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1 Schur Functions and Semistandard Tableaux

First, we will add some new definitions to Ferrers diagrams so that we can state
new propositions. Recall the convention that, for any filling T' of a Ferrers di-
agram with positive integers, 7 denotes the monomial given by [] jeg x;- For

the above example, the associated monomial is z?z3z37422.

Definition 1.1. Define StrictRow(\, A) as the set of fillings of a Ferrers diagram
of \ with entries in A in which each row is strictly increasing from left to right.

Proposition 1.2. For any partition A, integer n > 1, we have the following two

results:
ex(Xn) = > ’ M
TeStrictRow(A,[n])

e = > xT 2

TeStrictRow(\,P)

Proof. We have that e)(X,,) = Hé(ﬁ ex, (Xn). Define t; as ey, (X,,).

For each product ¢;, we can construct a filling of the Ferrers diagram of X by
placing the subscript of each variable in ¢; in increasing order in the j-th row of
the diagram, 1 < j < [()). Likewise, for each filling of the Ferrers diagram, we
can reconstruct ¢; for 1 < j < {(\) as the product [ [, xy, for all £ that appear in
the j-th row. Consequently, there is a bijection between ey (X,,), the fillings of
the diagram. Since the image of a filling 7" is 27, (1) follows. O

The proof for (2) is similar.

Example 1.3. Find all fillings T of the Ferrers diagram of (32, 1), associated
with the term l‘%ﬂﬁgl‘il‘g in ess31.

e331 = ezeseq, SO we need to write x2xox326 as a product of 3 factors of degrees
3, 3, and 1, respectively. x4, has degree 3, so it is in each factor, and z; has



degree 2, so it is in two of the factors, etc., S0 ¥3w273w6 = (v12274) (T12476) T4 =
(x12476) (z12224) 4. This gives the two associated Ferrers diagrams:

214
416

4
2

»—l»—lﬂk‘
r—w—*»-lk‘

6
4

Definition 1.4. Define WeakRow()\, A) as the set of fillings of a Ferrers diagram
of \ with entries in A in which each row is weakly increasing from left to right.

Proposition 1.5. For any partition )\, integer n > 1, we have the following
results:

ha(X,) = > a” (3)
TeWeakRow(\,[n])
hy = > o At 4

TeWeakRow(\,P)
The proofs for (3) and (4) are similar to the proof for (1).

Definition 1.6. For any ), a semistandard tableaux of shape ) is a filling of a
Ferrers diagram of )\ with entries strictly increasing in columns (column-strict),
and weakly increasing in rows (row-non-decreasing). sh(T") denotes the shape
of the SST, SST();n) denotes the set of all SSTs of shape A with entries in [n],
and SST()) is the set of all SSTs of shape A with entries in P.

Example 1.7. Find all semistandard tableaux of shape (22,1) with entries in
[3]-

Since we know the columns are strictly increasing, and the rows are weakly
increasing, it follows that we get:

2
1

3
1

3
2

wa‘
»-ww‘
»—ll\DOJ‘

Using semistandard tableaux, we can construct new polynomials and power
series, which will hopefully be symmetric.

Definition 1.8. Schur polynomial: sx(X,,) = Z zT
TeSST(\;n)

Definition 1.9. Schur function: sy = Z T
TESST(N)

Example 1.10. Find s, (X,,), 1+

s1%(X,,) is a sum over all fillings of a single column with distinct integers in
[n], where the column is column-strict. For n < k, no such fillings will exist,
LSk (Xn) =0.

For n > k, there will be a unique filling of the Ferrers diagram for each subset
of [n] that has size k. Denoting the set of subsets with size k as J, we have the

monomial H]EJ xj,. . s1e(Xp) = ex(X,,). Similarly, s;x = ey



Example 1.11. Find s;(X,,), sk

sk (Xy) is a sum over all possible fillings of a single row with integers in [n] that
are weakly increasing from left to right. For each submultiset, there will exist
a unique filling, where the monomial corresponding to each submultiset J is
HjEJ xj, meaning sx(X,,) = hiy(X,), and similarly s, = hg.

Example 1.12. Express s21(X71),s21(X2), and so1(X3) as linear combinations
of symmetric polynomials.

S91 is a sum over all SST such that sh(T') = (2, 1), with entries in [1]. The left-
most column must have 2 distinct integers, but we only have one, so s91(X1) =
0

s21(X2) has two possibilities:

2 2
1]1] 1]2]

From the above, we get that so1(X2) = 23 + 29 + 2173 = ma1 (Xa2).
The steps to find s91(X3) are omitted for the sake of brevity. One will find that
521(X3) = ma1(X3) + 2mq11(X3)

Definition 1.13. For any semistandard tableaux T, the content of T is the se-
quence {u; ij“:fl, where 11; is the number of j’s in T for each j. When p; = 0 for
Jj > n, we write {y;}7_,

Proposition 1.14. Suppose A - k, A > 1. Then, s\ (X,) € A(X,,), and sy € Ag.

Definition 1.15. For any partitions A, u, the Kostka numbers K ,, denote the
number of semistandard tableaux with shape A and content .

Remark 1.16. For any partition A, sy = Z Kxumy
HEA]

Proposition 1.17. For any A, i such that |[A| = |u|, n € N, let K} ,,, be the
number of semistandard tableux with shape A, content u, and entries in [n]. If
n> N Kyun =Ky, ie K,y isindependent of n.

Proof. p is a partition, n > |A\| = |u| = p; = 0 for j > n, which means that any
semistandard tableaux with shape )\ and content ; cannot have entries larger
than n, so K, ,, and K , count the same semistandard tableux, which gives
the conclusion that K ;, , = K .. O

Example 1.18. We now want to show that Schur functions of degree k are a
basis for Ay, which we can do by examining the coefficients when we write s
as a linear combination of monomial symmetric functions. We can do this by
looking at matrices of Kostka numbers.

Kiq=[1]

1 0
K2 = [1 1}



1 00

Kss= 12 1 0
111
1 0 0 0 0
31000

Kiys=12 110 0
32110
11111

Proposition 1.19. Vk > 0, A\ -k, uF k
1. N>lex)\$K>\,u =0
2. Khr=1

Proof. 1t >1ex A = Im such that p,, > A, = A for1 <j<m-—1

No semistandard tableaux can have a 1 in its 2nd row or higher, a 2 in its 3rd
row or higher, a j in the j 4 1-th row or higher, etc. Consequently, a filling 7" of
A with content i can be semistandard tableaux if and only if it has j’s in every
entry of the j-th row for 1 < j < m — 1. Since p,,, > \,,,, then by the pigeonhole
principle some column of T has two m’s, therefore it is not a semistandard
tableaux. This proves 1, and the proof for 2 is similar. O

Proposition 1.20. Yk > 0, {sx|A - k} is a basis for Ay,
Proof. Similar to the proof that {e,|\ - k} is a basis for Ay O

2 Schur Polynomials as Ratios of Determinants

Definition 2.1. For integer n > 1, a polynomial f(X,,) is alternating whenever
w(f) =sgn(n)f Vme S,

Example 2.2. Find the alternating polynomial f(X3) with the fewest terms,

containing x3x3z3

7( ) = m(z323z3) = 232323, sgn(r) =1
7(12) = m(x3zdzs) = xi’mgxg, sgn(m) =
7(12) = m(x3zdzs) = x1x2x3, sgn(m) =
7(2 3) = w(wzdas) = 1‘1.1723133, sgn(m) =
7(1 3) = m(x3zdas) = vy2da3, sgn(r) =
m(123) = n(zir3z3) = v10323

7(132) = n(x3zdxs) = 23wax]

= f(Xp)z3x32s — 23w023 — 232303 — 212303 + 232} + 212303

Example 2.3. Show that there does not exist an alternating polynomial with
r1xasaterm

If zy29 is a term, then for 7 = (1 2), sgn(w) = —1, and —z;22 must also be a
term, which is a contradiction.



Proposition 2.4. If yu,--- , 1, are nonnegative integers such that u; # w,; for
Jj # 1, and f(X,) is an alternating polynomial for X,,. then the coefficient of
zht o xhn is 0

Proof. 1f az!* - -zt~ € f(X,,), then sgn((j 1))(ax}* -- - xhn) = —az* - - xhn =
a=0. O

Remark 2.5. The above proposition means that we can construct nonzero alter-
nating polynomials from monomials with distinct exponents, which will allow
us to show that the alternating polynomial can be expressed as a determinant.

Proposition 2.6. If i is a sequence such that gy > po > -+ > p, > 0, then

a,(X,) = ZS sgn(w)xﬁ%l)xﬁa) e xﬁ;‘n), then a,,(X,,) is an alternating polyno-
TESH

mial in 1, 29, - - - , x,. Further, a,(X,,) is homogeneous of degree p; + - - - + 5,

has n! terms, and a,(X,,) = det(z}”)1<j1<n

Proof. We know that foro € S,,,0(a,) = XS: sgn(ﬁ)xg‘;(l) . ~:cﬁ;(n). Ifr=om,
TESY
then 7 = o~ '7, so as 7 ranges over S, so does 7, . o(a,) = z; sgn(o)sgn(ﬂx’jél) e xﬁ?n) -
TESY

251 Hn

Z sgn(a‘lr)xT(l) LA Consequently, each term is of degree i1+ - -+ fiy,

TESy

consequently it is homogeneous of degree p; + - - - + . Further, pq, - - -, u, are

distinct, so all the terms of a,, (X,,) are distinct, so there are n! terms. Using the
n

fact that det(A) = Z sgn(w)HAjﬂ( j), the statement follows. O
meS j=1

Remark 2.7. It is more convenient to use partitions to index rather than inte-
gers. Using an inductive proof, we find that p,,_; > j for 0 < j <n — 1, denote
this as d,,. Define A by A\; = p; — 6,(j),1 < j < n.\is a partition with at most n
parts, so the map from ;. — A is bijective, so we can view a,(X,,) as ax;s, (X»)

Proposition 2.8. Vn > 1,a5, (X,) = H (xj —x;). For all n > 1, and
1<j<i<n

partitions A with at most n parts, there exists a symmetric polynomial g(X,,)

such that ayys, (X,) = 9(Xn)as, (Xp).

Proof. First, we show that (z; — z;)|P(X,), (z; — zk|P(Xy) = (z; — ;) (2 —

zy)|p(zn), which is true since (z; — x;) are prime in Clzq, - - - , 2]
xnfl xnfl
1 2
as, (Xn) = x?—z

If we set x; = x5, then the first two columns are equivalent, meaning the deter-
minant is 0. The same is true for z; = z;,2 < i < n = 0 We find that, repeating

this (g) times gives us that the determinant is a polynomial with degree (g)



aft a
F— j 2 M2
Similarly, det(z}” )1<j<n, = [F1° %2

The above determinant gives us that (z1 — z3)(z1 — x3) ... (zp—1 — x,), which
divides a;, by repeated use of the lemma. But this also has degree polynomial
also has degree (%), which gives that a5, (z) = kQ(z),k € C, and by checking
we get that k = 1.

For the second part of the proposition, the same reasoning as above gives us that
as, (Xp) = (x1 — x2) .. . (Tn—1 — Tplarys, (v)), and deg arisn(x) > a5, (X) O



