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Velocity Averaging Lemma:
Transport+Velocity Averaging— Regularity.
Golse, Perthame, Sentis (1985).

Golse, Lions, Perthame, Sentis (1988).

A key lemma for the existence of solution for Boltzmann
equation by Diperna and Lions (1989).



Theorem (Velocity Averaging Lemma)
Suppose u is an L2 solution to the transport equation

v-Vxu(x,v)=G(x,v), (x,v)eR"xR",
where G € L?. Let
u(x) = /]R” u(x, v)yp(v)dv,
where 1) is a bounded function with compact support. Then, we

have -
u(x) € Hz(R").



Fractional Sobolev space via Fourier Transform

Here,

Definition )
We say u: R" — R is in H3(R") if

1

Ul ny = ( La+ !nlz)le(U)(n)|2d£>2 <o, (1)

where F(u)(§) is the Fourier transform of u, i.e.,

NS

F(u)(n) = (27)" /R u(x)e " d.



Properties of Fourier transform

Recall that

» Differentiation

Hipzmﬂm

» Plancherel’s identity:

[1aax = [ |F(g)dn



Proof of Velocity Averaging Lemma

u(x,v) + v Veu(x,v) = u(x,v) + G(x,v) = H(x,v) € L%,
(4)

Taking Fourier transform with respect to x, we have

0(n, v) + in - vi(n, v) = H(n, v). (5)

Hence,

H(n,v)

V) = v



It is sufficient to estimate

By Hélder’s inequality,

[ 1niF@)an
WO v o [ 2
/R3 /R?' 1+|v-n2 %) (/Rs [H(n, v)|=dv)dn



Let |4(v)| < M, Supp()) C B(0, R). Suppose e = % e, and

ez form an orthonormal basis.
Let v = s1€1 + Soes + S3e3. We have

p(V)[2|n]
/1R3 T+ ]v- n!zdv
/ / / 2|77| ——dsy d32d33
r1+ |77|2 1+ |n2s2
<[ [
“RJ-R oo 1

< 4R?M?r,

22 dzdsodss

(9

~

(10)

where z = |n|sy. Combining with Plancherel’s identity, we have

[, InIF @)% < aREMer M.



Stationary linearized Boltzmann equation in R3

V- Vif = L(f). (11)

The linearized collision operator under consideration satisfies

L(f) = —v(v)f + K(f), (12)

Mﬂ:/"Mwwmwﬂm, (13)
RS

v(1+ V)T <w(v) <we(1 +|V])7, (14)

v = O S i S

,where 0 <~ < 1.
Therefore, we can rewrite (11) as

V(V)f + v - Vif = K(f). (16)



Observing that the integral operator K can serve as an agent of
averaging, it is natural to imagine applying velocity averaging
lemma to linearized Boltzmann equation. In case the source
term W(x, v) is imposed, i.e.,

v(V)f+ v - Vxf=K(f)+V(x,v), (17)

one can derive an integral equation

f(x,v) = /0 h e VK (f)(x — vt,v) + W(x — vt,v)] dt

= S(K(f) + V)
= SK(f) + S(V),

(18)

where -
S(h)(x, v) = / e Mth(x — vt, v) dt. (19)
0

Performing the Picard iteration, formally we can derive that

f= f: S(KS)k(w). (20)
k=0



Lemma (Chuang, Master thesis 2019)

~ ~ 1
The operator KSK : L2(R3; HS(R3)) — L2(R3; H; "%(R®)) is
bounded for any s > 0.
Here, the mixed fractional Sobolev space is defined as follows.
Definition )
We say u: R® x R — R is in L2(R3; HS(R3)) if

,
2
lolgges ey = ([, [0+ WEFIF@ P dnv)” < .
R3 JR3
(21)
where F(u)(n, v) is the Fourier transform of u with respect to
the space variable.



Fourier transform v.s. Slobodeckij semi-norm.

Definition
Lets € (0,1), Q C R® open. We say f(x,v) € L2(R3; HS(Q)) if
fe L2(R3L2(Q)) and

|F(x y,v)I?
/IR{?’// |x y\3+25 dxdyadv < oo, (22)

11l 2 (ms:He(02)) =

f(x,v) = fly. V)P . (29
<||f||LQQXR3) /// |X y‘3+25 dXdde> .

Notice that two definitions of fractional Sobolev spaces are
equivalent on the whole space.

with




Incoming Boundary Condition

Let Q c R3. For x € 99, n(x) denotes the outer normal. We
define
M- ={(x,v)|x € 022, v-n(x) <0} (24)

» Incoming Boundary Condition:

For (x,v) eTl_,

f(x,v) = h(x,v). (25)



Existence of solutions:
» Convex domain: Guiraud (1970 J. de Mc.)

» General domain: Esposito, Guo, Kim, and Marra (2013
CMP)



Regularity:
» Continuous alway from the grazing set: Esposito, Guo,
Kim, and Marra (2013 CMP)

Under further assumption s.t.
”VVK(f)HLf; < CWHL’; (26)

for1 <p <.

» (C. 2018 SIMA ) Local Hélder continuity for incoming
boundary value problem.

» (C. Hsia, Kawagoe 2019 Annales de I'Institut Henri
Poincare C) Interior differentiability for diffuse reflection
boundary problem in convex domain.

» (Chen, Kim, 2020 arXive ) Nonlinear problem for hard
sphere potential.



Main Theorem

Theorem (C., Chuang, Hsia, Su)

Let Q be a bounded convex C? domain with positive Gaussian
curvature inR3. Let f ¢ L)Z(’v be a stationary solution to
linearized Boltzmann equation with incoming boundary data g
where L satisfies (12)-(15). Suppose there exist C, a > 0 such
that

9(q,v)| < Ce~a"F, (27)
19(gq,v) —9(p,v)| < Clp—q (28)
(29)

forany (q,v), (p,v) € I_. Then,
f e L2(R%, H,~(Q)) (30)

for any small 0 < e.



Remark

In (C. 2018), (C., Hsia, Kawagoe 2019), (Chen Kim 2020), they
consider more specific cross-sections. The fact K improves
regularity in velocity, i.e.,

IVvK (D)l e < ClIflle (31)

for1 < p < o, is a key lemma used.



Velocity averaging v.s. Mixture Lemma

Theorem (Mixture lemma (Liu,Yu 2004))

Letu,g:(0,00) x R3 x R3 and gy : R® x R® We define
T(9) = u ifu solves

v(v)u + ot + vi0xu = g(t, x, v),
u(0,x,v) =0.

We define Ty(go) = u if u solves

v(v)u+ 0t + v10xu = 0,
u(0, x,v) = go(x, v).

There exists Cy s.t.,

105 ((TK)* Togo)ll.z, < Cxe™'(llgollz, + 19y 9oz ,)-



Sketch of proof

Let x € Q and v € R3. We define
T—(x,v) = inf{t|x — vt ¢ Q},
t>0

g-(x,v) =x—71_(x,v)v.



f(x,v) =9(q-(x, v), v)e (I (x¥)
T—(x,v)
+ / e "(SK(f)(x — sv,v)ds
0
=:J(g) + SaK(f).



f(x, v) =J(g) + SaK(f)

=J(9) + SaKJ(9) + SaKSaK(f)

=J(9) + SaKJ(9) + SaKSaKJ(g) + SaKSaKSqK(f)

=J(9) + SaKJ(9) + SaKSqKJ(g) + SaKSaKSaKJ(9)
+ SaKSqKSqKSqK(f)

=00+ 91+ +gs+h
(35)

We shall prove each g; € L2(R3, H'=¢(Q)) and
f, € [2(R3, H'~<(Q)).



Closeup of iteration

Suppose f € L2[2(R3 x R3). We define

S(f) == /0 h e "(Sf(x — sv, v). (36)

Theorem (Chuang’s Master thesis)
1
KSK : [2HS(R3 x R3) — [2HZ °(R3 x R3) is bounded.

Idea of proof: Fourier transform and velocity averaging lemma.



Suppose f € L2[2(Q x R3). We denote f as the zero extension
of f.

SK(f) o = SaK (). (37)
But,
SKSK(?))Q £ SaKSaK(f). (38)
We can get 1
KSqK(f) € L3(R3, HZ(Q)). (39)
Remark

Similar idea was used in Golse, Lions, Perthame, Sentis (1988).



However, if we want to further iterate, we have to take the
geometric structure into consideration.

» Use Slobodeckij semi-norm instead of Fourier transform.
» Shift difficulty to singular integrals.

» Build up estimates from spherical cases.

» Subtle change of variables is used.
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||sQKsQK(f)|yL%(R3,HX%(Q)) < ClIfll 2(axrs)

1SaKSaK(f)| oo < Sl @xrs)-

(R~ ()

KSaK (SaKSaK(1)) = KSK(SaKSaK(N)|_ e
L2(R3; Hy~“(Q))

fr = SaKSqK(SaKSaK(f)) € L2(R3; HI7¢(Q)).



Z: zero extension.

Lemma ,

ZSqKSqK : [2(Q x R3) — L2(R3; H2 “(R®)) is bounded for any
e € (0, %). Furthermore, there is a constant C independent of e
and f such that

e~ C
< = .
HSQKSQKfHLg(N; b= oy = \/EHf||L2(Q><]R3) (40)

H?



Proof of Lemma

Recall f; := SqKf and f, := SqKSqKf. Since E(-, v) vanishes
outside of 2, we have

///|f2x v) — f( y, v)[? dxdydv =l + b+,  (41)

R3 R3 R3

B(x, V) — by, V)2
Iy = / / / |X Jia dxdydv, (42)

/// ’|f2 y’|4 - dxdyav, (43)

R3 Q R3\Q

= / / / ’|f2 . |‘; - dxdyav. (44)

R3 R3\Q Q

where




I; bounded. b = .
Let dy, = dist(y, 0Q).
We observe that, for y € Q,

1 1
—  _dx< / —  _dx< Cd;te
R3\Q R3\Bg, (¥)

(45)



T—(y,v)
BBl [ [ e kv v)h(y — v dv. ot

ly—q-(y.v)
<C /Rs/ k(v, v)|Ifi (v — r?, v.)[2 drd..
(46)



Therefore, first combining (47) and (48) and performing the
change of variable y’ = y — r’, we deduce that

L<C et f 2d 1+25ddd
> |k(v, vi)llfi(y — rv, vi)|°d, rdydvc

R3 R3 Q

[y —aq+(y'v)]
o[/ / k(v vl )R [ o2 iy dva,

R3 R3 Q

_1ioc
<2 [ ([ Fmosre) s o
R3 Q 3
1o
= f //|f1(y’, v.)Pd, " dy'd

RS Q
(47)



Lemma

Suppose Q ¢ R3 js C? bounded domain of positive Gaussian
curvature. Then, there exists a constant C = C(Q2) such that for
anyy € Qand ¥ € S?, we have

la+(y, V) —yI 1
/0 dy+sv ds< C, Vee]O0, ) (48)

and

9+ (v, V) -yl B
/0 dy1+€ds<cd a VGE(O,%). (49)

+sv



Then, it follows that

1
//Vf1(y’,v*)2dyf2+26 dy’dv,

R3S Q

|y/ Q*(ylvv*)l

R3S Q RS

_1i0¢
\\j | k(v W)[IF(Y — V., w)[2d, =™ drdwdy’ div,

|y// q+(y”7V*)|
R3 R3 Q

(Ve W)[F(y", w)[2d 22 dirdly” dv, dw

Yy +rvi

’
|Vl
< C||fllz.
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Figure:

Fors <|A— M|,
L 1 —sind

sy = |Y = P| > —[z -y =%
A+-sv | ‘—\/§| ‘ \/ECOSQ

(51)



rcosé
2cos
< / (L)176371+eds
0 1 —sind

B (\@cose 1. (rcosf)

1 —sin 9) € (52)

V2' " cos b

Y= TEm T p€

~ (1—sing)'
2—e 2—e
V2 V2

< —r<X2_rz<C(nd, "
(1 —sing)z™¢ o/ Vi

where we use the fact

cosf < vV2v1 —siné. (53)



Thank you!
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