Semi-Standard Young Tableaux

Sarah Kuriyama

4.2 Young Tableaux

First we need to settle some definitions and notations regarding partitions and Young diagrams.

Definition 1. A **partition** of a positive integer n is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ satisfying $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l > 0$ and $n = \lambda_1 + \lambda_2 + \cdots + \lambda_l$. We write $\lambda \vdash n$ to denote that λ is a partition of n.

For instance, the number 4 has five partitions: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). We can also represent partitions pictorially using Young diagrams as follows.

Definition 2. A **Young diagram** is a finite collection of boxes arranged in left-justified rows, with the row sizes weakly decreasing.¹ The Young diagram associated to the partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is the one that has l rows, and λ_i boxes on the ith row.

For instance, the Young diagrams corresponding to the partitions of 4 are

Since there is a clear one-to-one correspondence between partitions and Young diagrams, we use the two terms interchangeably, and we will use Greek letters λ and μ to denote them.

A Young tableau is obtained by filling the boxes of a Young diagram with numbers.

Definition 3. Suppose $\lambda \vdash n$. A **(Young) tableau** t **of shape** λ , is obtained by filling in the boxes of a Young diagram of λ with $1, 2, \ldots, n$, with each number occurring exactly once. In this case, we say that t is a λ -tableau.

For instance, here are all the tableaux corresponding to the partition (2, 1):

1	2	2	1	1	3	3	1	2	3	3	2
3		3		2		2		1		1	

Definition 4. A **standard (Young) tableau** is a Young tableaux whose the entries are increasing across each row and each column.

The only standard tableaux for (2, 1) are

$$\begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$.

Here is another example of a standard tableau:

1	2	4	
3	5	6	
7	8		
9			

Example 1.6. There are 5 standard Young tableaux associated with the shape (3,2). They are

Definition 1.8. Given a shape $\lambda \vdash n$, a composition $\mu = (\mu_1, ..., \mu_k)$ and a **semistandard** Young tableau (SSYT) of λ is a filling of λ using content μ such that the followings hold:

- The number i appears μ_i times.
- · All rows are weakly increasing.
- All columns are strongly increasing.

For instance, the semistandard tableau shown below may be seen to have shape (4, 2, 1) and content (2, 2, 1, 0, 1, 1):

Definition 24. Let λ be a Young diagram. For a square u in the diagram (denoted by $u \in \lambda$), we define the **hook** of u (or at u) to be the set of all squares directly to the right of u or directly below u, including u itself. The number of squares in the hook is called the **hook-length** of u (or at u), and is denoted by $h_{\lambda}(u)$.

For example, consider the partition $\lambda = (5, 5, 4, 2, 1)$. The figure on the left shows a typical hook, and the figure on the right shows all the hook-lengths.

]			9	7	5	4	1
u	•	•	•				8	6	4	3	1
•							6	4	2	1	
•							3	1			
							1				

Theorem 25 (Hook-length formula). Let $\lambda \vdash n$ be a Young diagram. Then

$$\dim S^{\lambda} = f^{\lambda} = \frac{n!}{\prod_{u \in \lambda} h_{\lambda}(u)}.$$

For instance, from the above example, we get

$$\dim S^{(5,5,4,2,1)} = f^{(5,5,4,2,1)} = \frac{17!}{9 \cdot 8 \cdot 7 \cdot 6^2 \cdot 5 \cdot 4^3 \cdot 3^2 \cdot 2 \cdot 1^5} = 3403400.$$

Ex.

Schur Polynomials

For $n \in \mathbb{Z}$, let $SSYT_n(\lambda)$ be the set of all semistandard young tableau of shape λ with entries at most n.

Definition 1.2. The Schur polynomial associated to a partition λ is defined as

$$s_{\lambda}(x_1,\ldots,x_n) = \sum_{T \in SSYT_n(\lambda)} x^{\vec{T}}$$

where $x^{\vec{T}} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ where $\alpha_i = \#$ of times i appears in T.

Definition 1.3. A polynomial $f(x_1,...,x_n)$ is symmetric if $f(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)})$ for all $\pi \in S_n$.

Theorem 1.4. Let λ be a partition of n. Then $s_{\lambda}(x_1,...,x_n)$ is a symmetric polynomial.

Example 1.5. Here are the 8 different SSYT of shape (2, 1) with entries at most 3.

	, ,							
Γ	1 1	1 1	$1 \mid 2 \mid$	$1 \mid 2$	$\begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$	$1 \mid 3$	2 2	2 3
	2	3	2	3	2	3	3	3

The corresponding schur polynomial is

$$s_{(2,1)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2$$

which is symmetric.

$$\underbrace{e \times \left[\prod SSMT \left(\overrightarrow{H} \right) = \left[\frac{1}{2} \right] \rightarrow S_{H}(x_{1},x_{2}) = x_{1}x_{2}}_{J} \right]}_{SSMT(\square) = \left\{ \underbrace{I_{1}}_{2} \right\} \rightarrow \underbrace{I_{1}}_{J}, \underbrace{I_{2}}_{J} \right\} \rightarrow \underbrace{S_{1}}_{J} = x_{1}^{2} + x_{1}x_{2} + x_{2}^{2}}_{Dotusyunchiz}$$

Note: $\delta_n = (n, n-1, \dots, 2, 1)$ is called a staircase partition.

Theorem 7.4.7 The map \widehat{p} is a bijection between the set of all tableaux of shape δ_n and $\mathcal{R}(w_0)$, where w_0 denotes the longest element of S_{n+1} .

Corollary 7.4.8

$$|\mathcal{R}(w_0)| = \frac{\binom{n+1}{2}!}{1^n 3^{n-1} 5^{n-2} \cdots (2n-1)}.$$

Proof. This follows immediately from Theorem 7.4.7 and the well-known "hook length formula" (see, e.g., [498, Corollary 7.21.6]). \Box

2. Preliminaries

Given a Young diagram, the *hook* at any one of its boxes is the collection of boxes to the right and below that box, and including the box itself. We write "£'hook" for the *length* of such a hook, i.e. for the number of boxes it contains. Formally:

Definition 2.1. (hook length)

Let $\lambda = (\lambda_1 \ge \dots \ge \lambda_{\text{rows}(\lambda)})$ be a <u>partition/Young diagram</u>. Then for

- $i \in \{1, \dots, \text{rows}(\lambda)\},\$
- $j \in \{1, \dots, \lambda_i\}$

the hook length at (i, j) is

$$\mathcal{E}\text{hook}(i,j) := 1 + (\lambda_i - j) + (\lambda'_j - 1),$$

where λ' denotes the *conjugate partition* (see there).

Conjugate Partition:

partition (5, 4, 4, 2, 1, 1) of 17 is given in the English representation as:

Let Y be the set of Young diagrams. Important functions on Young diagrams include:

• *conjugation*: denoted by a prime $': \mathbb{Y} \to \mathbb{Y}$ reflects the Young diagram along its main diagonal (north-west to south-east). In the above example the conjugated partition would be $\lambda' = (6, 4, 3, 3, 1)$.

- $n \in \mathbb{N}$ a <u>natural number</u>;
- $\lambda = (\lambda_1 \ge \dots \ge \lambda_{\text{rows}(\lambda)})$ a partition of n, $\sum_i \lambda_i = n$, equivalently a Young diagram with n boxes;
- $N \in \mathbb{N}_+$ a positive natural number;

Write:

- $ssYT_{\lambda}(N)$ for the <u>set</u> of <u>semistandard Young tableaux</u> T
 - \circ of shape (i.e. with underlying <u>Young diagram</u>) λ ,
 - ∘ with labels $T_{i,j} \le N$ (i.e. with $T_{i,j} \in \{1, \dots, N\}$).
- $n(T) = \sum_{i,j} T_{i,j}$ for the <u>sum</u> of all the labels.

3. Statement

Standard hook-content formula

Proposition 3.1. For λ a <u>partition/Young diagram</u> and $N \in \mathbb{N}_+$, the <u>number</u> $|ssYTableaux_{\lambda}(N)|$ of <u>semistandard Young tableaux</u> T of shape λ (<u>hence</u> the value of the <u>Schur polynomial</u> s_{λ} on N unit argument) and entries bounded by $T_{i,j} \leq N$ is:

$$|\operatorname{ssYTableaux}_{\lambda}(N)| = s_{\lambda}\left(x_1=1,\,\cdots,x_N=1\right) = \prod_{(i,j)} \frac{N+\operatorname{content}(i,j)}{\operatorname{\ell'hook}_{\lambda}(i,j)}.$$

q-Deformed hook-content formula

With the above ingredients, we have the following equalities of polynomials in a variable q:

$$\sum_{T \in \mathrm{ssYT}_{\lambda}(N)} q^{n(T)} \quad = \quad q^{\sum_i i \cdot \lambda_i} \cdot \prod_{\stackrel{i \in \{1, \cdots, n \text{ws}(\lambda)\}}{j \in \{1, \cdots, \lambda_i\}}} \frac{1 - q^{N + \text{content}(i,j)}}{1 - q^{\ell \cdot \text{hook}(i,j)}}$$

(Krattenthaler 98, Thm. 1)

Compute an explicit hook-length formula for the partition (n,n)

