A revisit of the Velocity Averaging Lemma: On the regularity of stationary Boltzmann equation in a bounded convex domain

I-Kun Chen
Institute of Applied Mathematical sciences,
National Taiwan University

Basic notion April 12, 2021.

Based on a joint work with Ping-Han Chuang, Chun-Hsiung Hsia, and Jhe-Kuan Su.

Velocity Averaging Lemma:

- ► Transport+Velocity Averaging→ Regularity.
- Golse, Perthame, Sentis (1985).
- Golse, Lions, Perthame, Sentis (1988).
- ▶ A key lemma for the existence of solution for Boltzmann equation by Diperna and Lions (1989).

Theorem (Velocity Averaging Lemma)

Suppose u is an L² solution to the transport equation

$$v \cdot \nabla_x u(x, v) = G(x, v), \quad (x, v) \in \mathbb{R}^n \times \mathbb{R}^n,$$

where $G \in L^2$. Let

$$\bar{u}(x) := \int_{\mathbb{R}^n} u(x, v) \psi(v) dv,$$

where ψ is a bounded function with compact support. Then, we have

$$\bar{u}(x) \in \tilde{H}^{\frac{1}{2}}(\mathbb{R}^n).$$

Fractional Sobolev space via Fourier Transform

Here,

Definition

We say $u: \mathbb{R}^n \to \mathbb{R}$ is in $\tilde{H}^s(\mathbb{R}^n)$ if

$$\|u\|_{\tilde{H}_{x}^{s}(\mathbb{R}^{n})} = \left(\int_{\mathbb{R}^{n}} (1+|\eta|^{2})^{s} |F(u)(\eta)|^{2} d\xi\right)^{\frac{1}{2}} < \infty,$$
 (1)

where $F(u)(\xi)$ is the Fourier transform of u, i.e.,

$$F(u)(\eta) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} u(x) e^{-i\eta \cdot x} dx.$$

Properties of Fourier transform

Recall that

Differentiation

$$F(\frac{\partial}{\partial x_i}g) = i\eta_i F(g), \tag{2}$$

Plancherel's identity:

$$\int |g|^2 dx = \int |F(g)|^2 d\eta. \tag{3}$$

Proof of Velocity Averaging Lemma

$$u(x, v) + v \cdot \nabla_x u(x, v) = u(x, v) + G(x, v) = H(x, v) \in L^2_{x, v}$$
(4)

Taking Fourier transform with respect to x, we have

$$\hat{u}(\eta, \mathbf{v}) + i\eta \cdot \mathbf{v}\hat{u}(\eta, \mathbf{v}) = \hat{H}(\eta, \mathbf{v}). \tag{5}$$

Hence,

$$\hat{u}(\eta, \mathbf{v}) = \frac{\hat{H}(\eta, \mathbf{v})}{1 + i\eta \cdot \mathbf{v}}.$$
 (6)

It is sufficient to estimate

$$\begin{split} & \int_{\mathbb{R}^3} |\eta| |F(\bar{u})|^2 d\eta \\ & = \int_{\mathbb{R}^3} |\eta| \left| \int_{\mathbb{R}^3} \frac{\hat{H}(\eta, \mathbf{v})}{1 + i\eta \cdot \mathbf{v}} \psi(\mathbf{v}) d\mathbf{v} \right|^2 d\eta. \end{split}$$

By Hölder's inequality,

$$\begin{split} &\int_{\mathbb{R}^3} |\eta| |F(\bar{u})|^2 d\eta \\ &\leq \int_{\mathbb{R}^3} (\int_{\mathbb{R}^3} \frac{|\psi(v)|^2 |\eta|}{1 + |v \cdot \eta|^2} dv) \cdot (\int_{\mathbb{R}^3} |\hat{H}(\eta, v)|^2 dv) d\eta. \end{split}$$

Let $|\psi(v)| \leq M$, $Supp(\psi) \subset B(0, R)$. Suppose $e_1 = \frac{\eta}{|\eta|}$, e_2 , and e_3 form an orthonormal basis.

Let $v = s_1 e_1 + s_2 e_2 + s_3 e_3$. We have

$$\int_{\mathbb{R}^3} \frac{|\psi(v)|^2 |\eta|}{1 + |v \cdot \eta|^2} dv \tag{7}$$

$$\leq \int_{-R}^{R} \int_{-R}^{R} \int_{-R}^{R} \frac{M^{2} |\eta|}{1 + |\eta|^{2} s_{1}^{2}} ds_{1} ds_{2} ds_{3}$$
 (8)

$$\leq \int_{-R}^{R} \int_{-R}^{R} M^{2} \int_{-\infty}^{\infty} \frac{1}{1+z^{2}} dz ds_{2} ds_{3}$$
 (9)

$$\leq 4R^2M^2\pi,\tag{10}$$

where $z = |\eta| s_1$. Combining with Plancherel's identity, we have

$$\int_{\mathbb{P}^3} |\eta| |F(\bar{u})|^2 d\eta \le 4R^2 M^2 \pi \|H\|_{L^2}^2.$$

Stationary linearized Boltzmann equation in \mathbb{R}^3

$$v \cdot \nabla_X f = L(f). \tag{11}$$

The linearized collision operator under consideration satisfies

$$L(f) = -\nu(\nu)f + K(f), \tag{12}$$

$$K(f) = \int_{\mathbb{R}^3} k(v, v_*) f(v_*) dv_*,$$
 (13)

$$\nu_1(1+|v|)^{\gamma} \le \nu(v) \le \nu_2(1+|v|)^{\gamma},$$
 (14)

$$|k(v,v*)| \le C \frac{(|+|v|+|v_*|)^{1-\gamma}}{|\zeta-\zeta_*|} e^{-\frac{1}{8}(|v-v_*|^2+(\frac{(|v|^2-|v_*|^2}{|v-v_*|})^2)}$$
 (15)

, where $0 \le \gamma \le 1$.

Therefore, we can rewrite (11) as

$$\nu(\mathbf{v})f + \mathbf{v} \cdot \nabla_{\mathbf{x}}f = K(f). \tag{16}$$

Observing that the integral operator K can serve as an agent of averaging, it is natural to imagine applying velocity averaging lemma to linearized Boltzmann equation. In case the source term $\Psi(x,v)$ is imposed, i.e.,

$$\nu(\mathbf{v})f + \mathbf{v} \cdot \nabla_{\mathbf{x}}f = K(f) + \Psi(\mathbf{x}, \mathbf{v}), \tag{17}$$

one can derive an integral equation

$$f(x, v) = \int_0^\infty e^{-\nu(v)t} [K(t)(x - vt, v) + \Psi(x - vt, v)] dt$$

$$=: S(K(t) + \Psi)$$

$$= SK(t) + S(\Psi),$$
(18)

where

$$S(h)(x,v) := \int_0^\infty e^{-\nu(v)t} h(x-vt,v) \, dt. \tag{19}$$

Performing the Picard iteration, formally we can derive that

$$f = \sum_{k=0}^{\infty} S(KS)^{k}(\Psi). \tag{20}$$

Lemma (Chuang, Master thesis 2019)

The operator KSK : $L^2_{\nu}(\mathbb{R}^3; \tilde{H}^s_{\chi}(\mathbb{R}^3)) \to L^2_{\nu}(\mathbb{R}^3; \tilde{H}^{s+\frac{1}{2}}_{\chi}(\mathbb{R}^3))$ is bounded for any $s \geq 0$.

Here, the mixed fractional Sobolev space is defined as follows.

Definition

We say $u: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ is in $L^2_v(\mathbb{R}^3; \tilde{H}^s_x(\mathbb{R}^3))$ if

$$||u||_{L^{2}_{v}(\mathbb{R}^{3}; \tilde{H}^{s}_{x}(\mathbb{R}^{3}))} = \left(\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} (1 + |\eta|^{2})^{s} |F(u)(\eta, v)|^{2} d\eta dv\right)^{\frac{1}{2}} < \infty,$$
(21)

where $F(u)(\eta, v)$ is the Fourier transform of u with respect to the space variable.

Fourier transform v.s. Slobodeckij semi-norm.

Definition

Let $s \in (0,1)$, $\Omega \subset \mathbb{R}^3$ open. We say $f(x,v) \in L^2_v(\mathbb{R}^3; H^s_x(\Omega))$ if $f \in L^2_v(\mathbb{R}^3; L^2_x(\Omega))$ and

$$\int_{\mathbb{R}^3} \int_{\Omega} \int_{\Omega} \frac{|f(x,v) - f(y,v)|^2}{|x - y|^{3 + 2s}} \, dx dy dv < \infty, \tag{22}$$

with

$$||f||_{L^{2}_{V}(\mathbb{R}^{3}; H^{s}_{X}(\Omega))} = \left(||f||_{L^{2}(\Omega \times \mathbb{R}^{3})}^{2} + \int_{\mathbb{R}^{3}} \int_{\Omega} \int_{\Omega} \frac{|f(x, v) - f(y, v)|^{2}}{|x - y|^{3 + 2s}} dx dy dv\right)^{\frac{1}{2}}.$$
(23)

Notice that two definitions of fractional Sobolev spaces are equivalent on the whole space.

Incoming Boundary Condition

Let $\Omega \subset \mathbb{R}^3$. For $x \in \partial \Omega$, n(x) denotes the outer normal. We define

$$\Gamma_{-} = \{(x, v) | x \in \partial \Omega, \ v \cdot n(x) < 0\}. \tag{24}$$

Incoming Boundary Condition:

For $(x, v) \in \Gamma_-$,

$$f(x,v)=h(x,v). (25)$$

Existence of solutions:

- Convex domain: Guiraud (1970 J. de Mc.)
- General domain: Esposito, Guo, Kim, and Marra (2013 CMP)

Regularity:

 Continuous alway from the grazing set: Esposito, Guo, Kim, and Marra (2013 CMP)

Under further assumption s.t.

$$\|\nabla_{\nu}K(f)\|_{L^{p}_{\nu}} \leq C\|f\|_{L^{p}_{\nu}} \tag{26}$$

for $1 \le p \le \infty$.

- (C. 2018 SIMA) Local Hölder continuity for incoming boundary value problem.
- (C. Hsia, Kawagoe 2019 Annales de l'Institut Henri Poincare C) Interior differentiability for diffuse reflection boundary problem in convex domain.
- (Chen, Kim, 2020 arXive) Nonlinear problem for hard sphere potential.

Main Theorem

Theorem (C., Chuang, Hsia, Su)

Let Ω be a bounded convex C^2 domain with positive Gaussian curvature in \mathbb{R}^3 . Let $f \in L^2_{x,v}$ be a stationary solution to linearized Boltzmann equation with incoming boundary data g where L satisfies (12)-(15). Suppose there exist C, a > 0 such that

$$|g(q,v)| \le Ce^{-a|v|^2}, \tag{27}$$

$$|g(q,v)-g(p,v)| \le C|p-q| \tag{28}$$

(29)

for any $(q, v), (p, v) \in \Gamma_{-}$. Then,

$$f \in L^2(\mathbb{R}^3, H_{\chi}^{1-\epsilon}(\Omega)) \tag{30}$$

for any small $0 < \epsilon$.

Remark

In (C. 2018), (C., Hsia, Kawagoe 2019), (Chen Kim 2020), they consider more specific cross-sections. The fact K improves regularity in velocity, i.e.,

$$\|\nabla_{\nu}K(f)\|_{L^{p}_{\nu}} \leq C\|f\|_{L^{p}_{\nu}} \tag{31}$$

for $1 \le p \le \infty$, is a key lemma used.

Velocity averaging v.s. Mixture Lemma

Theorem (Mixture lemma (Liu, Yu 2004))

Let $u,g:(0,\infty)\times\mathbb{R}^3\times\mathbb{R}^3$ and $g_0:\mathbb{R}^3\times\mathbb{R}^3$ We define T(g)=u if u solves

$$\nu(\mathbf{v})\mathbf{u} + \partial_t \mathbf{u} + \mathbf{v}_1 \partial_x \mathbf{u} = \mathbf{g}(t, \mathbf{x}, \mathbf{v}),$$

$$\mathbf{u}(0, \mathbf{x}, \mathbf{v}) = \mathbf{0}.$$

We define $T_0(g_0) = u$ if u solves

$$\nu(v)u + \partial_t u + v_1 \partial_x u = 0,$$

$$u(0, x, v) = g_0(x, v).$$

There exists C_k s.t.,

$$\|\partial_x^k((TK)^{2k}T_0g_0)\|_{L^2_{x,v}} \leq C_k e^{-\nu_0 t}(\|g_0\|_{L^2_{x,v}} + \|\partial_{v^1}^k g_0\|_{L^2_{x,v}}).$$

Sketch of proof

Let $x \in \Omega$ and $v \in \mathbb{R}^3$. We define

$$\tau_{-}(x,v) = \inf_{t>0} \{t | x - vt \notin \Omega\},\tag{32}$$

$$q_{-}(x, v) = x - \tau_{-}(x, v)v.$$
 (33)

$$f(x, v) = g(q_{-}(x, v), v)e^{-\nu(\zeta)\tau_{-}(x, v)}$$

$$+ \int_{0}^{\tau_{-}(x, v)} e^{-\nu(v)s}K(f)(x - sv, v)ds$$

$$=: J(g) + S_{\Omega}K(f).$$
(34)

$$f(x, v) = J(g) + S_{\Omega}K(f)$$

$$= J(g) + S_{\Omega}KJ(g) + S_{\Omega}KS_{\Omega}K(f)$$

$$= J(g) + S_{\Omega}KJ(g) + S_{\Omega}KS_{\Omega}KJ(g) + S_{\Omega}KS_{\Omega}KS_{\Omega}K(f)$$

$$= J(g) + S_{\Omega}KJ(g) + S_{\Omega}KS_{\Omega}KJ(g) + S_{\Omega}KS_{\Omega}KS_{\Omega}KJ(g)$$

$$+ S_{\Omega}KS_{\Omega}KS_{\Omega}KS_{\Omega}K(f)$$

$$= : g_{0} + g_{1} + g_{2} + g_{3} + f_{4}.$$

$$(35)$$

We shall prove each $g_i \in L^2(\mathbb{R}^3, H^{1-\epsilon}(\Omega))$ and $f_4 \in L^2(\mathbb{R}^3, H^{1-\epsilon}(\Omega))$.

Closeup of iteration

Suppose $f \in L^2_{\nu}L^2_{\chi}(\mathbb{R}^3 \times \mathbb{R}^3)$. We define

$$S(f) := \int_0^\infty e^{-\nu(\nu)s} f(x - s\nu, \nu).$$
 (36)

Theorem (Chuang's Master thesis)

$$KSK: L^2_v H^s_x(\mathbb{R}^3 \times \mathbb{R}^3) \to L^2_v H^{\frac{1}{2}+s}_x(\mathbb{R}^3 \times \mathbb{R}^3)$$
 is bounded.

Idea of proof: Fourier transform and velocity averaging lemma.

Suppose $f \in L^2_v L^2_x(\Omega \times \mathbb{R}^3)$. We denote \tilde{f} as the zero extension of f.

$$SK(\tilde{t})\Big|_{\Omega} = S_{\Omega}K(t).$$
 (37)

But,

$$SKSK(\tilde{f})\Big|_{\Omega} \neq S_{\Omega}KS_{\Omega}K(f).$$
 (38)

We can get

$$KS_{\Omega}K(f) \in L^2(\mathbb{R}^3, H_X^{\frac{1}{2}}(\Omega)).$$
 (39)

Remark

Similar idea was used in Golse, Lions, Perthame, Sentis (1988).

However, if we want to further iterate, we have to take the geometric structure into consideration.

- Use Slobodeckij semi-norm instead of Fourier transform.
- Shift difficulty to singular integrals.
- Build up estimates from spherical cases.
- Subtle change of variables is used.

$$\| S_{\Omega}KS_{\Omega}K(f) \|_{L^{2}_{\nu}(\mathbb{R}^{3},H^{\frac{1}{2}}_{\nu}(\Omega))} \leq C \|f\|_{L^{2}(\Omega\times\mathbb{R}^{3})}$$

$$\blacktriangleright \|S_{\Omega}\widetilde{KS_{\Omega}K}(f)\|_{L^{2}_{\nu}(\mathbb{R}^{3};H^{\frac{1}{2}-\epsilon}_{x}(\mathbb{R}^{3}))} \leq \frac{c}{\sqrt{\epsilon}} \|f\|_{L^{2}(\Omega \times \mathbb{R}^{3})}.$$

$$\mathsf{K} S_{\Omega} \mathsf{K} (S_{\Omega} \mathsf{K} S_{\Omega} \mathsf{K}(f)) = \left. \mathsf{K} \mathsf{S} \mathsf{K} (S_{\Omega} \widetilde{\mathsf{K}} S_{\Omega} \mathsf{K}(f)) \right|_{\Omega} \in L^{2}_{\nu}(\mathbb{R}^{3}; H^{1-\epsilon}_{\chi}(\Omega))$$

•
$$f_4 = S_{\Omega}KS_{\Omega}K(S_{\Omega}KS_{\Omega}K(f)) \in L^2_{\nu}(\mathbb{R}^3; H^{1-\epsilon}_{\chi}(\Omega)).$$

Z: zero extension.

Lemma

 $ZS_{\Omega}KS_{\Omega}K:L^2(\Omega\times\mathbb{R}^3)\to L^2_{\nu}(\mathbb{R}^3;H^{\frac{1}{2}-\epsilon}_{\chi}(\mathbb{R}^3))$ is bounded for any $\epsilon\in(0,\frac{1}{2})$. Furthermore, there is a constant C independent of ϵ and f such that

$$\|\widetilde{S_{\Omega}KS_{\Omega}Kf}\|_{L^{2}_{V}(\mathbb{R}^{3};H^{\frac{1}{2}-\epsilon}_{X}(\mathbb{R}^{3}))} \leq \frac{C}{\sqrt{\epsilon}} \|f\|_{L^{2}(\Omega \times \mathbb{R}^{3})}. \tag{40}$$

Proof of Lemma

Recall $f_1 := S_{\Omega}Kf$ and $f_2 := S_{\Omega}KS_{\Omega}Kf$. Since $f_2(\cdot, v)$ vanishes outside of Ω , we have

$$\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|\widetilde{f_{2}}(x,v) - \widetilde{f_{2}}(y,v)|^{2}}{|x - y|^{4 - 2\epsilon}} dx dy dv = I_{1} + I_{2} + I_{3},$$
 (41)

where

$$I_1 := \int\limits_{\mathbb{R}^3} \int\limits_{\Omega} \int\limits_{\Omega} \frac{|f_2(x,v) - f_2(y,v)|^2}{|x - y|^{4 - 2\epsilon}} dx dy dv, \tag{42}$$

$$I_{2} := \int_{\mathbb{R}^{3}} \int_{\Omega} \int_{\mathbb{R}^{3} \setminus \Omega} \frac{|f_{2}(y, v)|^{2}}{|x - y|^{4 - 2\epsilon}} dx dy dv, \tag{43}$$

$$I_{3} := \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3} \setminus \Omega} \int_{\Omega} \frac{|f_{2}(x, v)|^{2}}{|x - y|^{4 - 2\epsilon}} dx dy dv.$$
 (44)

 I_1 bounded. $I_2 = I_3$. Let $d_y = dist(y, \partial \Omega)$. We observe that, for $y \in \Omega$,

$$\int\limits_{\mathbb{R}^3\backslash\Omega}\frac{1}{|x-y|^{4-2\epsilon}}\,dx\leq\int\limits_{\mathbb{R}^3\backslash B_{d_y}(y)}\frac{1}{|x-y|^{4-2\epsilon}}\,dx\leq C\,d_y^{-1+2\epsilon}.$$
(45)

$$|f_{2}(y,v)|^{2} = |\int_{0}^{\tau_{-}(y,v)} \int_{\mathbb{R}^{3}} e^{-\nu(v)t} k(v,v_{*}) f_{1}(y-tv,v_{*}) dv_{*} dt|^{2}$$

$$\leq C \int_{\mathbb{R}^{3}} \int_{0}^{|y-q_{-}(y,v)|} \frac{1}{|v|} |k(v,v_{*})| |f_{1}(y-r\hat{v},v_{*})|^{2} dr dv_{*}.$$
(46)

Therefore, first combining (47) and (48) and performing the change of variable $y' = y - r\hat{v}$, we deduce that

Lemma

Suppose $\Omega \subset \mathbb{R}^3$ is C^2 bounded domain of positive Gaussian curvature. Then, there exists a constant $C = C(\Omega)$ such that for any $y \in \Omega$ and $\hat{v} \in S^2$, we have

$$\int_0^{|q_+(y,\hat{v})-y|} d_{y+s\hat{v}}^{-\frac{1}{2}+\epsilon} ds \le C, \quad \forall \epsilon \in [0,\frac{1}{2}), \tag{48}$$

and

$$\int_0^{|q_+(y,\hat{v})-y|} d_{y+s\hat{v}}^{-1+\epsilon} ds \leq \frac{C}{\epsilon} d_y^{-\frac{1}{2}+\epsilon}, \quad \forall \epsilon \in (0,\frac{1}{2}). \tag{49}$$

Then, it follows that

$$\int_{\mathbb{R}^{3}} \int_{\Omega} |f_{1}(y', v_{*})|^{2} d_{y'}^{-\frac{1}{2}+2\epsilon} dy' dv_{*}$$

$$\leq C \int_{\mathbb{R}^{3}} \int_{\Omega} \int_{\mathbb{R}^{3}} \int_{0}^{|y'-q_{-}(y', v_{*})|}$$

$$\frac{1}{|v_{*}|} |k(v_{*}, w)||f(y' - r\hat{v}_{*}, w)|^{2} d_{y'}^{-\frac{1}{2}+2\epsilon} drdwdy' dv_{*}$$

$$= C \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \int_{\Omega} \int_{0}^{|y''-q_{+}(y'', v_{*})|}$$

$$\frac{1}{|v_{*}|} |k(v_{*}, w)||f(y'', w)|^{2} d_{y''+r\hat{v}_{*}}^{-\frac{1}{2}+2\epsilon} drdy'' dv_{*} dw$$

$$\leq C ||f||_{L^{2}}.$$
(50)

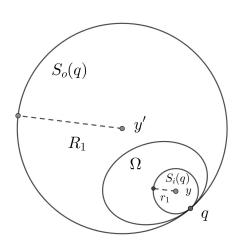


Figure:

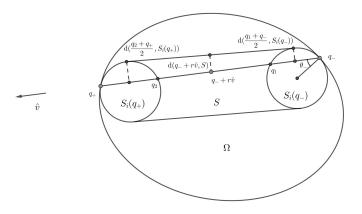


Figure:

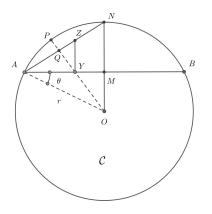


Figure:

For
$$s \leq |A - M|$$
,

$$d_{A+s\hat{v}} = |Y - P| \ge \frac{1}{\sqrt{2}}|Z - Y| = \frac{1 - \sin \theta}{\sqrt{2}\cos \theta}s.$$
 (51)

$$\int_{0}^{|M-A|} d_{A+s\hat{v}}^{-1+\epsilon} ds$$

$$\leq \int_{0}^{r\cos\theta} \left(\frac{\sqrt{2}\cos\theta}{1-\sin\theta}\right)^{1-\epsilon} s^{-1+\epsilon} ds$$

$$= \left(\frac{\sqrt{2}\cos\theta}{1-\sin\theta}\right)^{1-\epsilon} \frac{(r\cos\theta)^{\epsilon}}{\epsilon}$$

$$= \frac{\sqrt{2}^{1-\epsilon}\cos\theta}{(1-\sin\theta)^{1-\epsilon}} r^{\epsilon}$$

$$\leq \frac{\sqrt{2}^{2-\epsilon}}{(1-\sin\theta)^{\frac{1}{2}-\epsilon}} r^{\epsilon} \leq \frac{\sqrt{2}^{2-\epsilon}}{d_{M}^{\frac{1}{2}-\epsilon}} r^{\frac{1}{2}} \leq C(r) d_{y}^{-\frac{1}{2}+\epsilon},$$

where we use the fact

$$\cos\theta \le \sqrt{2}\sqrt{1-\sin\theta}.\tag{53}$$

Thank you!