# Monster and Moonshine

#### Ching Hung Lam

Academia Sinica

April 26, 2021





イロト イ部ト イヨト イヨト 二日

୬ବ୍ଦ





・ロト・西ト・モート モー シタク

## • What is Monster?

・ロト ・日下・ きほとう

- What is Monster?
- What is Moonshine?

- What is Monster?
- What is Moonshine?
- Why is the Monster so interesting or so special?

- What is Monster?
- What is Moonshine?
- Why is the Monster so interesting or so special?
- How are they related to the theory of vertex operator algebra?

#### Monster

- any imaginary creature that is large, ugly, and frightening.

#### Monster

- any imaginary creature that is large, ugly, and frightening.





▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

୬ବଙ

# Dictionary definition

#### Moonshine:

Image: A match a ma

# Dictionary definition

## Moonshine:

1. moonlight;



Image: A match a ma

1. moonlight; (vs sun light)

Image: A mathematical states and a mathem

- 1. moonlight; (vs sun light)
- 2. something unsubstantial or unreal; (now) esp. foolish or fanciful talk, ideas, plans, etc. Originally  $\dagger$  moonshine in the water.

1. moonlight; (vs sun light)

2. something unsubstantial or unreal; (now) esp. foolish or fanciful talk, ideas, plans, etc. Originally † moonshine in the water.

3. Smuggled or illicitly distilled alcoholic liquor.

- 1. moonlight; (vs sun light)
- 2. something unsubstantial or unreal; (now) esp. foolish or fanciful talk, ideas, plans, etc. Originally  $\dagger$  moonshine in the water.
- 3. Smuggled or illicitly distilled alcoholic liquor.



#### What is Monster?

メロト メポト メヨト メヨト

## Definition

• A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

# Theorem (Classification of finite simple groups)

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

# Theorem (Classification of finite simple groups)

Let G be a finite (non-abelian) simple group. Then G is isomorphic to one of the following.

**1** an alternating group  $Alt_n$ ,  $n \ge 5$ .

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

# Theorem (Classification of finite simple groups)

- **1** an alternating group  $Alt_n$ ,  $n \ge 5$ .
- a finite simple group of Lie type.
  (There are 16 infinite families, e.g PSL<sub>n</sub>(q), E<sub>8</sub>(q),etc)

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

# Theorem (Classification of finite simple groups)

- **1** an alternating group  $Alt_n$ ,  $n \ge 5$ .
- a finite simple group of Lie type.
  (There are 16 infinite families, e.g PSL<sub>n</sub>(q), E<sub>8</sub>(q),etc)
- one of the 26 sporadic simple groups.

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

# Theorem (Classification of finite simple groups)

- **1** an alternating group  $Alt_n$ ,  $n \ge 5$ .
- a finite simple group of Lie type.
  (There are 16 infinite families, e.g PSL<sub>n</sub>(q), E<sub>8</sub>(q),etc)
- one of the 26 sporadic simple groups.

## Definition

- A subgroup N < G is normal if  $g^{-1}Ng = N$  for all  $g \in G$ .
- 3 A group is simple if there is no proper subgroup  $N \neq 1$  which is normal in *G*.

# Theorem (Classification of finite simple groups)

Let G be a finite (non-abelian) simple group. Then G is isomorphic to one of the following.

- an alternating group  $Alt_n$ ,  $n \ge 5$ .
- a finite simple group of Lie type.
  (There are 16 infinite families, e.g PSL<sub>n</sub>(q), E<sub>8</sub>(q),etc)
- one of the 26 sporadic simple groups.

MONSTER is the largest member of the 26 sporadic simple groups.

| Symbol                | Discoverer  | Symbol                       | Discoverer                               |
|-----------------------|-------------|------------------------------|------------------------------------------|
| M <sub>11</sub>       | Mathieu     | Co <sub>1</sub>              | Conway                                   |
| M <sub>12</sub>       |             | Co <sub>2</sub>              |                                          |
| M <sub>22</sub>       |             | Co <sub>3</sub>              |                                          |
| M <sub>23</sub>       |             | Fi <sub>22</sub>             | Fischer's 3-transposition groups         |
| M <sub>24</sub>       |             | Fi <sub>23</sub>             |                                          |
| $J_1$                 | Janko       | Fi <sub>24</sub>             |                                          |
| $HJ = J_2$            | Hall, Janko | LyS                          | Lyons                                    |
| <i>J</i> <sub>3</sub> | Janko       | Ru                           | Rudvalis                                 |
| J <sub>4</sub>        |             | 0' N                         | O'Nan                                    |
| Held                  | Held        | ${\mathbb M}$ or ${\it F}_1$ | Fischer-Griess                           |
| HiS                   | Higman-Sims | $B\mathbb{M}$ or $F_2$       | Fischer's $\{3,4\}$ -transposition group |
| McL                   | McLaughlin  | Th or F <sub>3</sub>         | Thompson                                 |
| Suz                   | M. Suzuki   | Ha or F <sub>5</sub>         | Harada                                   |
|                       |             |                              |                                          |

#### 26 sporadic groups

Black-involved in the Monster  $\mathbb M.$  Red- not involved in  $\mathbb M.$ 

The sporadic groups involved in the Monster can be grouped into 3 classes. Subgroups of  $M_{24}$ , the automorphism group of Golay code; The sporadic groups involved in the Monster can be grouped into 3 classes. Subgroups of  $M_{24}$ , the automorphism group of Golay code; Subgroups or quotients of  $Co_1$ , the automorphism group of Leech lattice/ $\{\pm 1\}$ ;

Subgroups of  $M_{24}$ , the automorphism group of Golay code;

Subgroups or quotients of  $Co_1$ , the automorphism group of Leech lattice/ $\{\pm 1\}$ ;

Subgroups or quotients of  $\mathbb{M}$ , the automorphism group of Moonshine VOA.

Subgroups of  $M_{24}$ , the automorphism group of Golay code;

Subgroups or quotients of Co<sub>1</sub>, the automorphism group of Leech lattice/  $\{\pm 1\}$ ;

Subgroups or quotients of  $\mathbb{M}$ , the automorphism group of Moonshine VOA.

They are closely related.

Subgroups of  $M_{24}$ , the automorphism group of Golay code;

Subgroups or quotients of  $Co_1$ , the automorphism group of Leech lattice/  $\{\pm 1\}$ ;

Subgroups or quotients of  $\mathbb{M}$ , the automorphism group of Moonshine VOA.

They are closely related.

 $\mathbb{M}$  contains a maximal subgroup  $2^{1+24}Co_1$ , nonsplit extension.

Subgroups of  $M_{24}$ , the automorphism group of Golay code;

Subgroups or quotients of  $Co_1$ , the automorphism group of Leech lattice/ $\{\pm 1\}$ ;

Subgroups or quotients of  $\mathbb{M}$ , the automorphism group of Moonshine VOA.

They are closely related.

 $\mathbb{M}$  contains a maximal subgroup  $2^{1+24}Co_1$ , nonsplit extension.

 $Co_1$  contains a maximal subgroup  $2^{11}$  :  $M_{24}$ .

Subgroups of  $M_{24}$ , the automorphism group of Golay code;

Subgroups or quotients of  $Co_1$ , the automorphism group of Leech lattice/ $\{\pm 1\}$ ;

Subgroups or quotients of  $\mathbb{M}$ , the automorphism group of Moonshine VOA.

They are closely related.

 $\mathbb{M}$  contains a maximal subgroup  $2^{1+24}Co_1$ , nonsplit extension.

 $Co_1$  contains a maximal subgroup  $2^{11}$  :  $M_{24}$ .

**Construction:** 

 $\mathsf{Golay}\ \mathsf{code} \to \mathsf{Leech}\ \mathsf{lattice} \to \mathsf{Moonshine}\ \mathsf{VOA}.$ 

 $\mathbb{M} = \text{the Monster simple group} \\ (\text{the largest sporadic group})$ 

# $$\begin{split} \mathbb{M} &= \text{the Monster simple group} \\ & (\text{the largest sporadic group}) \\ |\mathbb{M}| &= 2^{46} \, 3^{20} \, 5^9 \, 7^6 \, 11^2 \, 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \\ &= 80801742479451287588645990496171075700575436800000000 \\ & \div 8 \times 10^{53} \end{split}$$
# $$\begin{split} \mathbb{M} &= \text{the Monster simple group} \\ & (\text{the largest sporadic group}) \\ |\mathbb{M}| &= 2^{46} \, 3^{20} \, 5^9 \, 7^6 \, 11^2 \, 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \\ &= 80801742479451287588645990496171075700575436800000000 \\ & \doteqdot 8 \times 10^{53} \end{split}$$

 $\mathbb M$  has 194 conjugacy classes. The character table was computed soon after its discovery. The minimal faithful representation has dimension 196883.

Let G be a finite simple group of (even) order. Let  $t \in G$  be an involution and  $H = C_G(t)$ . Then  $|G| \le O(|H|^3)$ .

Let G be a finite simple group of (even) order. Let  $t \in G$  be an involution and  $H = C_G(t)$ . Then  $|G| \le O(|H|^3)$ . In particular, given a finite group H, there exits only finitely many finite simple G such that  $C_G(t) \cong H$ .

Let G be a finite simple group of (even) order. Let  $t \in G$  be an involution and  $H = C_G(t)$ . Then  $|G| \le O(|H|^3)$ . In particular, given a finite group H, there exits only finitely many finite simple G such that  $C_G(t) \cong H$ .

The Monster has only 2 conjugacy classes of involutions.

Let G be a finite simple group of (even) order. Let  $t \in G$  be an involution and  $H = C_G(t)$ . Then  $|G| \le O(|H|^3)$ . In particular, given a finite group H, there exits only finitely many finite simple G such that  $C_G(t) \cong H$ .

The Monster has only 2 conjugacy classes of involutions.

| <u>Classes</u> | Centralizer                                              |
|----------------|----------------------------------------------------------|
| 2 <i>A</i>     | $C_{\mathbb{M}}(2A) = 2 \cdot B\mathbb{M}$               |
| 2 <i>B</i>     | $\mathcal{C}_{\mathbb{M}}(2B)=2^{1+24}\cdot \emph{Co_1}$ |

These two properties also characterized the Monster group (Griess-Meierfrankenfeld-Segev, Ann of Math, 1999)

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

A group acts!

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

# A group acts!

Want to obtain a concrete model for a group.

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

# A group acts!

Want to obtain a concrete model for a group. e.g. A symmetric group acts on a finite set as permutations.

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

# A group acts!

Want to obtain a concrete model for a group. e.g. A symmetric group acts on a finite set as permutations. An orthogonal group acts on a quadratic space as isometries.

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

# A group acts!

Want to obtain a concrete model for a group. e.g. A symmetric group acts on a finite set as permutations. An orthogonal group acts on a quadratic space as isometries.  $E_8(q)$  acts on a Lie algebra over a finite field.

**Theorem:**(Smith, Ivanov) Let G be a finite simple group. Suppose G has an involution z such that  $C_G(z) \cong 2^{1+24}.Co_1$ . Then G is isomorphic to M.

# A group acts!

Want to obtain a concrete model for a group. e.g. A symmetric group acts on a finite set as permutations. An orthogonal group acts on a quadratic space as isometries.  $E_8(q)$  acts on a Lie algebra over a finite field. What is acted by the Monster? "Moonshine" usually refers to some mysterious relations between a finite group (the character valves) and some modular functions. "Moonshine" usually refers to some mysterious relations between a finite group (the character valves) and some modular functions.

> Monster < — > some Hauptmoduls of genus 0  $g \in \mathbb{M} <$  —  $> T_g(\tau)$

# McKay's Observation and Moonshine

Image: A matrix and a matrix

æ

196884 = 1 + 196883

196884 = 1 + 196883

1,196883 =dimensions of irreducible M-module.

196884 = 1 + 196883

1, 196883 = dimensions of irreducible  $\mathbb{M}$ -module. 196884 = the coefficient of q of the q-expansion of the elliptic j-function

 $j(q) = q^{-1} + 744 + 196884q + higher order terms, q = e^{2\pi i z}$ 

### McKay's Observation

McKay-Thompson conjectured that there is a graded M-module  $V = \bigoplus_{n=-1}^{\infty} V_n$  such that 1. the graded dimension

$$\operatorname{ch} V = \sum_{n=-1}^{\infty} \dim V_n q^n = j(q) - 744.$$

2. for any  $g \in \mathbb{M}$ ,  $T_g(q) = \sum_{n=-1}^{\infty} tr g|_{V_n} q^n$ ,  $q = e^{2\pi i \tau}$  is a modular function.  $T_g(q)$  is called a McKay-Thompson series.

### McKay's Observation

McKay-Thompson conjectured that there is a graded M-module  $V = \bigoplus_{n=-1}^{\infty} V_n$  such that 1. the graded dimension

$$\operatorname{ch} V = \sum_{n=-1}^{\infty} \dim V_n q^n = j(q) - 744.$$

2. for any  $g \in \mathbb{M}$ ,  $T_g(q) = \sum_{n=-1}^{\infty} tr g|_{V_n} q^n$ ,  $q = e^{2\pi i \tau}$ is a modular function.  $T_g(q)$  is called a McKay-Thompson series.

McKay-Thompson suggested that the NATURAL representation of the Monster (a finite group) is indeed infinite dimensional.

э

There are 171 functions in their list — hauptmodul of genus 0.

There are 171 functions in their list — hauptmodul of genus 0.

**Theorem(Ogg):** Let p be a prime.  $\Gamma_0^+(p)$  has the genus zero property if and only if p divides the order of the Monster.

There are 171 functions in their list — hauptmodul of genus 0.

**Theorem(Ogg):** Let p be a prime.  $\Gamma_0^+(p)$  has the genus zero property if and only if p divides the order of the Monster.

 $|\mathbb{M}| = 2^{46} \, 3^{20} \, 5^9 \, 7^6 \, 11^2 \, 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ 

There are 171 functions in their list — hauptmodul of genus 0.

**Theorem(Ogg):** Let p be a prime.  $\Gamma_0^+(p)$  has the genus zero property if and only if p divides the order of the Monster.

 $|\mathbb{M}| = 2^{46} \, 3^{20} \, 5^9 \, 7^6 \, 11^2 \, 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ 

**Remark**: The theorem is proved before Conway-Norton (Monstrous Moonshine ) and the Monster is not constructed at that time.

There are 171 functions in their list — hauptmodul of genus 0.

**Theorem(Ogg):** Let p be a prime.  $\Gamma_0^+(p)$  has the genus zero property if and only if p divides the order of the Monster.

 $|\mathbb{M}| = 2^{46} \, 3^{20} \, 5^9 \, 7^6 \, 11^2 \, 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ 

**Remark**: The theorem is proved before Conway-Norton (Monstrous Moonshine ) and the Monster is not constructed at that time.

Ogg offered a bottle of Jack Daniels (whiskey) as a prize for its explanation.

McKay-Thompson's Monster module was constructed by Frenkel-Lepowsky-Meurman in 1983 using vertex operators.

McKay-Thompson's Monster module was constructed by Frenkel-Lepowsky-Meurman in 1983 using vertex operators.

FLM also proved part (1) of the conjecture.

McKay-Thompson's Monster module was constructed by Frenkel-Lepowsky-Meurman in 1983 using vertex operators.

FLM also proved part (1) of the conjecture.

Later they also showed this module is, in fact, a vertex operator algebra and the Monster is its full automorphism group.

McKay-Thompson's Monster module was constructed by Frenkel-Lepowsky-Meurman in 1983 using vertex operators.

FLM also proved part (1) of the conjecture.

Later they also showed this module is, in fact, a vertex operator algebra and the Monster is its full automorphism group.

This module is now called the Moonshine VOA and denoted by  $V^{\natural}$ .

McKay-Thompson's Monster module was constructed by Frenkel-Lepowsky-Meurman in 1983 using vertex operators.

FLM also proved part (1) of the conjecture.

Later they also showed this module is, in fact, a vertex operator algebra and the Monster is its full automorphism group.

This module is now called the Moonshine VOA and denoted by  $V^{\natural}$ .

• Conway-Norton's list was confirmed by Borcherds (1992).

Image: Image:

э

- Conway-Norton's list was confirmed by Borcherds (1992).
- Borcherds' proof used the character formula of generalized Kac-Moody Lie algebras and the no-ghost theorem in string theory.

- Conway-Norton's list was confirmed by Borcherds (1992).
- Borcherds' proof used the character formula of generalized Kac-Moody Lie algebras and the no-ghost theorem in string theory.
- He also received a Fields Medal in 1998.
- Conway-Norton's list was confirmed by Borcherds (1992).
- Borcherds' proof used the character formula of generalized Kac-Moody Lie algebras and the no-ghost theorem in string theory.
- He also received a Fields Medal in 1998.
- Borcherds' proof involved some case by case checking and doesn't give any explanation on genus 0 property.

- Conway-Norton's list was confirmed by Borcherds (1992).
- Borcherds' proof used the character formula of generalized Kac-Moody Lie algebras and the no-ghost theorem in string theory.
- He also received a Fields Medal in 1998.
- Borcherds' proof involved some case by case checking and doesn't give any explanation on genus 0 property.
- Later, Cummings-Gannon gave a more conceptual proof which avoid case by case checking. However, a good or direct theoretical explanation for "Hauptmodul of genus 0" is still missing.

- Conway-Norton's list was confirmed by Borcherds (1992).
- Borcherds' proof used the character formula of generalized Kac-Moody Lie algebras and the no-ghost theorem in string theory.
- He also received a Fields Medal in 1998.
- Borcherds' proof involved some case by case checking and doesn't give any explanation on genus 0 property.
- Later, Cummings-Gannon gave a more conceptual proof which avoid case by case checking. However, a good or direct theoretical explanation for "Hauptmodul of genus 0" is still missing.

Questions: Does the "haupmodul of genus zero" property characterize the Monster?

- Conway-Norton's list was confirmed by Borcherds (1992).
- Borcherds' proof used the character formula of generalized Kac-Moody Lie algebras and the no-ghost theorem in string theory.
- He also received a Fields Medal in 1998.
- Borcherds' proof involved some case by case checking and doesn't give any explanation on genus 0 property.
- Later, Cummings-Gannon gave a more conceptual proof which avoid case by case checking. However, a good or direct theoretical explanation for "Hauptmodul of genus 0" is still missing.

Questions: Does the "haupmodul of genus zero" property characterize the Monster?

Is it correct that the 171 functions in Conway-Norton's list determine the Monster uniquely?

э

- 1. Finite groups;
- 2. Modular functions;
- 3. Lie algebra (Kac-Moody algebra or VOA);
- 4. String theory (2-dimensional conformal field theory).

- 1. Finite groups;
- 2. Modular functions;
- 3. Lie algebra (Kac-Moody algebra or VOA);
- 4. String theory (2-dimensional conformal field theory).

Roughly speaking, VOA is equivalent to the Chiral algebra of conformal field theory.

- 1. Finite groups;
- 2. Modular functions;
- 3. Lie algebra (Kac-Moody algebra or VOA);
- 4. String theory (2-dimensional conformal field theory).

Roughly speaking, VOA is equivalent to the Chiral algebra of conformal field theory.

The Monster is the automorphism group of such a system.

- 1. Finite groups;
- 2. Modular functions;
- 3. Lie algebra (Kac-Moody algebra or VOA);
- 4. String theory (2-dimensional conformal field theory).

Roughly speaking, VOA is equivalent to the Chiral algebra of conformal field theory.

The Monster is the automorphism group of such a system.

Does the Monster relate to some "real" physical system?

- 1. Finite groups;
- 2. Modular functions;
- 3. Lie algebra (Kac-Moody algebra or VOA);
- 4. String theory (2-dimensional conformal field theory).

Roughly speaking, VOA is equivalent to the Chiral algebra of conformal field theory.

The Monster is the automorphism group of such a system.

Does the Monster relate to some "real" physical system?

Question: Are there any geometric explanations for the Monster and the Moonshine?

FLM's Moonshine VOA is constructed as a  $\mathbb{Z}_2\text{-orbifold}$  of the Leech lattice VOA.

э

FLM's Moonshine VOA is constructed as a  $\mathbb{Z}_2\text{-orbifold}$  of the Leech lattice VOA.

Because of the construction, the subgroup

 $2^{1+24}Co_1 \ (\cong C_{\mathbb{M}}(2B))$ 

can be visualized.

FLM's Moonshine VOA is constructed as a  $\mathbb{Z}_2\text{-orbifold}$  of the Leech lattice VOA.

Because of the construction, the subgroup

 $2^{1+24} \operatorname{Co}_1 (\cong C_{\mathbb{M}}(2B))$ 

can be visualized.

FLM thought that their construction was very natural and made the following uniqueness conjecture.

# Frenkel-Lepowsky-Meurman conjecture

Image: A matrix

э

- (b) the central charge is 24,
- (c)  $V_1^{\natural} = 0.$

- (b) the central charge is 24,
- (c)  $V_1^{\natural} = 0.$

This conjecture is still open up to now and is considered as a very difficult problem in VOA theory.

(b) the central charge is 24,

(c) 
$$V_1^{\natural} = 0.$$

This conjecture is still open up to now and is considered as a very difficult problem in VOA theory.

Main question: How to construct the automorphism group (supposed to be the Monster) from such kind of abstract settings?

(b) the central charge is 24,

(c) 
$$V_1^{\natural} = 0.$$

This conjecture is still open up to now and is considered as a very difficult problem in VOA theory.

Main question: How to construct the automorphism group (supposed to be the Monster) from such kind of abstract settings?

In fact, we don't even know how to construct **a single nontrivial automorphism** without further assumptions.

When FLM conjecture was first proposed, it was not known if  $V^{\natural}$  is holomorphic (self-dual).

э

Let L(1/2,0) be the irreducible highest weight module of the Virasoro algebra of central charge 1/2 and highest weight 0. (It is a simple VOA).

Let L(1/2, 0) be the irreducible highest weight module of the Virasoro algebra of central charge 1/2 and highest weight 0. (It is a simple VOA).

### Definition

A simple VOA V is called *framed* if V has a subalgebra F isomorphic to  $L(1/2,0)^{\otimes n}$  and rank  $V = \frac{1}{2}n$ . The subalgebra  $F \simeq L(1/2,0)^{\otimes n}$  of V is called a *Virasoro frame*.

Let L(1/2, 0) be the irreducible highest weight module of the Virasoro algebra of central charge 1/2 and highest weight 0. (It is a simple VOA).

### Definition

A simple VOA V is called *framed* if V has a subalgebra F isomorphic to  $L(1/2,0)^{\otimes n}$  and rank  $V = \frac{1}{2}n$ . The subalgebra  $F \simeq L(1/2,0)^{\otimes n}$  of V is called a *Virasoro frame*.

Fact:  $V^{\natural}$  is framed and there are many other important examples.

Let L(1/2, 0) be the irreducible highest weight module of the Virasoro algebra of central charge 1/2 and highest weight 0. (It is a simple VOA).

### Definition

A simple VOA V is called *framed* if V has a subalgebra F isomorphic to  $L(1/2,0)^{\otimes n}$  and rank  $V = \frac{1}{2}n$ . The subalgebra  $F \simeq L(1/2,0)^{\otimes n}$  of V is called a *Virasoro frame*.

Fact:  $V^{\natural}$  is framed and there are many other important examples.

Advantage: One can define many involutions (reflections) on V if it has a Virasoro frame (Miyamoto 1995).

An important Fact: (Conway - Miyamoto )

æ

An important Fact: (Conway - Miyamoto ) If  $V = V^{\natural}$  is the Moonshine VOA, An important Fact: (Conway - Miyamoto ) If  $V = V^{\natural}$  is the Moonshine VOA, then there is a 1-1 correspondence between

 $\{2A\text{-involutions of the Monster}\} \longleftrightarrow \{\text{subVOA} \cong L(1/2,0) \text{ in } V^{\natural}\}$ 

An important Fact: (Conway - Miyamoto ) If  $V = V^{\natural}$  is the Moonshine VOA, then there is a 1-1 correspondence between

 $\{2A\text{-involutions of the Monster}\} \longleftrightarrow \{\text{subVOA} \cong L(1/2,0) \text{ in } V^{\natural}\}$ 

### Theorem (L-Yamauchi)

Let V be a holomorphic framed VOA of central charge 24. Assume further that  $V_1 = 0$ . Then V is isomorphic to  $V^{\natural}$ .

An important Fact: (Conway - Miyamoto ) If  $V = V^{\natural}$  is the Moonshine VOA, then there is a 1-1 correspondence between

 $\{2A\text{-involutions of the Monster}\} \longleftrightarrow \{\text{subVOA} \cong L(1/2,0) \text{ in } V^{\natural}\}$ 

### Theorem (L-Yamauchi)

Let V be a holomorphic framed VOA of central charge 24. Assume further that  $V_1 = 0$ . Then V is isomorphic to  $V^{\natural}$ .

### A famous fact about the Monster (6-transposition property):

A famous fact about the Monster (6-transposition property): Let x and y be 2A-involutions of the Monster.

A famous fact about the Monster (6-transposition property): Let x and y be 2A-involutions of the Monster.Then

 $|xy| \leq 6.$ 

A famous fact about the Monster (6-transposition property): Let x and y be 2A-involutions of the Monster.Then

### $|xy| \leq 6.$

Moreover, xy belongs to one of the following conjugacy classes:

1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C. (9 cases)

## Affine $E_8$ diagram and McKay's observation



## Affine $E_8$ diagram and McKay's observation



•  $n_i \leq 6 \leftrightarrow |xy| \leq 6.$ 

## Affine $E_8$ diagram and McKay's observation



- $n_i \leq 6 \leftrightarrow |xy| \leq 6.$
- 9 nodes  $\longleftrightarrow$  9 conjugacy classes (1,2,3,4,5,6,4,2,3)  $\longleftrightarrow$  (1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C)
Yamada, Yamauchi, Miyamoto, Griess and I have given some context on this observation using Miyamoto's 1-1 correspondence and VOA theory.

We also reproved many interesting (some of them are quite mysterious) facts about the Monster using this approach.

Image: Image:





Note that the correspondence is not one-to-one but only up to diagram automorphism.



Note that the correspondence is not one-to-one but only up to diagram automorphism.

Take two 2*A*-involutions x, y of  $Fi_{24}$ . Then xy belongs to 1A, 2B, 3A, 4B, or 2C.



Note again that the correspondence is not one-to-one but only up to the diagram automorphism.



Note again that the correspondence is not one-to-one but only up to the diagram automorphism.

Take two 2*C*-involutions x, y of  $Fi_{24}$ . Then xy belongs to 1A, 2A, or 3A.



Note again that the correspondence is not one-to-one but only up to the diagram automorphism.

Take two 2*C*-involutions x, y of  $Fi_{24}$ . Then xy belongs to 1A, 2A, or 3A.

We can also explain these two observations using VOA theory.

There is also a modular theory of VOA (i.e. VOA over a field of positive characteristics) .

There is also a modular theory of VOA (i.e. VOA over a field of positive characteristics) .

Borcherds-Ryba also related some modular VOA (related to  $V^{\natural}$ ) to the Brauer characters of some centralizer subgroups of the Monster and some modular functions.

There is also a modular theory of VOA (i.e. VOA over a field of positive characteristics) .

Borcherds-Ryba also related some modular VOA (related to  $V^{\natural}$ ) to the Brauer characters of some centralizer subgroups of the Monster and some modular functions.

Modular moonshine.

Are there Moonshine for other groups?

э

Are there Moonshine for other groups?

Mathieu moonshine  $M_{24}$ Umbral moonshine etc...

э