

B2k
2(2k)!

(2π i)2k

with B2k ∈Q: Bernoulli number.

Euler also tried to evaluate

∑
0<m

1
m3 , ∑

0<m

1
m5 , ∑

0<m

1
m7 , etc.,

but could not find any formula in terms of π. In stead, he found formulas like

∑
0<m

1
m3 = ∑

0<m<n

1
mn2

.

Hoffman (1992) defined Multiple Zeta Values (MZV)

ζ (k1, . . . ,kd ) := ∑
0<m1<···<md

1

mk1
1 · · ·m

kd
d

(k1, . . . ,kd−1 ≥ 1, kd ≥ 2)

for general d ≥ 1 and started to investigate linear/algebraic relations among them.
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Algebra of MZV

For k = (k1, . . . ,kd ),

wt(k) := k1 + · · ·+kd is called the weight,

dep(k) := d is called the depth.

Define the space of MZV’s

Z := spanQ { ζ (k1, . . . ,kd )|d ≥ 0,k1, . . . ,kd−1 ≥ 1,kd > 1}

Zk := spanQ { ζ (k)|wt(k) = k}

where ζ ( /0) := 1.

Product of MZV’s is a linear combination of MZV’s, e.g.,

ζ (a)ζ (b,c) = ∑
0<m
0<n<l

1
manb lc

= ∑
0<m<n<l

+ ∑
0<m=n<l

+ ∑
0<n<m<l

+ ∑
0<n<m=l

+ ∑
0<n<l<m

= ζ (a,b,c) + ζ (a+b,c) + ζ (b,a,c) + ζ (b,a+c) + ζ (b,c,a)

which gives ZkZl ⊂Zk+l and turns Z into a Q-algebra (harmonic relation).
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Iterated integrals
For real numbers a0 < an+1 and complex numbers a1, . . . ,an, we consider the iterated integral

I(a0;a1, . . . ,an;an+1) :=
∫
a0<t1<···<tn<an+1

dt1
t1−a1

· · · dtn
tn−an

.

It is convergent iff a0 6= a1, an 6= an+1 and a1, . . . ,an /∈ (a0,an+1).

Examples (logarithms)
If b < a< c,

I(a;b;c) =
∫
a<t<c

dt

t−b
= [log(t−b)]ca = log

(
c−b

a−b

)
.

Examples (polylogarithms)
If z < 1,

I(0;1,{0}k−1;z) =− ∑
0<m

zm

mk
=−Lik (z).

Kontsevich (199?) found that MZV’s are iterated integrals of dt
t and dt

t−1 :

ζ (k1, . . . ,kd ) = (−1)d I(0;1,{0}k1−1, . . . ,1,{0}kd−1;1)

where {a}l :=

l︷ ︸︸ ︷
a,a, . . . ,a. Note that kd > 1 corresponds to I(0;1, . . . ,

︷︸︸︷
0;1 ).
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Iterated integrals

Iterated integrals are generalized to

Iγ (a0;a1, . . . ,an;an+1) :=
∫
0<t1<···<tn<1

dγ(t1)

γ(t1)−a1
· · · dγ(tn)

γ(tn)−an

for an arbitrary path γ : [0,1]→ C from a0 to an+1 (i.e., γ(0) = a0,γ(1) = an+1).

It is convergent iff a0 6= a1, an 6= an+1 and a1, . . . ,an /∈ γ(0,1).

Using the theory of tangential base points, Iγ (a0;a1, . . . ,an;an+1) can be generalized to
a0 = a1, an = an+1 case.

Product of iterated integrals is a linear combination of iterated integrals, e.g.,

Iγ (0;a;1)Iγ (0;b,c;1) =
∫

0<t1<1
0<t2<t3<1

dγ(t1)

γ(t1)−a1

dγ(t2)

γ(t2)−a2

dγ(t3)

γ(t3)−a3

=
∫
0<t1<t2<t3<1

+
∫
0<t2<t1<t3<1

+
∫
0<t2<t3<t1<1

= Iγ (0;a,b,c;1) + Iγ (0;b,a,c;1) + Iγ (0;b,c,a;1)

which again gives ZkZl ⊂Zk+l and turns Z into a Q-algebra (shuffle relation).
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Relations among MZV’s

Euler’s relations: ζ (2k) ∈Q ·π2k , ζ (3) = ζ (1,2) etc. are examples of relations among π and
MZV’s over Q.
Finding concrete families of relations are one of the main interests in the research of MZV’s. The
followings are well-known examples:

Double shuffle relation

Ohno’s relation

GKZ-relation
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Relations among MZV’s - Double shuffle relation

There are two ways to expand ζ (k)ζ (l) as a linear combinations of MZV’s, namely, harmonic and
shuffle relation. For example

ζ (2)ζ (3) = ζ (2,3) + ζ (3,2) + ζ (5)

by harmonic relation, while

ζ (2)ζ (3) =−I (0;1,0;1)I (0;1,0,0;1)

=−6I (0;1,1,0,0,0;1)−3I (0;1,0,1,0,0;1)− I (0;1,0,0,1,0;1)

= 6ζ (1,4) +3ζ (2,3) + ζ (3,2)

by shuffle relation. By comparison, we get a Q-linear relation

6ζ (1,4) +2ζ (2,3)−ζ (5) = 0

in weight 5. The relation obtained in this way is called double shuffle relation.

Regularized double shuffle relation, which is an adequate extension of the double shuffle
relation to divergent case, is conjectured to exhaust all the relations among MZV’s
(Ihara-Kaneko-Zagier).

N. Sato (NTU Math) An introduction to MZVs 8 / 20



Relations among MZV’s - Ohno’s relation
Note that any index can be uniquely expressed as

k = ({1}a1−1,b1 +1, . . . ,{1}al−1,bl +1) (a1, . . . ,al ,b1, . . . ,bl > 0).

The dual index k† of k is then defined as

k† = ({1}bl−1,al +1, . . . ,{1}b1−1,a1 +1).

Define
Om(k1, . . . ,kd ) := ∑

m1+···+md=m

ζ (k1 +m1, . . . ,kd +md ).

For example, O0(k) = ζ (k) and
O1(k1, . . . ,kd ) = ζ (k1 +1,k2, . . . ,kd ) + ζ (k1,k2 +1, . . . ,kd ) + · · ·+ ζ (k1,k2, . . . ,kd +1), etc.

Theorem (Ohno’s relation (1999))
For m ≥ 0,

Om(k†) = Om(k).

m = 0 case gives the duality relation ζ (k†) = ζ (k) which was originally conjectured by
Hoffman. Duality relation became clear by the symmetry of Kontsevich’s iterated integral
representation.

m = 1 case is known as Hoffman’s relation, the simplest case of derivation relation by
Ihara-Kaneko-Zagier.

k = (k) (thus, k = ({1}k−2,2)) case is the sum formula by Granville and Zagier.
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Relations among MZV’s - GKZ-relation
Gangle, Kaneko and Zagier investigated the space of double zeta values and found that for even
weight k it is generated by

{ ζ (a,b)|a+b = k,a,b : odd≥3}∪{ζ (k)} .

Moreover, these generators satisfy exactly “extra” relations:

Theorem (Gangl-Kaneko-Zagier (2006))
The values ζ (odd≥3,odd≥3) of weight k and ζ (k) satisfies at least dimSk linearly independent
(explicit) relations, where Sk denotes the space of cusp forms of weight k for SL2(Z).

For example, Ramanujan’s delta

∆(z) = q
∞

∏
n=1

(1−qn)24 = q−24q2 +252q3−1472q4 +4830q5−·· · (q = e2π iz )

which is a cusp form of weight 12, gives the relation

28ζ (3,9) +150ζ (5,7) +168ζ (7,5) =
5197
691

ζ (12)

in weight 12. Similarly, the unique cusp form in weight 16 is

∆(z)E4(z) = q+216q2−3348q3 +13888q4 +52110q5−·· ·

which gives the relation

66ζ (3,13) +375ζ (11,5) +686ζ (9,7) +675ζ (7,9) +396ζ (5,11) =
78967
3617

ζ (16)

in weight 16.
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Zagier’s observation
Knowing that MZV’s satisfy various relations over Q, Zagier wondered “how many” relations there
actually are. There seems to be no linear relations between MZV’s of different weights i.e.,

Z =
⊕
k≥0

Zk .

Thus Zagier computed conjectural values of dimZk for small k’s by a numerical method:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dimZk 1 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37

Based on this table he proposed

Conjecture (Zagier’s dimension conjecture)
Define {dk}k≥0 by d0 = 1,d1 = 0,d2 = 1 and the recurrence dk+3 = dk+1 +dk (k ≥ 0)
(equivalently, ∑

∞
k=0 dk t

k := 1
1−t2−t3 ). Then

dimQZk = dk .

If this is the case, dk ∼ C × (1.32471795 · · ·)k << 2k−2 (= #{MZV’s of weight k}).
Furthermore, put

IHoff
k := { (k1, . . . ,kd )|d ≥ 0,k1 + · · ·+kd = k,k1, . . . ,kd ∈ {2,3}} .

Hoffman conjectured

Conjecture (Hoffman’s basis conjecture)

For k ≥ 0,
{

ζ (k)|k ∈ IHoff
k

}
forms a Q-basis of Zk .
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Motivic MZV
To work with Zagier’s conjecture, “motivic” framework is very powerful.

H =
⊕

∞
k=0H (k) ⊂ O(Isom⊗MT(Z)(ωdR,ωB)) be the graded ring of (real effective) motivic

periods of MT(Z).
I MT(Z) is a Tannakian category of mixed Tate motives over Z, introduced by Deligne-Goncharov.
I ωdR and ωB are fiber functors on MT(Z) called de Rham and Betti realizations.

There exists a (conjecturally injective) ring homomorphism

per : H −→ C

called period map.

For a1, . . . ,an+1 ∈ {0,1}, one can construct a framed object Im(a0;a1, . . . ,an;an+1) ∈H (n)

with the property

per(Im(a0;a1, . . . ,an;an+1)) = I(a0;a1, . . . ,an;an+1).

Thus, Motivic MZV is defined by

ζ
m(k1, . . . ,kd ) = (−1)d Im(0;1,{0}k1−1, . . . ,1,{0}kd−1;1)

and Z m
k := spanQ{ζ m(k)’s} ⊂H (k).

By the theory of mixed Tate motives, H 'Q〈f3, f5, f7, . . .〉⊗Q[f2] with deg fi = i .
I This gives dimH (k) = dk .

Thus, we get “half” of Zagier’s dimension conjecture (Terasoma, Goncharov):

dimQZk ≤ dimQZ m
k ≤ dimH (k) = dk .
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Brown’s theorem (1/3)
Concerning Hoffman’s basis conjecture, Brown proved the following theorem.

Theorem
The motivic version of Hoffman’s “basis”{

ζ
m(k)|k ∈ IHoff

k

}
is Q-basis of H (k).

Remark
The theorem is equivalent to the Q-linear independence of

{
ζm(k)|k ∈ IHoff

k

}
.

Corollary

H (k) = Z m
k , i.e. all (real effective) motivic periods of MT(Z) are (linear sums of) motivic

multiple zeta values.

Corollary{
ζ (k)|k ∈ IHoff

k

}
spans Zk : the space of MZV ’s of weight k.
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Brown’s theorem (2/3)

For Brown’s theorem we need to look at finer structures of Z m
k :

Put A := H /ζm(2)H .
I the image of ζm(k) (resp. Im(−)) in A is denoted by ζa(k) (resp. Ia(−)).

A has a structure of Hopf algebra, and H has a structure of A -comodule whose coaction is
denoted by

∆ : H →A ⊗H .

The explicit formula of ∆ was computed by Gocharov:

Theorem (Goncharov’s coaction formula)

∆Im(a0;a1, . . . ,an;an+1)

= ∑
0≤r≤k

0=i0<···<ir+1=k+1

(
r

∏
j=0

Ia(aij ;aij+1, . . . ,aij+1−1;aij+1 )

)
⊗ Im(ai0 ;ai1 , . . . ,aik ;aik+1 )
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Brown’s theorem (3/3)

Brown’s proof is based on the calculation of ∆ζm(k) for k ∈ IHoff
k using Goncharov’s coproduct

formula. In the argument, Zagier’s 2-3-2 formula plays an essential role.

Theorem (Zagier’s 2-3-2 formula)

ζ (

i︷ ︸︸ ︷
2, . . . ,2,3,

j︷ ︸︸ ︷
2, . . . ,2) = ∑

r+s=i+j+1
r>0,s≥0

c i ,jr ,sζ (2r +1)
π2s

(2s +1)!

where c i ,jr ,s = (−1)r
[( 2r

2a+2
)
− (1− 1

22r )
( 2r
2b+1

)]
∈Q.

The motivic version of this theorem follows by computing coactions of both sides.

The 2-adic property of (c i ,jr ,s)0≤j ,s≤n is a key to Brown’s proof.
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Grothendieck–Teichmüller theory
Brown’s theorem has an important implication in Grothendieck-Teichmüller theory, which studies
actions of various Galois groups on various fundamental groups of algebraic varieties.
The prototype of such phenomena is

Galois group:
I Gal(Q/Q) : the absolute Galois group of Q.

Fundamental group:
I π

geom
1 (P1 \{0,1,∞};0′,1′) : the geometric fundamental torsor of P1 \{0,1,∞} with the tangential
base points 0′ := 0−→1 ,1

′ := 1−→−1.
F This is a torsor of the profinite completion of the free group of rank 2.

Then, Gal(Q/Q) acts on π
geom
1 (P1 \{0,1,∞};0−→1 ,1−→−1), which defines a group homomorphism

φabs : Gal(Q/Q)→ Aut(π
geom
1 (P1 \{0,1,∞};0′,1′)).

What is the kernel/image of φabs?

Theorem (Belyi)
The action above is faithful i.e., kerφabs = 1.

Thus the absolute Galois group is realized as automorphisms of some easy group. Unlike kernel,
the determination of the image is an open problem.

As a candidate of imφabs, Drinfeld showed:
I The image is contained in ĜT called profinite Grothendieck-Teichmüller group, which is a

subgroup of Aut(π
geom
1 (P1 \{0,1,∞};0′,1′) defined by certain set of defining equations.

I imφabs
?
= ĜT is a very important (but also very hard) problem.
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Grothendieck–Teichmüller theory
Now let us consider its motivic analogy. Fix N = 1,2.

Galois groups:
I G (N) = Gal(MT(Z[1/N])) := Aut⊗MT(Z[1/N])(ωdR,ωdR): Galois group of MT(Z[1/N]).
I Then, G (N) = U (N) oGm with U (N): unipotent part.

Fundamental groups:
I N = 1: Π(1) = πdR

1 (P1 \{0,1,∞};0′,1′) := Spec
(
Q〈e0,e1〉�

)
: the de Rham fundamental torsor of

P1 \{0,1,∞} with the tangential base points 0′,1′.
I N = 2: Π(2) = πdR

1 (P1 \{0,±1,∞};0′,1′) := Spec
(
Q〈e0,e1,e−1〉�

)
: the de Rham fundamental

torsor of P1 \{0,±1,∞} with the tangential base points 0′,1′.

Then, U (N) acts on Π(N), which defines a group homomorphism

φN : U (N)→ Aut(Π(N)).

What is the kenel/image of φN? Brown’s theorem implies:

Theorem (Brown)

The action of U (1) on Π(1) is faithful i.e., kerφ1 = 1.

Similarly, Deligne showed:

Theorem (Deligne)

The action of U (2) on Π(2) is faithful i.e., kerφ2 = 1.

As in the case of absolute Galois group, the motivic Galois groups are realized as automorphisms
of some easy groups. Then how about the image of φN?
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Grothendieck-Teichmüller theory
Spec

(
Q〈e0,e1〉�

)
(resp. Spec

(
Q〈e0,e1,e−1〉�

)
) is canonically identified with the set of

group-like elements of Q
〈〈
e0,e1

〉〉
(resp. Q

〈〈
e0,e1,e−1

〉〉
)

Let H (2) be the graded ring of (real) effective motivic periods of MT(Z[1/2]) and

Lm : Q〈e0,e1,e−1〉�→H (2)

be Lm(ea1 · · ·ean ) := Im(0;a1, . . . ,an;1).

The entire action φN is determined by the action on φN(011) (011: identity element) as

imφ1 =
{

σ
(1)
p ∈ Aut(Π(1))

∣∣∣p ∈ Spec
(
Q〈e0,e1〉�

/
(e1e0,kerLm ∩Q〈e0,e1〉�)

)}
imφ2 =

{
σ

(2)
p ∈ Aut(Π(2))

∣∣∣p ∈ Spec
(
Q〈e0,e1,e−1〉�

/
(e1e0,kerLm)

)}
where σ

(N)
p (011) = 0p1.

For N = 1, the determination of the image is an open problem.
As a candidate of imφ1, Drinfeld showed:

I The image is contained in GRT called graded version of Grothendieck-Teichmüller group, which
is a subgroup of Aut(Π(1)) defined by certain set of defining equations.

I imφ1
?
= GRT is a very important (but also very hard) problem.

For N = 2, we have a complete description of the image:

Theorem (Hirose-S.)

kerLm = I
(2)
CF where I

(2)
CF denotes the confluence relation of level two. Thus,

imφ2 =
{

σ
(2)
p ∈ Aut(Π(2))

∣∣∣p ∈ Spec
(
Q〈e0,e1,e−1〉�

/
(e1e0, I

(2)
CF )

)}
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The future directions

Periods of mixed Tate motives over a general number field F
I For R ⊂ F , we have motivic framework

F Structure theorem of the ring of effective periods from algebraic K -theory.
F Gocharov’s coaction formula

I The cases with MT(Z[µN ,1/N]) is closely related to multiple L-values, which has nice depth
filtration.

I Goncharov’s conjecture: Every period of mixed Tate motive over F is a F -linear sum of motivic
iterated integrals over F .

Periods of mixed motives
I Mixed modular motives

F Multiple modular values
F Applications to the theory of mixed Tate motives
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That’s all for today.

Thank you so much for your attention!
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