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Mates, John Arthur Benson (Ph.D., Physics)

The Microwave SQUID Multiplexer

Thesis directed by Dr. Kent Irwin

This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with

low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic

flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave

resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A

superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between

the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with

hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis,

and nuclear non-proliferation.

The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of super-

conducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic

signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV

gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10−20 W/
√

Hz and en-

ergy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the

underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications,

like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity

waves from inflation use arrays of these detectors to increase collection area or tile a focal plane.

We developed three generations of SQUID multiplexers, optimizing the first for flux noise (0.17µΦ0/
√

Hz),

the second for input current noise (19 pA/
√

Hz), and the last for practical multiplexing of large arrays of

cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we

demonstrated multiplexed readout of prototype polarimeters with the performance required for the future

development of a large-scale astronomical instrument.
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Chapter 1

Introduction

The Microwave SQUID Multiplexer is a device for the readout of large arrays of low-temperature

detectors with a small number of wires. It was motivated by the dramatic growth in array sizes and will

provide the necessary multiplexing factors for megapixel arrays of the future.

1.1 Low-Temperature Detectors

Detectors operating at very low temperature[1] have been studied since 1908 when Bottomley[2] cooled

a platinum-platinoid thermojunction to the temperature of liquid nitrogen (77 K) and used it to measure

thermal radiation from other bodies. At low temperatures, thermal fluctuations are smaller and detector

responsivity is greater[3]. The sensitivity of low-temperature detectors has enabled measurements of the

cosmic microwave background, THz imaging for security, optical photon counting for telecommunications,

x-ray spectroscopy for materials analysis, γ-ray spectroscopy for nuclear non-proliferation, and more.

Figure 1.1: : a) Cosmic Microwave Background b) THz imaging c) Optical photon counting d) x-ray spec-

troscopy e) γ-ray spectroscopy



2

The first low-temperature detectors were cooled metal strips and thermocouples[2]. In 1941, Andrews

used a superconducting film as a “radiometric receiver”[4][5]. In 1957, Boyle cooled a carbon thermocouple

and used it to make sensitive measurements of radiation in the far infrared[6]. In 1961, cooled semiconductor

detectors were developed and the doped-germanium bolometer[7] became a workhorse of astronomy and

particle detection. The past twenty years has seen broad adoption of the superconducting transition-edge

sensor[8], and the past ten years has seen work begin on magnetic calorimeters[9][10] and microwave kinetic

inductance detectors[11][12]. All of these technologies use low temperature to increase sensitivity.

The Microwave SQUID Multiplexer has been developed in the context of Transition-Edge Sensors and

Microwave Kinetic Inductance Detectors.

1.2 Transition-Edge Sensors

A Transition-Edge Sensor (TES) uses the steep change in resistance of a superconducting film at the

transition between the superconducting and normal states.

Figure 1.2: (TES).
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Biased in temperature in its transition, the film acts as an exquisitely sensitive thermometry and can

be used to form a TES bolometer or TES calorimeter.

Figure 1.3: Incident power heats the floating heat capacity above the temperature of the bath. A pulse of

energy causes a pulse in temperature that decays back to equilibrium with the bath.

A bolometer consists of an absorber of heat capacity C connected by a weak thermal conductance G

to a bath at temperature Tb (Figure 1.3)[13]. Measurement of the temperature of the absorber constitutes

a measurement of incident power P because the power heats the absorber to a temperature T = Tb +

P
G [14]. The same device is a calorimeter when measuring discrete incident energy E rather than continuous

power[15][8][16]; the absorber warms to T = Tb + E
C and returns to the bath temperature with a τ = C

G time

constant.

In a TES bolometer/calorimeter, the superconducting film provides the sensitive thermometry of the

floating absorber. These devices provide world-record power and energy sensitivity across more than nine

orders of magnitude in wavelength and energy: CMB[17][18], THz[19], sub-mm[20][21], FIR[22], optical[23],

x-ray[24][25], γ-ray[26], and α-particles[27].

We describe the sensitivity of a bolometer by a Noise-Equivalent Power (NEP ), which is the signal

power in a 1 Hz bandwidth at which the signal-to-noise is unity. We describe the sensitivity of a calorimeter

by an energy sensitivity ∆E, the full width at half maximum of a spectral peak. The noise-equivalent
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power[28] and energy resolution[15] of TESs are limited by heat fluctuating across the thermal conductance:

NEP ≈
√

4kBT 2G (1.1)

∆E ≈ 2.35
√
kBT 2C (1.2)

This fluctuation is the thermal analog of Johnson noise in a resistor. TESs therefore benefit greatly

from operation at low temperatures (Equations 1.1 and 1.2). For example, a typical TES bolometer used for

CMB measurement operates at 300 mK with a thermal conductivity of G ≈ 70 pW/K and a noise-equivalent

power of roughly 2× 10−17 W/
√

Hz. TESs have operated at temperatures as low as 20 mK and many now

operate at 100 mK.

Practical Transition-Edge Sensors are voltage-biased[15][29] which keeps them in the transition using

the V 2/R self-heating. The self-heating provides negative electro-thermal feedback; as the TES temperature

and resistance increase, current through the device and joule-heating decrease. The primary advantage of

negative electro-thermal feedback is that it allows TESs with different transition temperatures Tc to operate

simultaneously as long as the bath temperature is colder than every Tc. In this mode the TES is a low-

impedance device, producing a current signal proportional to incident power. The noise power spectral

density of this current signal is[15]:

SI =
4kBT

R

(
(n/α)2 + (ω/ωETF )2 + n/2

1 + (ω/ωETF )2

)
(1.3)

where α ≡ T
R
dR
dT is a unitless measure of the sharpness of the superconducting transition, ωETF ≡

G(1+α/n)
C is the rolloff of the detector response, and n describes the heat loss to the bath P ∝ (Tc

n − Tbn)

and can be 4, 5, or 6 depending on the temperature range and physical mechanism of heat exchange.

Superconducting films can be made with α as high as 1,000.

The output noise temperature of a TES is therefore between two and three times the transition

temperature. For typical TES operating resistance RTES ≈ 1 mΩ, the current signal is on the order of

microamps with fluctuations on the order of 100 pA/
√

Hz. Non-degrading detection of such small and
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quiet currents requires a low-impedance amplifier with low input current noise that can operate at cryogenic

temperatures. The Superconducting Quantum Interference Device is the amplifier of choice.

1.3 Superconducting Quantum Interference Devices

In 1962, Brian Josephson observed[30][31] that the supercurrent tunneling through a superconductor-

insulator-superconductor junction should be a periodic function of the phase difference between the supercon-

ducting wave-functions on either side of the junction. The Superconducting Quantum Interference Device

(SQUID)[32], which consists of a superconducting loop interrupted by one or more Josephson junctions,

was invented at Ford labs soon after. The two-junction, or dc-SQUID was invented in 1964[33] and the

one-junction, or rf SQUID was invented in 1967[34].

These devices are sensitive to magnetic flux in the loop because the electromagnetic vector potential

advances the phase of the superconducting wave function through the canonical momentum of charged

particles[35]:

H =
(p− qA)

2

2m
− qϕ (1.4)

The superconducting wave function therefore accumulates a 2π phase twist around a loop containing

Φ0 = h
2e = 2.068× 10−15 Webers, called the magnetic flux quantum[36][37]. A SQUID is a circuit that uses

Josephson junctions to detect this phase.

The dc SQUID consists of a superconducting loop interrupted by two resistively-shunted Josephson

junctions. Current taps are placed on the loop so that a bias current must flow through one junction or

the other. Magnetic flux in the loop changes the relationship between the phase differences at the two

junctions, effectively modulating the total tunneling supercurrent that can flow between the taps. When the

bias current exceeds the maximum tunneling supercurrent through the two Josephson junctions, the excess

current flows through the resistive shunts and generates a fluctuating voltage with a dc component between

the current taps. Magnetic flux in the SQUID loop modulates this dc voltage. The low-noise and readout

simplicity of dc-SQUIDs has made them the most popular SQUID technology today.
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Figure 1.4: Artistic representations and accurate lumped-element models of different SQUIDs.

The standard rf SQUID consists of a superconducting loop interrupted by a single resistively-shunted

Josephson junction. Oscillating magnetic flux in the loop dissipates power in the shunt, with the energy

dissipation per cycle dependent on the mean value of flux. A tank circuit that inductively couples to the

SQUID drives ac flux in the SQUID loop to measure this dissipation. rf SQUIDs generally have higher noise

than dc-SQUIDs and require ac readout, but were popular before the development of methods to reliably

fabricate multiple Josephson junctions.

The dissipationless rf SQUID in the Microwave SQUID Multiplexer consists of a superconducting loop

interrupted by a single unshunted Josephson junction. For small flux oscillations, the SQUID behaves like

a loop whose self-inductance depends on the mean value of flux. We inductively couple this SQUID to a

microwave resonator so that low-frequency flux in the SQUID shifts the resonance frequency. Although in

practice these SQUIDs are not perfectly dissipationless due to sub-gap resistance and the loss tangent of the

junction dielectric, they dissipate very little power. We work out the theory of these SQUIDs in section 2.1.
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Figure 1.5: Schematic of dc-SQUID readout of a voltage-biased TES.

To measure a TES, we can direct the signal current through an inductor that couples magnetic flux

into the SQUID (Figure 1.5). SQUIDs typically have flux noise of order 1µΦ0/
√

Hz so a coupling as low as

M ≈ 50 pH is sufficient to give a current noise (40 pA/
√

Hz) well below the output current noise of many

TES designs. The inductive coupler presents a low impedance at typical signal frequencies.

SQUIDs are therefore ideal amplifiers for TESs, and naturally operate at cryogenic temperatures.

They have been used for TES readout for the past twenty years[38].

1.4 Arrays and Multiplexing

Figure 1.6: [39] The red line shows a typical background noise for ground-based observations in the sub-mm.
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The sensitivity of low-temperature detectors has improved dramatically over the past few decades to

the point where many applications are limited by other factors. For example, ground-based observations

in the sub-mm are limited by shot noise from atmospheric absorption (Figure 1.6 left) and some x-ray

spectra are limited by the natural width of the underlying emission lines. To continue accessing new science,

increasingly large arrays of detectors have been developed(Figure 1.6 right).

One difficulty posed by low-temperature detector arrays is that of large wire counts between room

temperature and the cryogenic stage, which add heat load and cryogenic complexity. We therefore multiplex

the detector signals onto a smaller number of wires. Most existing TES arrays use either time-division

SQUID multiplexing or frequency-division TES multiplexing schemes.

Time-division multiplexing (TDM) consists of multiple input signals taking turns on an output chan-

nel. To satisfy the Nyquist-Shannon sampling theorem[40], the multiplexer must return to each channel with

a frequency at least twice the bandwidth of the input channel. Time-division SQUID multiplexing[41][42]

switches between dc-SQUIDs by applying bias current to one SQUID at a time. The outputs of all the

“first-stage” SQUIDs are summed into a “second-stage” SQUID that amplifies the combined signals onto

a single output channel. With n current bias lines and m output channels this technique allows measure-

ment of n ×m detectors with O(n + m) wires. The majority of existing TES arrays[43][44][21][45][26] use

time-division SQUID multiplexing.

Frequency-division multiplexing (FDM) consists of modulating multiple input signals at different

frequencies on the same output channel[46][47][48]. Frequency-division TES multiplexing uses cold filter

circuits to apply a different oscillating voltage bias to each TES. The TES currents are summed into a common

SQUID amplifier. The detector signals appear in sidebands of the bias frequencies which must therefore be

spaced by more than the expected bandwidth of input signals. Many existing instruments[49][50][51] use

frequency-division TES multiplexing.

Code-division multiplexing uses an orthogonal basis set intermediate between time-division and frequency-

division. Like time-division multiplexing, readout is broken into multiple timeslots, but unlike time-division

multiplexing the signals from all pixels are summed in each timeslot. To allow separation of the input sig-

nals, the weight of different input signals changes between timeslots. For example, in a two pixel device
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the first timeslot could sum the signals and the second timeslot could take the difference. Development of

code-division SQUID multiplexing is just beginning[52][53].

Information theory limits the maximum possible multiplexing factor N with any of these multiplexers

to the ratio of the input channel capacity to the output channel capacity, where channel capacity is defined

by Shannon[54][40][55] as:

C =

∫ BW

0

log2

(
1 + (SNR)2

)
df (1.5)

and has units of bits per second (bps).

A single pixel for the CMB application I will discuss has a photon power of 5 pW, a photon shot noise

of 4×10−17 W/
√

Hz, and a bandwidth of 100 Hz. It therefore requires 2.7 kbps of channel capacity for lossless

readout. An open-loop SQUID has a linear range of approximately Φ0/π, a flux noise of 1µΦ0/
√

Hz, and a

bandwidth of a few MHz, providing roughly 100 Mbps of channel capacity. A perfectly efficient multiplexer

could therefore read out 40, 000 CMB TESs on a single SQUID-amplified output channel.

It is practically difficult to approach the theoretical limits of a multiplexer in an analog system. The

maximum multiplexing factor achieved so far with time-division SQUID multiplexing is 40 and the maximum

with frequency-division TES multiplexing is 7. Neither multiplexing solution seems likely to provide the

multiplexing factors that will be necessary in the next decade.

1.5 Microwave Kinetic Inductance Detectors

The Microwave Kinetic Inductance Detector (MKID) is a low-temperature detector that approaches

the photon noise limit in the sub-mm. Although it does not have the sensitivity of TESs at all wavelengths,

it provides elegant large-scale multiplexability[12][56][11][57][58]. An MKID consists of a superconducting

strip integrated in a microwave resonator. Incident radiation breaks Cooper pairs in the superconductor,

changing the surface impedance of the strip, which in turn changes the resonance frequency and quality

factor of the resonator (Figure 1.7).
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Figure 1.7: Pair-breaking radiation transforms the blue curve into the red curve.

A large number of superconducting microwave resonators can be fabricated on a single chip or wafer

(Figure 1.8). Non-overlapping resonances can be read out simultaneously by measuring the complex trans-

mission of a superposition of microwave tones. Only two coaxial cables are therefore necessary between the

cryogenic device and room temperature. This technology was enabled by the development of a cryogenic

microwave amplifier called a high electron-mobility transistor[59] (HEMT) with a 10 GHz bandwidth, a

saturation power of -40 dBm, and a noise temperature of roughly 5 K, implying a Shannon channel capacity

of 300 Gbps. Even inefficient use of this channel capacity should allow practical multiplexing factors in the

thousands.

Figure 1.8: , representing the detectors as quarter-wave resonators.

Recent work on MKIDs[60][61] and the remarkable channel capacity of the HEMT inspired the devel-
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opment of the Microwave SQUID Multiplexer.

1.6 Microwave SQUID Multiplexer

The Microwave SQUID Multiplexer is an attempt to combine the sensitivity of TESs across a wide

range of applications with the multiplexability of MKIDs, and may allow even larger multiplexing factors in

combination with other multiplexing technologies (Section 9.5.2).

TESs do not retain their sensitivity in microwave resonant circuits with a HEMT amplifier (Figure

1.9) because of the mismatch between the input noise temperature of the HEMT (TN ≈ 5 K) and the output

noise temperature of the TESs (TN ≈ 2Tc ≈ 200 mK). We therefore use SQUIDs to provide gain between

the TESs and the resonators.

Figure 1.9: . The HEMT noise dominates the TES noise.

The Microwave SQUID Multiplexer couples SQUIDs to superconducting microwave resonators (Fig-

ure 1.10). An early device[62] used dc-SQUIDs to modulate the Q of the resonators, but current devices

use the change in inductance of dissipationless rf SQUIDs to modulate the resonance frequencies[63][64].

The magnetic flux in thousands of SQUIDs, each modulating a distinct microwave resonance, can then be

measured with a pair of coaxial cables.
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Figure 1.10: . A common flux-bias line is used to linearize all the SQUIDs (Sections 2.6, 6.3.4 and 8.2.4)

By contrast with MKIDs, the Microwave SQUID Multiplexer allows independent optimization of the

multiplexer and detectors and can adapt to read out many detector technologies. The SQUID amplifier

enables modulation of the detector signal to avoid low-frequency noise in the resonators and HEMT. Finally,

the Microwave SQUID Multiplexer does not degrade the sensitivity of the TES detectors, making it useful

for a wide range of scientific applications.

This thesis explores the theory, design, and experimental results of the Microwave SQUID Multiplexer.

We discuss the predicted and observed flux noise in Sections 2.5, 6.3.3, 7.3.3, and 8.2.3. We discuss the

linearization of SQUID readout with flux-ramp modulation in Sections 2.6, 6.3.4, and 8.2.4. We conclude

by considering the compatibility of the Microwave SQUID Multiplexer with hybrid multiplexing schemes in

Section 9.

Hybrid multiplexing could potentially achieve Shannon efficiencies that allow read out of a megapixel

array with a handful of coaxial cables and twisted pairs. Let us consider a couple of scientific applications

that will require large multiplexed arrays.
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1.7 Bolometric Applications

Instruments with TES bolometers currently perform astronomy in the microwave, sub-mm, terahertz,

and far infrared, as well as terrestrial terahertz imaging, providing unsurpassed sensitivity in each band.

There are too many applications of TES bolometers to accurately describe each, so we will focus on one of

the most compelling: the measurement of the polarization of the cosmic microwave background (CMB).

After the inflationary epoch the universe consisted of a hot, dense plasma in thermal equilibrium with

a black body population of photons[65]. When the universe cooled enough to form neutral hydrogen (3000

K) the photons began to propagate without scattering. They have since redshifted into the microwave region

of the spectrum, with a peak frequency of 160.2 GHz corresponding to a temperature of 2.725 K.

A variety of mechanisms of scientific interest have slightly polarized the CMB. The polarization varies

across the sky and can be broken into two parts, a tensor curl-less or E-mode component, and a tensor

divergence-less or B-mode component. Primordial gravity waves from inflation impart a B-mode polarization

signature on the CMB[66]. The B-mode polarization component due to primordial gravity waves is expected

to be no more than 100 nK (Figure 1.11)[67]. Its detection would confirm theories of inflation in the early

universe and thus has great scientific importance.

Figure 1.11: [67].
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The two primary terrestrial observing sites for CMB astronomy are the Atacama desert in Chile[68][18]

and the south pole[69][50][70]. At the south pole the noise-equivalent temperature (NET ) is 200 µK
√

s in

the 150 GHz band and higher for higher frequency observing windows on the CMB[70].

The search for inflationary B-modes requires observation of a large area of sky from low multipole

moment ` ≈ 2 to ` ≈ 100. Surveying a hemisphere to that angular resolution with a single pixel would take

many hundreds of years. Therefore new instruments[71][72] for this work are being designed with tens of

thousands of pixels.

1.8 Spectroscopic Applications

Instruments with TES calorimeters currently perform optical photon counting for telecommunication

applications, x-ray spectroscopy for materials analysis, imaging x-ray spectroscopy for astronomy, γ-ray

spectroscopy for nuclear materials analysis, and α-particle spectroscopy for nuclear forensics, providing

record non-dispersive resolution in all of these applications.
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Figure 1.12: using a state-of-the-art high-purity germanium detector (grey line) and a TES microcalorimeter

(solid black). (Andrew Hoover, LANL)
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One compelling application is the non-destructive assay of nuclear materials for nuclear non-proliferation

and treaty verification. TES microcalorimeters can distinguish between the nearby peaks of 238Pu, 239Pu,

240Pu, and 241Pu (Figure 1.12) which a doped-germanium detector cannot. The ratio of 240Pu to 239Pu in

fuel from a nuclear reactor provides important evidence of whether it is being used to generate power or

make weapons.

Figure 1.13: with 256 pixels and a planar germanium detector of similar collection area.

Although these TES calorimeters have much better resolution than other detector technologies they

have less collection area per pixel (∆E ∝
√
C ∝

√
V ). To increase the count rate we therefore assemble

arrays of detectors (Figure 1.13) which require multiplexed readout. In the future we desire arrays of many

thousands of TES microcalorimeters.



Chapter 2

Theory

This section will explore the physical and electrical theory of the Microwave SQUID Multiplexer circuit

shown in Figure 2.1. Each input channel consists of a dissipationless rf SQUID coupled to a superconducting

quarter-wave resonator. The input channels are combined into a common output channel by capacitive

coupling to a microwave feedline.

Figure 2.1: . Current on the input coil of a SQUID-coupled resonator modulates the transmitted amplitude

and phase of an on-resonance microwave tone.
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We will derive the flux-variable resonance frequency of a SQUID-coupled resonator and the corre-

sponding modulation of the transmission of an on-resonance probe tone. We will match the resonance

frequency shift to the resonance bandwidth and derive the optimal readout power. We will conclude with a

noise theory that predicts the noise referred to flux in the SQUID.

2.1 Dissipationless rf SQUID

We use a dissipationless rf SQUID[73][74] to transduce a change in current in an input coil into a change

in inductive load of a microwave resonator. The SQUID consists of a superconducting loop interrupted by

an insulating tunnel barrier, called a Josephson junction.

2.1.1 Josephson Junction Inductance

Figure 2.2: Schematic representation of a Josephson Junction.

The tunneling supercurrent across a Josephson junction (Figure 2.2) depends on the difference in

phase of the superconducting wave function between the two sides of the junction[30][74]:

I = Ic sinφ (2.1)

where Ic is the so-called critical current of the junction and φ is the phase difference across the junction.

A voltage drop across the junction makes the phase evolve faster on the high-voltage side than on the

low-voltage side. Therefore the phase difference across the junction evolves in time:

dφ

dt
=

2eV

~
(2.2)
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These two equations are called the Josephson relations and have been verified by many experiments[31]. In

combination, they imply an effective self-inductance of the junction. Near any particular value of φ the rate

of change of current through the junction is:

dI

dt
= Ic cos(φ)

dφ

dt
(2.3)

= Ic cos(φ)
2eV

~
(2.4)

which implies

V =
~

2eIc cos(φ)

dI

dt
(2.5)

This voltage-current relation describes an effective inductance called the Josephson inductance:

L(φ) = LJ sec(φ) where LJ ≡
~

2eIc
=

Φ0

2πIc
(2.6)

where Φ0 = h
2e ≈ 2× 10−15 Webers is the quantum of magnetic flux. We can adjust Ic to achieve different

values of LJ . Note that this relation holds only for small oscillations in φ.

2.1.2 Non-hysteretic rf SQUIDs

Figure 2.3: Schematic representation of an rf SQUID.

An rf SQUID consists of a superconducting loop interrupted by a single Josephson Junction as shown

in Figure 2.3. The phase difference across the junction is initially φ = 0 and evolves with magnetic flux as:

φ =
2e

~

∫
dΦ

dt
dt (2.7)

=
2eΦ

~
(2.8)

= 2π
Φ

Φ0
(2.9)
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Because the loop has a self inductance LS the same current that tunnels across the junction also drives

magnetic flux the loop and therefore magnetic flux in the loop Φ is not in general a single-valued function

of externally applied magnetic flux Φe.

Φe = Φ− IcLS sin

(
2π

Φ

Φ0

)
(2.10)

Figure 2.4: for two values of λ ≡ LS/LJ . When λ > 1 the total flux may have multiple acceptable values

for a given value of applied flux.

To avoid hysteresis the total flux must be a single-valued function of the applied flux. Therefore Φe(Φ)

must be monotonic.

0 <
dΦe
dΦ

(2.11)

< 1− IcLS cos

(
2π

Φ

Φ0

)
2π

Φ0
(2.12)

< 1− 2πIcLS
Φ0

(2.13)

< 1− LS
LJ

(2.14)

We define λ ≡ LS/LJ . When λ < 1, the rf SQUID is non-hysteretic and when λ > 1, the rf SQUID is

hysteretic and can perform flux jumps between metastable states (Figure 2.4). A resistive shunt of the

junction is necessary to make these transitions predictable. Most rf SQUIDs use resistive shunts, but we
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desire a dissipationless SQUID to minimize the heat load in a large array and therefore operate without

shunts, targeting λ ≈ 1/3.

2.1.3 Measuring the SQUID Inductance

Figure 2.5: Circuit diagram of an rf SQUID screening another inductor.

To measure the inductance of the non-hysteretic rf SQUID we use it to screen an inductor in another

circuit (Figure 2.5). That other inductor therefore has an effective flux-variable inductance (Appendix B):

L(Φ) = Lc −
M2
c

LS + LJ sec(2πΦ/Φ0)
(2.15)

= Lc −
M2
c

LS

λ cos(2πΦ/Φ0)

1 + λ cos(2πΦ/Φ0)
(2.16)

Figure 2.6: for Lc = 77.6 pH, Mc = 1.65 pH, LS = 18.9 pH, and λ = 1/3. These values come from the

design in Section 7.1.5.2.
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For small values of λ this looks like a nearly cosinusoidal function of flux (Figure 2.6). The peak-to-

peak change in inductance is:

Lpp =
M2
c

LS

(
1

1 + λ−1
− 1

1− λ−1

)
(2.17)

=
M2
c

LS

2λ−1

λ−2 − 1
(2.18)

=
M2
c

LS

2λ

1− λ2
(2.19)

We are also interested in the rate of change of inductance with respect to flux at different values of flux:

dL

dφ
=
M2
c

LS

−λ sin(φ) (1 + λ cos(φ)) + λ sin(φ) (λ cos(φ))

(1 + λ cos(φ))
2 (2.20)

= −M
2
c

LS

λ sin(φ)

(1 + λ cos(φ))
2 (2.21)

In particular, the maximum rate of change of inductance at small λ occurs at φ = π/2 and is:

dL

dφmax
= −λM

2
c

LS
(2.22)

2.1.4 Junction Resistance and Capacitance

Practical Josephson junctions have some capacitance CJ and leakage resistance Rsg which shunt the

junction inductance (Figure 2.7).

Figure 2.7: SQUID circuit including leakage resistance and junction capacitance.

Typical values of SQUID and junction inductance are LS ≈ 20 pH and LJ ≈ 60 pH. From the junction

thickness and area we predict a parallel-plate capacitance of CJ ≈ 100 fF. This circuit resonates at between
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90 and 130 GHz depending on the average phase across the junction. We operate between 4 and 8 GHz, and

therefore this resonance does not affect our measurements.

For analysis of the screening currents that flow in the SQUID we consider LS in a series loop with

the parallel combination of the other three components (Appendix B.1). The effective load impedance then

becomes:

Zeff ≈ iω
(
Lc −

Mc
2

LS + LJ secφ

)
+

(ωMc)
2(iωCJ + 1/R)

(1 + λ cosφ)
2 (2.23)

For typical SQUIDs, the variation in effective load impedance due to the junction capacitance is therefore

less than 5% of the primary variation in effective load impedance due to junction inductance.

In similar junctions we measure leakage resistance of Rsg ≈ 100 Ω. For inductive coupling of Mc ≈

1 pH, this adds a real component of less than 50 µΩ to the effective load impedance, setting a limit on

internal Q (Section 2.4.3) of roughly one million.

These shunts do not substantially change the flux screening behavior of the SQUID. They do not

dramatically increase the loss. We therefore neglect CJ and Rsg in the rest of the analysis.

2.2 Resonance Frequency

To multiplex the SQUIDs in frequency space, we coupled each SQUID to a different resonator with

a unique resonance frequency. We therefore had to design resonators to resonate at microwave frequencies

and adjust resonator parameters so that the resonances do not overlap. Let us begin with the quarter-wave

resonator and then extend our analysis, first by capacitive coupling to the readout circuit, and then by

inductive coupling to the input circuit.



23

2.2.1 Ideal Quarter-Wave Resonator

Figure 2.8: , which consists of a transmission line that is open at one end and shorted at the other.

The ideal quarter-wave resonator is a dissipationless transmission line that is open at one end and

shorted at the other (Figure 2.8). No current flows at the open end. No voltage exists at the shorted end.

The only standing waves that can match these boundary conditions are those for which (2n+1)λ4 = l, where

l is the length of the transmission line.

For a length l of transmission line of phase velocity vp the frequency of the first mode is:

f1 =
vp
4l

(2.24)

More precisely, voltage and current waves of frequency ω on a transmission line with phase velocity vp can

be written as:

V (z) = V +
0 e−iβz + V −0 eiβz (2.25)

I(z) =
V +

0

Z1
e−iβz − V −0

Z1
eiβz (2.26)

where β ≡ ω
vp

. Since the transmission line shorts to ground at z = 0 we have

V (0) = V +
0 + V −0 = 0 (2.27)

I(0) =
V +

0

Z1
− V −0
Z1
≡ I, (2.28)
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where I is the magnitude of the current oscillation at the shorted end of the quarter-wave transmission line.

This implies a standing wave configuration of fields within the transmission line:

V (z) = −iIZ1 sin(βz)

I(z) = I cos(βz)

(2.29)

(2.30)

Note that the voltage and current are π/2 out of phase.

2.2.2 Capacitive Coupling

To couple the quarter-wave resonator to the external world we replace the open with a small capaci-

tance Cc to the center conductor of another transmission line (Figure 2.9).

Figure 2.9: Circuit diagram of a quarter-wave resonator capacitively coupled to a microwave feedline.

The resonance frequency of this structure is the frequency at which the capacitively coupled resonator

presents an effective short to the feedline. This occurs at the frequency where the reactance of the coupling

capacitor exactly cancels the reactance of the quarter-wave transmission line. A length of lossless transmission

line transforms a load impedance (Figure 2.10) as follows[75]:

Z = Z1

ZL + iZ1 tan
(
ω l
vp

)
Z1 + iZL tan

(
ω l
vp

) . (2.31)
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Figure 2.10: A length of transmission line, terminated with a load impedance.

For a shorted quarter-wave transmission line the transformed impedance is simply

Z = iZ1 tan

(
ω
l

vp

)
. (2.32)

This impedance is in series with the impedance of the coupling capacitor. The resonance condition is thus:

0 =
1

iω0Cc
+ iZ1 tan

(
ω0

l

vp

)
, (2.33)

which means that the resonance frequency must satisfy

ω0CcZ1 = cot

(
ω0

π

2ω1

)
(2.34)

where ω1 =
πvp
2l is the resonance frequency of the uncoupled resonator. This equation is transcendental but

can be solved for small ω0CcZ1 by expanding the cotangent around π/2.

ω0CcZ1 = cot

(
π

2
+

π

2ω1
(ω0 − ω1)

)
(2.35)

= 0− π

2ω1
(ω0 − ω1) +O

(
(ω0 − ω1)2

)
(2.36)

2ω0ω1CcZ1/π =≈ ω1 − ω0 (2.37)

ω0 (1 + 2ω1CcZ1/π) =≈ ω1 (2.38)

ω0 =≈ ω1

1 + 2ω1CcZ1/π
. (2.39)

Therefore the loaded resonance frequency is close to the quarter-wave resonance frequency but reduced by

the coupling capacitor:

f0 =
f1

1 + 4f1CcZ1
(2.40)

When only weak capacitance Cc � 1/4f0Z1 couples the resonators to the feedline, f0 ≈ f1 and the resonances

can be spaced by their physical length.
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2.2.3 Inductive Load

Instead of shorting the other end of the quarter-wave resonator, we terminate it with an inductor that

is screened by the SQUID (Figure 2.11). A change in the flux coupled to the SQUID changes the SQUID

inductance, and therefore the parameters of the resonator, including particularly the resonance frequency.

A resonator may thus be used to measure the flux in the SQUID.

Figure 2.11: A quarter-wave resonator coupled to a microwave feedline and loaded by an inductor screened

by an rf SQUID.

0 =
1

iω0Cc
+ Z1

iω0L cot
(
ω0

l
vp

)
+ iZ1

Z1 cot
(
ω0

l
vp

)
− ω0L

(2.41)

= (ω0CcZ1)

(
ω0L cot

(
ω0

l

vp

)
+ Z1

)
− Z1 cot

(
ω0

l

vp

)
− ω0L (2.42)

Expanding around the quarter-wave resonance frequency ω1:

0 = ω2
1LCcZ1

(
π

2
− πω0

2ω1

)
+ ω0CcZ

2
1 − Z1

(
π

2
− πω0

2ω1

)
− ω0L (2.43)

= ω2
1LCc

(
1− ω0

ω1

)
+ 2ω0CcZ1/π −

(
1− ω0

ω1

)
− 2ω0L/πZ1 (2.44)

=
ω0

ω1

(
1 + 2ω1CcZ1/π + 2ω1L/πZ1 − ω2

1LCc
)
− 1 + ω2

1LCc (2.45)
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Therefore the adjusted resonance frequency is close to the quarter-wave resonance frequency but reduced by

both the coupling capacitor and the load inductor.

ω0

ω1
=

1− ω2
1LCc

1 + 2ω1CcZ1/π + 2ω1L/πZ1 − ω2
1LCc

(2.46)

Since we will design the coupling capacitor so that 1
ω1Cc

� Z1 and the load inductor so that ω1L� Z1, we

can discard the quadratic terms:

f0 =
f1

1 + 4f1CcZ1 + 4f1L/Z1
(2.47)

2.2.4 Variation in Load Inductance

The resonance frequency ω0 therefore shifts with small changes in L:

∂ω0

∂L
=

−ω1

(1 + 2ω1CcZ1/π + 2ω1L/πZ1)
2 (2ω1/πZ1) (2.48)

= −2ω0
2

πZ1
(2.49)

or

∂f0

∂L
= −4f2

0

Z1
(2.50)

Combining this with the small changes of load inductance with flux in the SQUID we see

f0(φ) ≈ f1 − 4f2
1CcZ1 −

4f2
1Lc
Z1

+
4f2

1λMc
2

Z1LS
cosφ (2.51)

Figure 2.12 shows this variation in resonance frequency for the actual design parameters from Section 7.1.5.2.
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Figure 2.12: for Lc = 77.6 pH, Mc = 1.65 pH, LS = 18.9 pH, λ = 1/3, and an unperturbed resonance

frequency of 6 GHz. These values come from the design in Section 7.1.5.2.

2.3 Resonator Bandwidth

On resonance, the resonator looks like a perfect short and reflects all microwave power. Far from

resonance, the resonator looks like an open and therefore all microwave power passes it by unperturbed. We

now consider how quickly the resonator transitions from reflection to transmission.

2.3.1 Resonance Shape

The reflection coefficient for a microwave signal encountering an impedance mismatch is:

Γ =
ZL − Z0

ZL + Z0
(2.52)

In our setup the resonator is an impedance in parallel with a Z0 termination. This means that:

Γ−1 =
ZL + Z0

ZL − Z0
(2.53)

=
1 + Z0/ZL
1− Z0/ZL

(2.54)

=
1 + Z0

(
1
Z0

+ 1
ZR

)
1− Z0

(
1
Z0

+ 1
ZR

) (2.55)

=
2 + Z0/ZR
−Z0/ZR

(2.56)

= − (1 + 2ZR/Z0) (2.57)
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Figure 2.13: describing a vertical line in the complex plane and Γ describing a circle.

If the resonator has negligible losses then ZR is purely imaginary and Γ−1 is a vertical line in the

complex plane that passes through (-1, 0) as in Figure 2.13. If a set of complex numbers forms a straight line in

the complex plane then the set of their multiplicative inverses forms a circle. Specifically, if Γ−1 = −1−i tan θ

then

Γ = − cos2 θ + i sin θ cos θ (2.58)

= −1

2
cos 2θ − 1

2
+
i

2
sin 2θ (2.59)

which describes a circle of radius 1/2 around (-1/2, 0), also shown in Figure 2.13. We usually measure

transmission S21 = 1 + Γ rather than reflection, but this clearly describes a circle in the complex plane too.

The most familiar way to describe the shape of a resonance is by the peak in reflected power or dip

in transmitted power.

|Γ|2 =
−1

1 + 2ZR/Z0

−1

1 + 2Z∗R/Z0
(2.60)

=
1

1 + 4Re (ZR) /Z0 + 4 |ZR|2 /Z2
0

(2.61)

Assuming negligible losses in the resonator and considering frequencies only slightly detuned from resonance:

|Γ|2 =
1

1 +
(

2∂|ZR|/∂ω
Z0

)2

(ω − ω0)
2

(2.62)
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Figure 2.14: for f0 = 6 GHz and Q = 20, 000.

which is recognizable as a Lorentzian lineshape (Figure 2.14) with a full-width half-maximum band-

width of

BW =
Z0

∂ |ZR| /∂ω
(2.63)

We often describe resonance widths by a dimensionless number Q ≡ ω0/BW called the quality factor:

Q =
∂(|ZR| /Z0)

∂(ω/ω0)
(2.64)

Similarly,

|S21|2 = 1− |Γ|2 (2.65)

=
1

1 +
(
BW/2
f−f0

)2 (2.66)

2.3.2 Coupled Q

We previously derived an expression for the resonator impedance:

ZR(ω) =
1

iωCc
+ Z1

iωL cot
(
ω l
vp

)
+ iZ1

Z1 cot
(
ω l
vp

)
− ωL

(2.67)

letting x ≡ ω/ω0,

|ZR(ω)| /Z0 ≈
Z1

Z0

ω0xL cot (xπ/2) + Z1

Z1 cot (xπ/2)− ω0xL
− x−1

ω0CcZ0
(2.68)
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so that

∂ |ZR(ω)| /Z0

∂x

∣∣∣∣
x=1

=
Z1

Z0

− (ω0Lπ/2) (ωCcZ1(ωL cot(π/2) + Z1)) + (Z1π/2 + ω0L) ((ωL cot(π/2) + Z1))

(ωCcZ1(ωL cot(π/2) + Z1))
2 +

1

ω0CcZ0

(2.69)

=
Z1

Z0

− (ω0Lπ/2) (ωCcZ1) + (Z1π/2 + ω0L)

(ωCcZ1)
2

(ωL cot(π/2) + Z1))
+

1

ω0CcZ0
(2.70)

≈ Z1

Z0

π

2 (ω0CcZ1)
2 (2.71)

By this calculation the coupled Q is:

Qc =
π

2ω0
2Cc

2Z0Z1

(2.72)

2.3.3 Response to Frequency Shift

On resonance, the response of Γ to a small detuning is the same as the response of Γ−1, but negative

(see Figure 2.13). We are most concerned with the voltage signal in the imaginary direction, since the

response to flux is mostly in this direction:

dΓ

dω
=

2

Z0

dZR
dω

(2.73)

= 2iQc/ω0 (2.74)

We measure the SQUID by interrogating the resonance with a fixed tone as its resonance frequency shifts.

For small frequency shifts, the result of shifting the resonator away from the tone is just the inverse of the

result of shifting the tone.

dS21

dω0
= −2iQc

ω0
(2.75)

2.3.4 Energy in the Resonator

Let us now explicity consider the energy in the resonator. This will allow us to confirm the calculations

we have already performed from an impedance perspective and yield some new insights. Stored energy in the

resonator sloshes back and forth between the electric field and the magnetic field, with minimum dissipation

occurring at the resonance frequency.
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Consider first only the quarter-wave resonator and coupling capacitor. The energy in the capacitor is:

E =
1

2
CcV

2 (2.76)

The rest of the energy is stored in the electric and magnetic fields between the inner and outer conductors of

the transmission line. The line has a capacitance per unit length C and inductance per unit length L, which

are related to the characteristic impedance and phase velocity:

Z1 =

√
L
C

C =
1

Z1vp

⇔

vp =
1√
LC

L =
Z1

vp

The energy stored in the electric field can be integrated over the length of the transmission line:

E =

∫ l

0

1

2
C (V (z))

2
dz (2.77)

=
I2Z2

1

2Z1vp

∫ l

0

sin2(βz)dz (2.78)

=
I2Z1

2vp

[
z

2
− sin(2βz)

4β

]l
0

(2.79)

=
I2Z1l

4vp

(
1− sin(2βl)

2βl

)
(2.80)

= I2Z1

(
π

8ω1
− sin(2βl)

8βvp

)
(2.81)

Similarly, the energy stored in the magnetic field is:

E =

∫ l

0

1

2
L (I(z))

2
dz (2.82)

= I2Z1

(
π

8ω1
+

sin(2βl)

8βvp

)
(2.83)

Resonance occurs when the energy in the capacitor accounts for the difference between the energy in the
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electric and magnetic fields in the transmission line.

1

2
CcV

2 =
I2Z1 sin(2βl)

4βvp
(2.84)

Cc
I2 cos2(βl)

ω2
0C

2
c

=
I2Z1 sin(βl) cos(βl)

βvp
(2.85)

C−1
c =

Z1ω
2
0 tan(βl)

βvp
(2.86)

ω0CcZ1 = cot(ω0
l

vp
) (2.87)

This is a good check of our result from matching impedances. The consideration of energy stored in the

load inductance follows a similar argument. Finally, note that although the sinusoidally varying term in the

energy is critical to determining the resonance frequency it is a small fraction of the total energy stored in

the resonator.

E ≈ I2Z1

16f0
(2.88)

2.3.5 Driven Steady-State

On resonance, the resonator looks like a short between the conductors of the feedline. This means

that in steady-state the resonator enforces a voltage node on the feedline. If a voltage wave arrives from the

left it must be reflected back to the left, inverted.

Figure 2.15: Illustration of the voltage waves for a resonator driven on resonance.
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We can view this as a superposition of voltage waves as in Figure 2.15. By symmetry the two voltage

waves, of amplitude VL and VR, generated at the resonator must propagate identically to the left and right.

The third voltage wave, of amplitude Vin propagates from the source to the right. The sum of these waves

must have a voltage node at the resonator:

VL = VR = −Vin (2.89)

Although the resonator enforces a voltage node, current still flows in and out of the resonator from the

feedline.

−iω0LI =
dV

dz
(2.90)

The voltage wave from the source is continuously differentiable, and therefore supplies no current to the

resonator. All the current into the resonator comes from the discontinuity in the derivative of the resonator

voltage wave.

I cos(βl) =
ivp
ω0Z0

((iβVR)− (−iβVL)) (2.91)

=
2vpβVin
ω0Z0

(2.92)

=
2Vin
Z0

(2.93)

We can therefore describe the energy in the resonator in terms of the voltage wave on the feedline

E =
Z1π

8ω0
I2 (2.94)

=
Z1π

8ω0

4V 2
in

Z2
0

sec2(βl) (2.95)

=
πPinZ1

ω0Z0
sec2(βl) (2.96)

≈ πPin
ω0

1

ω0
2Cc

2Z0Z1

(2.97)

=
2QcPin
ω0

(2.98)

2.3.6 Power Dissipation in the Terminations

The steady-state calculation does not determine how quickly the resonator adjusts to a change in drive.

No power enters or leaves the resonator. All input power reflects back to the source. We must calculate
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power loss from an excited resonator in the absence of a input drive to know how quickly the resonator rings

up or down.

Each time a traveling wave inside the resonator reflects from the coupling capacitor, some power leaks

onto the feedline and dissipates at the terminations. The energy in the transmission line propagates down

and back in τ = 2l
vp

. Thus, the internal power incident on the capacitor is

Pi =
E

τ
(2.99)

≈ Eω0

π
(2.100)

This power is constantly reflecting from a load that looks like ZL = 1
iωCc

+ Z0

2 , which has a reflection

coefficient of

Γ =
ZL − Z1

ZL + Z1
(2.101)

=
1

iω0Cc
+ Z0

2 − Z1

1
iω0Cc

+ Z0

2 + Z1

(2.102)

=
1 + iω0Cc

(
Z0

2 − Z1

)
1 + iω0Cc

(
Z0

2 + Z1

) (2.103)

For small capacitance, almost all the power reflects, but some disappears into the terminations:

1− |Γ|2 = 1−
1 + iω0Cc

(
Z0

2 − Z1

)
1 + iω0Cc

(
Z0

2 + Z1

) 1− iω0Cc
(
Z0

2 − Z1

)
1− iω0Cc

(
Z0

2 + Z1

) (2.104)

= 1−
1 + ω0

2Cc
2
(
Z0

2 − Z1

)2
1 + ω0

2Cc
2
(
Z0

2 + Z1

)2 (2.105)

=
2ω0

2Cc
2Z0Z1

1 + ω0
2Cc

2
(
Z0

2 + Z1

)2 (2.106)

≈ 2ω0
2Cc

2Z0Z1 (2.107)

which makes the dissipated power

Pdiss =
2Eω0

π
ω0

2Cc
2Z0Z1 (2.108)

This power loss is twice the drive necessary to maintain the resonator at an internal energy E, which makes

sense if we consider that each voltage wave emanating from the resonator would carry Pin if there were not
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other voltage waves on the line. This power loss also gives the coupled Q:

Qc =
ω0E

Pdiss
(2.109)

=
π

2ω0
2Cc

2Z0Z1

(2.110)

in full agreement with the impedance-based bandwidth calculation.

2.3.7 Antinode Current

The coupling quality factorQc determines energy in the resonator for a given input power and therefore

the current oscillation at the resonator short:

E =
Z1π

8ω0
I2 =

2PinQc
ω0

(2.111)

I2 =
16PinQc
πZ1

(2.112)

I = 4
√
QcPin/πZ1 (2.113)

In terms of voltage oscillation on the feedline this means

I =
2Vin
Z0

√
2QcZ0

πZ1
(2.114)

This current oscillation will modulate the flux in the SQUID and therefore limit the microwave power we

can apply for SQUID readout. Let p be the peak-to-peak measure of flux oscillating in the SQUID in units

of magnetic flux quanta.

p ≡ 2IMc

Φ0
(2.115)

= Vin
4Mc

Φ0Z0

√
2QcZ0

πZ1
(2.116)

Conversely, we can describe the voltage wave on the feedline in terms of flux in the SQUID:

Vin =
pΦ0Z0

4Mc

√
πZ1

2QcZ0
(2.117)

We can also write the internal power in terms of flux in the SQUID:

Pi = 2f0E =
p2Φ0

2Z1

32Mc
2 (2.118)
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2.3.8 Matching Frequency Shift to Bandwidth

In general, we choose the bandwidth for a resonator and then try to match the SQUID response to that

bandwidth. If the peak-to-peak SQUID response is less than the bandwidth, we sacrifice possible SQUID

gain. If the peak-to-peak SQUID response is greater than the bandwidth, there are two problems. First,

SQUID response becomes more of a square wave than sinusoidal. Second, measurement at high microwave

power risks resonator bistability[76]. Let η = ∆ω/BW be the coupling strength:

η =
2ω0

2

πZ1

(
M2
c

LS

2λ

1− λ2

)
Qc
ω0

(2.119)

=
4ω0Qc
πZ1

M2
c

LS

λ

1− λ2
(2.120)

This allows us to write

Qc =
ηπZ1LS

4ω0Mc
2

1− λ2

λ
(2.121)

When the bandwidth matches the frequency shift the transmission looks like Figure 2.16.

Figure 2.16: through the SQUID for a matched resonator. Red is high transmission and blue is low trans-

mission.

Tracking the resonance in frequency space with a phase-locked loop could allow overcoupled operation,
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although it does not relax the constraint on readout power due to resonator bistability. This technique may

be useful in the future, for example to read out magnetic calorimeters[9][10], which may require lower flux

noise.

2.3.9 Crosstalk and Resonance Spacing

Consider a voltage wave travelling along the feedline and passing two resonators of variable resonance

frequency. The transmission coefficient for the system is then:

S21 = (1 + Γ1)(1 + Γ2)(1 + Γ1Γ2 + Γ1
2Γ2

2 + ...) (2.122)

=
(1 + Γ1)(1 + Γ2)

1− Γ1Γ2
(2.123)

=
(Γ1
−1 + 1)(Γ2

−1 + 1)

Γ1
−1Γ2

−1 − 1
(2.124)

=
4ZR1ZR2

Z0
2

4ZR1ZR2

Z0
2 + 2ZR1

Z0
+ 2ZR2

Z0

(2.125)

=
2

2 + Z0

ZR1
+ Z0

ZR2

(2.126)

If the resonators are lossless and we are in the regime where ZR ∝ iω we can rewrite S21 is terms of BW :

S21 =
2

2− i
(
BW
ω−ω1

+ BW
ω−ω2

) (2.127)

Let us consider the response to small changes in resonance frequency for ω on resonance with an unperturbed

ω1, with an unperturbed ω2 spaced n bandwidths away:

∆S21 =
−2(

2− i
(
−BW

∆ω1
− BW

nBW

))2

(
−iBW −1

(nBW )2

)
(−∆ω2) +O(∆ω2

2) (2.128)

≈ i

2n2
(

1 + i
(
BW
2∆ω1

+ 1
2n

))2

∆ω2

BW
(2.129)

The crosstalk vanishes for ∆ω1 = 0 as we expect because the voltage wave is fully reflected and never reaches

the second resonator. One can show that the crosstalk into the imaginary component of S21 is maximized

for BW
2∆ω1

+ 1
2n =

√
3 so that the maximum crosstalk is:

Im[∆S21] ≈ 1

2n2

1− 3

(1 + 3)2

∆ω2

BW
(2.130)

≈ −1

16n2

∆ω2

BW
(2.131)
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To keep crosstalk between neighboring resonators at less than a part per 1,000 we therefore space resonators

by at least ten times their bandwidth.

2.4 Losses in the Resonator Circuit

We have already considered loss in the Josephson junctions in Section 2.1.4. We will consider three

additional loss mechanisms: loss to free-space radiation, loss in the transmission line, and loss in the flux

input circuit. If we design the multiplexer correctly, none of these losses should compare to the power

dissipated in the terminations of the input and output ports.

2.4.1 CPW Radiation

The losses due to radiation from a quarter-wave resonator with dielectric below and free-space above

can be given as[77]:

Qrad =
π(1 + ε)2

2ε5/2
η0

Z0

1

I ′(ε, n)

1

n− 1/2

(
L

s

)2

(2.132)

where η0 = 377 Ω is the impedance of free space, n is the mode number, ε is the dielectric constant of the

substrate, and s is the spacing between the centerlines of the two slots. I
′
(ε, n) is an integral that can be

calculated numerically[77], e.g. for ε = 10 and n = 1:

I
′
(10, 1) = 1.62 (2.133)

and thus we find that for our fundamental oscillations with ε ≈ 10

Qrad ≈ 5.6

(
L

s

)2

(2.134)

for a typical design we might have L = 5300 µm and s = 16 µm so

Qrad ≈ 600, 000 (2.135)

This analytic calculation is a poor substitute for computational modeling, because it does not consider

such things as the conducting enclosure which is closer than a free-space wavelength to the CPW. We have

measured much higher internal quality factors in real devices.
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2.4.2 Dielectric Loss

Let us add lossy dielectric to the resonator. The attenuation constant in a coaxial transmission line

with a lossy dielectric between the ground and the center conductor is

α =
ω0 tan δ

2vp
. (2.136)

In a coaxial geometry the electric field is distributed evenly throughout the dielectric, but in a coplanar

waveguide geometry the electric field is non-uniform and mostly exists outside of the dielectric. We can

describe this with a loss tangent δ for the dielectric and a filling factor F that accounts for the distribution

of the electric field in the dielectric.

α ≈ ω0Fδ

2vp
(2.137)

This attenuation constant means that a voltage wave starting at the capacitor, travelling to the inductive

load, reflecting, and returning to the capacitor in time τ = 2l
vp

gets attenuated by e−2αl. For weak attenuation

this means that

Qd =
Eω0

P
(2.138)

=
Eω0

E
τ

(
1− (e−2αl)

2
) (2.139)

≈ ω0τ

4αl
(2.140)

=
ω0

2αvp
(2.141)

=
1

Fδ
(2.142)

Fδ ∼ 10−5 has been reported[78] at low power for niobium CPW (s = 10µm) resonators on sapphire. We

operate at higher power, which can saturate the two-level systems, and have measured Qi > 2× 106 for bare

resonators of niobium on high resistivity silicon.

2.4.3 Loss in the Flux Input Circuit

The circuit that feeds a magnetic flux signal to the SQUID (Figure 2.17) may present an impedance

with a real component. Microwave power in the resonator may therefore dissipate in the input circuit.
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Figure 2.17: coupling to both the resonator and each other.

There are two ways for the microwave power to couple to the input circuit. First, there is an un-

avoidable parasitic coupling (Mp) from the resonator termination into the input coil. Second, the resonator

drives (Mc) microwave currents in the SQUID loop which then couple to the input coil (Min) . Maximum

coupling occurs when φ = π and the SQUID effectively ”anti-screens” flux from the resonator. Solving the

coupled set of linear equations gives (Appendix B.2):

Re[ZL] ≈ RF
Mc

2Min
2 + 4LS

(
LSMp

2 +MinMcMp

)(
2LS(Lin + LF ) +Min

2
)2 (2.143)

where we have modeled the input impedance as an L/R-filter because in practice we place inductive chokes

LF shunted by resistors RF on the input coils to prevent microwave power from reaching the input devices.

A resistive termination on the quarter-wave resonator results in a power loss of

P =
I2Re[ZL]

2
(2.144)

=
4ω0ERe[ZL]

πZ1
. (2.145)

from which we can calculate a quality factor

Qf =
ω0E

P
(2.146)

=
πZ1

4Re[ZL]
(2.147)
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Plugging in the transformed filter resistance:

Qf =
πZ1

4RF

(
2LS(Lin + LF ) +Min

2
)2

Mc
2Min

2 + 4LS
(
LSMp

2 +MinMcMp

) (2.148)

which we can increase by increasing LF and decreasing RF .

2.4.4 Smin21

We measure the transmitted and reflected power before it dissipates in the matched terminations of

the external ports, and so Qc differs from the other Qs in its effect on the resonance circle. Qc sets the

bandwidth of the resonance but has no effect on Smin21 . If the resonator is lossless, Smin21 = 0 because on

resonance the resonator becomes a perfect short and reflects all power. If power dissipates in the resonator:

Pdiss =
(
1− |S21 − 1|2 − |S21|2

)
Pin (2.149)

= 2Pin
(
Re[S21]− |S21|2

)
(2.150)

On resonance, the impedance of a lossy resonator becomes purely real, so

Pdiss = 2Pin
(
Smin21 − (Smin21 )2

)
(2.151)

= 2PinS
min
21

(
1− Smin21

)
(2.152)

=
ω0E

Q
Smin21

(
1− Smin21

)
(2.153)

≈ ω0E

Q
Smin21 (2.154)

and therefore

Smin21 =
Q

Qi
(2.155)

Note that

Pdiss ≈ 2Pin
Q

Qi
(2.156)

will be useful for calculating cold-stage heating, but that for a particular SQUID design, biased for maximum

signal-to-noise, PinQ is constant.

2PinQ =
Z1πp

2Φ0
2

32M2
(2.157)

Therefore improvements in Qi reduce the per-pixel heat load.
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2.5 Flux Noise

We will consider four sources of noise: Johnson noise in the flux input circuit, intrinsic flux noise in

the SQUID, HEMT noise, and two-level system (TLS) noise in the resonator.

2.5.1 Johnson Noise

The lossy input filter can drive noise currents through the input coil of SI = 4kBT/RF that couples

to the SQUID through Min. For example, at a base temperature of 300 mK, RF ≈ 0.2 Ω, and Min ≈ 88 pH,

this produces roughly 0.2µΦ0/
√

Hz. This noise is small compared to the other sources of noise in the system.

2.5.2 SQUID Noise

The dissipationless rf SQUID lacks an analog to Johnson noise to the extent that it is truly dissipa-

tionless, but there are other common mechanisms of noise in SQUIDs that can apply. One is fluctuations of

the junction critical current[79][80] and another is the flipping of magnetic dipoles on the SQUID loop[81].

Both mechanisms produce noise where the spectral density scales inversely with frequency, so-called 1/f

noise.

Experiments have shown that in the NIST dc SQUIDs Johnson noise in the shunt resistors dominates

to well below 1µΦ0/
√

Hz at 1 Hz. Since we use a similar layout and similar fabrication process to the NIST

dc SQUID, we expect these noise contributions to be small.
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2.5.3 HEMT noise

Let us calculate the noise due to the HEMT amplifier, referred to flux in the SQUID. This is entirely

determined by the SQUID gain at maximum power:

dV

dΦ

∣∣∣∣
ω=ω0, Φ=Φ0/2

= Vin
dIm(S21)

dω

dω0

dL

dL

dφ

2π

Φ0
(2.158)

=
pΦ0Z0

4Mc

√
πZ1

2QcZ0

2Qc
ω0

−2ω0
2

πZ1

−λMc
2

LS

2π

Φ0
(2.159)

= ω0pλ
Mc

LS

√
2πQcZ0/Z1 (2.160)

≈ ω0p

√
π2ηλZ0

2ω0LS
(2.161)

we will generally desire η ≈ 1 and p ≈ 1/π, i.e. matched coupling with a strongly driven but not over-driven

SQUID:

dV

dΦ

∣∣∣∣
ω=ω0, Φ=Φ0/2

≈ ω0

√
Z0

2ω0LJ
(2.162)

At this gain, the voltage noise of the HEMT, SV = 4kBTNZ0 refers to a flux noise in the SQUID of

SΦ|f=f0, Φ=Φ0/2
≈ 4kBTNLJ

πf0
(2.163)

For TN = 6 K, f0 = 6 GHz, and LJ = 60 pH this is a noise of 0.58µΦ0/
√

Hz.

Note that it is possible to improve the gain at the steepest slope of the SQUID response curve by

overcoupling η > 1. However, this reduces the gain at other values of flux.

2.5.4 TLS noise

Another major source of noise is fluctuations in two-level systems (TLS) in the resonator[58][82][78].

Where these have an electric dipole moment and feel the electric field of the resonator, they affect the dis-

tributed capacitance when they switch state. They therefore produce fluctuations in the resonance frequency.
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Considering only the gain from flux to frequency:

1

f0

df0

dΦ

∣∣∣∣
f=f0, Φ=Φ0/2

=
1

ω0

dω0

dL

dL

dφ

2π

Φ0
(2.164)

=
4λω0Mc

2

Z1LSΦ0
(2.165)

=
ηπ

QcΦ0
(1− λ2) (2.166)

we again consider the matched state, η ≈ 1, and small λ:

1

f0

df0

dΦ

∣∣∣∣
f=f0, Φ=Φ0/2

≈ π

QcΦ0
(2.167)

for Qc ≈ 20, 000 this gain becomes 1
f0

df0
dΦ = 1.4× 10−4/Φ0. Referring frequency noise through this gain:

SΦ|f=f0, Φ=Φ0/2
≈
(
QcΦ0

πf0

)2

Sf0 (2.168)

2.6 Flux-ramp Modulation

A necessary component of any SQUID multiplexer is a method for linearizing the SQUID response.

Conventionally one linearizes with an active feedback loop that maintains the SQUID at a particular flux

bias point. The feedback current is then directly proportional to the input current. The Microwave SQUID

Multiplexer cannot use this technique because it would have to apply feedback to every SQUID in the array,

re-introducing the multiplexing problem.

The alternative method we propose is flux-ramp modulation. We apply a periodic ramp that sweeps

through multiple flux quanta in the SQUIDs, and require the slew rate of this ramp to greatly exceed that

of any expected input signal. An input signal therefore looks like a flux offset during the duration of the

ramp and produces a phase-shift in the SQUID response.

φ = 2π
Φ

Φ0
(2.169)

To measure flux in the SQUID, we track the phase of the SQUID response. This method linearizes the

SQUID response up to a slew-rate set by the frequency and amplitude of the flux-ramp. Most importantly,

it can linearize all the SQUIDs in a large array using a single low-frequency flux bias line to apply the
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flux-ramp to every SQUID in the array. As a bonus, the flux-ramp modulates the input signal of the SQUID

up to higher frequencies, and can therefore avoid low-frequency noise in the amplifier chain after the SQUID.

Flux-ramp modulation increases readout noise relative to open-loop readout on the steepest slope

of the SQUID response or readout in a flux-locked loop. The noise increases because some measurements

during the ramp occur near extrema of the SQUID response curve, where it is insensitive to magnetic flux.

Assuming stationary noise and a sinusoidal SQUID response we can calculate the effective degradation

in signal-to-noise. The signal-to-noise of independent measurements adds in quadrature. With stationary

noise the signal-to-noise is proportional to the slope of the SQUID response and the degradation factor α is

α =
1

2π

∫ 2π

0

(
d

dφ
sinφ

)2

dφ (2.170)

=
1

2π

∫ 2π

0

cos2 φdφ (2.171)

=
1

2
(2.172)

We should therefore expect at least a
√

2 increase in flux noise when using flux-ramp modulation. This noise

increase is balanced by the ability to linearize the response of all the SQUIDs in an array and modulate their

input signals using a single pair of wires.
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Fabrication

These devices were fabricated by Leila Vale and Gene Hilton in the Quantum Fabrication Facility at

NIST in Boulder, CO.

3.1 Substrate

To minimize two-level systems in the substrate, these devices are fabricated on 3 inch diameter wafers

of high-resistivity silicon[83] (ρ > 104 Ω cm2, 380 µm). The wafers are covered with a 20 nm layer of SiO2.

3.2 Junction Fabrication

SQUID fabrication requires Josephson junctions with reliable critical current density Jc and minimal

leakage current. The NIST process for Josephson junctions begins with a trilayer deposition in vacuum:

deposit niobium (200 nm), deposit a thin layer of aluminum (∼ 7 nm), flow oxygen to oxidize it, and deposit

more niobium (120 nm). The entire wafer thus begins as a Josephson junction. The trilayer process has

been tuned over the last 10 years and produces repeatable critical current density and low leakage across the

wafer. The current rf SQUIDs use a Jc = 0.5µA/µm2 adaptation of the standard Jc = 5µA/µm2 trilayer

recipe used the NIST time-division SQUID multiplexers.

The top two layers are etched away over most of the wafer, leaving isolated junction pillars. An

additional niobium wiring layer subsequently connects these junctions to SQUID loops.
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3.3 SQUID and Resonator Fabrication

Figure 3.1: Diagram of the main layers of the microwave SQUID process.

Standard photolithography techniques pattern etch masks for the junctions, resonators, and SQUID

wiring. The SQUID loop is defined in the base layer of niobium with a CF4/O2 reactive ion etch. This etch

creates sloped sidewalls and therefore makes wiring crossovers more reliable. A silicon dioxide insulating

layer is deposited (350 nm) and vias are etched in it to expose the junction islands and allow reconnection

to the base niobium layer. A new layer of niobium is deposited (300 nm) that connects to these junctions

and the base niobium. This layer constitutes the second wiring layer, while the base layer of the trilayer

deposition constitutes the first wiring layer. These layers are shown in Figure 3.1.

The wiring pattern in the new layer is defined with an SF6 reactive ion etch. This etch creates vertical

sidewalls and appears to give much higher internal Q in niobium resonators. It is also used to define the

coplanar waveguide resonators in the first layer of niobium.

Since the resonator is defined in the first layer of niobium, it will have had silicon dioxide deposited

over it, then Niobium, and then the second layer of niobium etched away. At the end of the process, the

silicon dioxide is etched away wherever possible to reduce the two-level system noise.

There is also a deposition and etch of a 2 Ω/� layer of PdAu (135 nm) for the filter resistors.
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Measurement Setup

Early work (µmux07a, µmux09a) took place in a dilution refrigerator in Konrad Lehnert’s lab at JILA,

with the HEMT in liquid helium at 4 K and the resonators at 17 mK. Later work (µmux09a, µmux10b)

took place in an adiabatic demagnetization refrigerator (ADR) at NIST (Figure 4.1), with the HEMT at 3

K and the resonators at temperatures ranging from 70 mK to 350 mK depending on the measurement.

Figure 4.1: (ADR) at NIST, configured for microwave measurements.

Most experiments begin with sweeps on a network analyzer to identify the resonance frequency, Q’s,
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and flux-dependence of the resonances. We then interrogate specific resonances using a homodyne setup

(Figure 4.2) to measure of the amplitude and phase of the microwave signal transmitted through the multi-

plexer.

This setup generates a microwave signal and splits it into two arms: a reference arm and a measurement

arm. The measurement arm enters the cryostat, passes through the multiplexer, and returns to room

temperature through the HEMT amplifier. The two arms mix at room temperature in an I-Q mixer, which

extracts the amplitude of the in-phase and quadrature-phase components of the measurement signal with

respect to the reference signal. The phase shifter on the reference arm rotates the signal in the I-Q plane to

place first-order phase shifts (Im[S21]) in one quadrature.

The expected input power of the local-oscillator (LO) port of the mixer determines the microwave

power at the outputs of the splitter and a variable attenuator at room temperature to determines the

microwave power entering the cryostat. The measurement signal passes through another attenuator at 3 K

and a directional coupler at base temperature. It then enters the multiplexer chip and passes by the resonance

structures which modulate the transmitted amplitude and phase. It then passes through a circulator to the

HEMT amplifier. A room-temperature amplifier boosts the signal to the expected input power of the RF

port of the mixer. The two arms mix and produce two low-frequency signals that we digitize and analyze.

We want the multiplexer chip to see cold 50 Ω terminations on both ports to minimize the noise

temperature of the feedline. The measurement signal begins with a noise temperature of 300 K. We reduce

this noise temperature with a -20 dB attenuator at 3 K and a -20 dB directional coupler at base temper-

ature. The directional coupler dissipates the incident power a different termination than it presents to the

multiplexer, so that that one doesn’t heat. A circulator provides the cold termination on the output side

of the multiplexer and isolates it from the HEMT, which has an input noise temperature of roughly 5 K.

Figure 4.3 shows the actual microwave components at 3 K and base temperature.
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Figure 4.2: Schematic of the measurement apparatus for a single pixel.
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To minimize the heat load on the ADR we use copper-nickel coaxial cables between 300 K and 3

K, thin copper-nickel coaxial cables between 3 K and the base temperature on the multiplexer input, and

thin niobium-titanium coaxial cables between 3 K and the base temperature on the multiplexer output. We

reduce the Wiedemann-Franz thermal conductivity by breaking the dc electrical connection of the coaxial

cables with inside/outside dc blocks. Without good heat sinking the center pin of the HEMT can get much

hotter than 3 K, so we heat sink it with a bias tee.

Figure 4.3: Photos of the microwave components in an ADR.

To simultaneously measure the flux in two SQUIDs, we used two synthesizers, two I-Q mixers, and

splitters to combine the tones on the input and send a copy of the transmitted signals to each mixer.

Figure 4.4: Schematic of the setup for measurement with two tones.



53

Appendix A lists the instruments and components used in this work.

4.1 Open-Source Electronics

A collaboration including our research group, several MKID groups, and several groups of digital

electronics engineers, has been developing open-source electronics to read out microwave frequency divi-

sion multiplexers[84][85]. These electronics perform Software-Defined Radio (SDR), digitally generating a

superposition of measurement tones and digitally recording their transmitted amplitude and phase.

Figure 4.5: Photo of the open-source electronics.

The existing open-source electronics (Figure 9.2) uses two 1 GHz, 16-bit DACs to generate the mea-

surement tones. We can mix these tones with a 4-8 GHz carrier to upconvert them to the microwave

frequencies of interest, pass them through the multiplexer circuit, and mix them back down to baseband.

Two 550 MHz, 12-bit ADCs then extract the amplitude and phase.
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Design Summary

Subject to the constraints of the fabrication process and the physical theory, we designed, fabricated,

and tested multiple generations of Microwave SQUID Multiplexer:

• µmux07a was a proof-of-principle. It coupled simple, low-inductance dissipationless rf SQUIDs

to microwave resonators and the resonators to a common feedline. It explored overcoupled and

undercoupled regimes as well as rudimentary gradiometry and input filters. The primary goal was

to perform microwave readout of a dissipationless rf SQUID. The secondary goal was to achieve low

flux noise.

• µmux09a built on the success of µmux07a. The SQUID became a second-order gradiometer using

slit and slotted washers. Input coupling increased to achieve low current noise for coupling to TES

devices.

• µmux10b integrated the lessons of the previous designs to form a practical multiplexer for an array

of CMB TESs. This entailed tight packing of the resonances in frequency space, optimizations to

improve yield, and a common flux bias coil for flux-ramp modulation. The primary goal was a

two-pixel TES multiplexing demonstration.

The next three sections describe the design process and experimental results (resonance spacing, Q,

flux-dependence, flux-ramp modulation, crosstalk, noise) for these devices. They describe the major results

of µmux07a and µmux09a and give a comprehensive treatment of µmux10b, culminating in a multiplexing

demonstration with transition-edge sensors designed for polarimetry of the CMB.
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µmux07a: Low Flux Noise

6.1 Design

µmux07a was our first design to use dissipationless rf SQUIDs. It coupled 33 of these SQUIDs

to superconducting resonators with resonance frequencies around 5 GHz and bandwidths on the order of

1 MHz. We designed the SQUID-resonator coupling so that some SQUIDs were overcoupled and some

were undercoupled, included both gradiometric and non-gradiometric SQUID designs, and used microwave

blocking filters on the input coils.

6.1.1 Resonator Design

The transmission lines for the feedline and resonators are coplanar waveguides (CPW) of niobium

on high purity silicon. A coplanar waveguide consists of a center conductor with ground plane on both

sides separated by a gap (Figure 6.1). The simplicity of this geometry is particularly appealing because

it does not require dielectric between the conductors, avoiding a significant mechanism of loss and source

of two-level-system noise. The high critical temperature of niobium (Tc = 9.2 K) means that at operating

temperatures of roughly 300 mK there will be low thermal excitation of quasiparticles and therefore low

microwave loss. We have measured Qi > 2 × 106 in niobium resonators on high-purity silicon. (Leduc[83]

has measured Qi > 3 × 107 in titanium nitride resonators on high-purity silicon, but we do not need such

low loss.)
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Figure 6.1: showing center conductor with a ground plane on both sides.

The frequency noise Sδf0 of such CPW resonators exhibits a f−1/2 spectral dependence and scales

with geometry as s−1.6 and power as Pi
−1/2[58][78]. Gao reported the frequency noise at 1 kHz for resonators

made of various materials[82], including niobium with a 3 µm center strip and 2 µm gaps at various internal

powers. The internal power predicted by Equation 2.118 for these SQUIDs was roughly 0.1µW or -40 dBm,

and at this internal power Gao measured Sδf0/f0
2 ≈ 10−19/Hz.

This frequency noise implies (Equation 2.168) a flux noise of 0.5µΦ0/
√

Hz, exceeding the flux noise

due to the HEMT. We designed resonators with a 10 µm center strip and 6 µm gaps to reduce this noise.

We chose to fabricate 33 resonators on a chip, spacing them 30 MHz apart to ensure negligible

crosscoupling (Section 2.3.9). We used TX-line[86] to calculate the characteristic impedance Z1 = 50.3 Ω

and wavelength λ = 20.4 mm at 6 GHz, using ε = 11.45 for the silicon substrate at cryogenic temperatures[87].

The coupling capacitor and coupling inductor combine to lower the resonance frequency by 10%. We therefore

designed waveguides between 4 mm and 5 mm long, stepping the length by 25µm.

6.1.2 Resonator-Feedline Coupling

We designed coupling capacitors for a spread around Qc ≈ 3, 000 by simulating S13 of various designs

in Microwave Office, where ports 1 and 2 are the ports of the feedline and port 3 is the resonator side of the

coupler. From Section 2.3.6, this transmission coefficient relates to Qc by:

Qc =
π

1− |Γ|2
(6.1)

=
π

2|S13|2
(6.2)
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The simulations led to various interdigitated capacitor couplers (Figure 6.2) for resonances of various band-

widths.

Figure 6.2: Photos of interdigitated capacitors coupling resonators to the feedline.

Straps connected the ground planes on either side of the feedline. These straps are critical for consistent

Q and resonance spacing. Without them, oscillating voltage on the capacitor drives a coupled slotline mode

on the feedline. This mode cannot propagate off the chip and therefore develops standing waves. These

standing waves mean that the feedline presents a different effective impedance to resonators at different

positions on the chip.

As the ground strap crosses over the feedline it changes the capacitance to ground and can create

an impedance discontinuity. The feedline must constrict under the ground strap to maintain continuous

impedance. Simulations in Microwave Office led to the design in Figure 6.3.

Figure 6.3: on either side of the feedline.
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6.1.3 Critical Current

The standard trilayer process for the NIST dc-SQUID has a critical current density of Jc = 50µA/µm2.

A 10 µm2 junction requires (λ ≈ 1/3) a SQUID loop inductance of LS ≈ 2 pH to ensure non-hysteretic

operation. As this inductance is prohibitively small, we developed a Jc = 1.5µA/µm2 trilayer, with which

a 10 µm2 junction requires a loop inductance of LS ≈ 8 pH, still a small inductance, but reasonable to

fabricate in our cleanroom.

From this critical current Equation 2.163 predicts that at the optimal flux bias, the flux noise due to

the HEMT amplifier should be roughly 0.35µΦ0/
√

Hz for the SQUIDs with matched coupling and even less

for the overcoupled SQUIDs.

6.1.4 Coil Geometry

A SQUID is unfortunately sensitive to flux from magnetic fields in the environment, such as Earth’s

field, or the fields from magnetic materials in a telescope, cryostat, or office chair. Earth’s field drives a

magnetic flux quantum through a loop as small as 10 µm × 10 µm. This pickup degrades the SQUID as

an amplifier of the current through a specific low-temperature detector. Coil gradiometry (Figure 6.4) can

greatly reduce this pickup.

Figure 6.4: Schematic of a parallel, two-lobe (first-order) gradiometer with input coil.

Series gradiometry consists of twisting a loop so that it only couples to field gradients. Parallel

gradiometry consists of orienting parallel lobes so that they couple to a uniform field with opposite polarity;
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screening current flows around the circumference of the gradiometer, bypassing the Josephson junction,

cancelling the flux from a uniform field and leaving equal and opposite flux in the two lobes. Note that in a

parallel gradiometer the mutual inductance between input coil and SQUID is that of a single lobe, but the

SQUID self-inductance is divided by the number of lobes.

Gradiometric coils couple to higher-order terms in the multipole expansion of the magnetic field.

Distant sources produce dipole magnetic fields, and nearer sources can produce quadrupole fields, but the

winding of the input coil can generate octopole or even higher-order fields.

Figure 6.5: each inductively coupled to the current antinode of a resonator in µmux07a. Both photos show

the input filter consisting of a meander inductor shunted with a copper resistor.

µmux07a incorporated both non-gradiometric and first-order parallel gradiometric SQUID designs

(Figure 6.5). We used simulations of the coupling between the resonators and the SQUIDs to match the

peak-to-peak shift in resonance frequency to the resonator bandwidths, intentionally overcoupling some

SQUIDs and undercoupling others.

6.2 Filter Design

Microwave power from a resonator can potentially leak out on flux bias lines, degrading Qi or even

affecting the low-temperature detector on the input. To prevent this we placed inductive chokes on the input

lines (Figure 6.5).



60

The inductive chokes may be unnecessary, as any connection with a low-temperature detector is likely

to be made with wire bonds (∼1 nH/mm). We chose to avoid microwave analysis of the low-frequency

wiring and of the low-temperature detectors. To further eliminate the low-frequency input circuit from the

microwave analysis, we shunted the inductive chokes with resistors, forming high-bandwidth L/R filters on

the input lines.

6.3 Results

Measurements of µmux07a confirmed that we could fabricate multiple superconducting microwave

resonators on a chip, and that the resonance frequencies of the resonators shifted periodically with magnetic

flux in the SQUID. The dissipationless rf SQUIDs showed low open-loop flux noise at 100 kHz.

6.3.1 Resonance Spacing

We surveyed S21 of a µmux07a chip across wide frequency range. Not all resonances yielded, and

some clearly shifted from their design frequencies (Figure 6.6). The remaining resonances were spaced by

roughly 40 MHz with Qi varying between 20,000 and 40,000 and Qc varying between 2,000 and 6,000.

Figure 6.6: Survey of the µmux07a resonances.
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6.3.2 Flux-variable Resonance Frequency

These microwave resonances shifted with magnetic flux in their respective SQUIDs in full agreement

with the theory in Section 2.2.4. The transmission S21 traversed a circle in the complex plane, making the

strongest response in the imaginary component of S21 and with the excitation frequency roughly halfway

between the resonance frequency extrema.

Figure 6.7: . Clockwise from the color map: |S21| in color (blue is no transmission, red is unity transmission)

as a function of both frequency and magnetic flux, Lorentzian dips in transmitted power at different flux

biases, Im[S21] as a function of flux at different excitation frequencies, S21 in the complex plane at one

excitation frequency and multiple flux bias values. These data were obtained at excessive microwave power,

which distorts the resonance shape.

Figure 6.7 shows the first SQUID/resonator pair we examined in µmux07a[63]. It is strongly overcou-
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pled, so that variation in flux in the SQUID can shift the resonance with respect to a stationary excitation

to make the excitation on resonance or almost completely off resonance.

This coupling strength means that a strong microwave excitation can drive the resonator to bifurcation[76].

When the resonance frequency shifts dramatically over one period of the microwave excitation, the resonator

can occupy either of two modes which differ in the phase relationship between the microwave excitation on

the feedline and the standing wave in the resonator and in internal power. The switching between these

bistable modes disrupts any flux-locked loop or flux-ramp modulation scheme.

6.3.3 Flux Noise

To measure open-loop flux noise we bias to a steep slope of the Im[S21] vs. Φ curve, measure output

noise, and divide it by the slope of the curve. The results indicate the flux noise we would obtain operating

the SQUID in a flux-locked loop. The flux noise with flux-ramp modulation is worse by at least a factor of

√
2 than the open-loop flux noise at the modulation frequency. This penalty is even worse for overcoupled

SQUIDs because their response is not sinusoidal.

Figure 6.8: . The noise falls to 0.17 µΦ0/
√

Hz at 100 kHz. The 100 kHz tone comes from a known input

flux that calibrated the measurement.
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Using the homodyne measurement setup from Figure 4.2 to read out the SQUID, we observed open-

loop flux noise falling from 5µΦ0/
√

Hz at 10 Hz to 0.17µΦ0/
√

Hz at 100 kHz (Figure 6.8). Few SQUIDs

have demonstrated noise this low[88].

The low self-inductance of the SQUID limits the input coupling due to the fact that Min ≤
√
LsLin

and the practical limit on the number of turns on the input coil in a 20 µm × 20 µm area. The input coupling

for this SQUID was only Min ≈ 5 pH so the open-loop input current noise was roughly 100pA/
√

Hz. This is

comparable to the output current noise of many TES designs.

6.3.4 Flux-ramp Modulation

Figure 6.9: performed with µmux07a reproducing an input pulse and exponential decay.

We did not fully implement flux-ramp modulation because these SQUIDs had only a single input coil.

Instead, we drove the SQUIDs with the sum of a 5 kHz, 10 Φ0 sawtooth with a variety of slow functions,

e.g. an exponential decay with a τ ≈ 1.6 ms time constant.

We began by Nyquist sampling the SQUID response and averaging the response to many ramps to

form a Nyquist interpolated template function. We then performed a Wiener-optimal fit for the phase,

shifting the template function against each measured time trace, filtering the traces according to the power
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spectrum of the template.

We were able to reconstruct the slow input functions (Figure 6.9). The demodulated data matched

the input functions without any additional fitting parameters because readout with flux-ramp modulation

is linear according to φ = 2π Φ
Φ0

.

6.3.5 Summary

µmux07a demonstrated readout of a dissipationless rf SQUID coupled to a superconducting microwave

resonator. It showed we could achieve exceptionally low flux noise. It demonstrated flux-ramp demodulation

to linearize the SQUID response. These results were promising and suggested the development of a Microwave

SQUID Multiplexer with stronger input coupling to the SQUIDs for lower input current noise.



Chapter 7

µmux09a: Low Input Current Noise

7.1 Design

µmux09a was our first attempt to make a dissipationless rf SQUID for TES readout, meaning a SQUID

matched to the bandwidth of its resonator, with low input current noise, low environmental pickup, and two

flux bias lines. We therefore appropriated the design of the NIST dc-SQUID for time-division multiplexing

and adapted it for microwave operation.

7.1.1 Resonator Design

The resonator CPW expanded to a µm center conductor with 13 µm gaps to reduce the two-level

system frequency noise. We again coupled 33 resonators to the feedline with a target spacing of roughly 30

MHz.

7.1.2 Resonator-Feedline Coupling

µmux09a included several design splits, with coupling capacitors tuned for Qc ≈ 400, 900, 10,000, and

40,000. We will focus on results for the design for Qc ≈ 400.

7.1.3 Critical Current

The NIST dc-SQUID has a self-inductance of roughly 20 pH, requiring (λ ≈ 1/3) a junction with a

critical current of roughly Ic = 5µA. The fabrication team at NIST developed a Jc = 0.5µA/µm2 trilayer
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process that allowed us to use a 10 µm2 junction area. From this critical current Equation 2.163 predicts a

flux noise due to the HEMT amplifier of roughly 0.6µΦ0/
√

Hz.

7.1.4 Coil Geometry

Figure 7.1: . (µmux09a)

This SQUID loop is a second-order gradiometer consisting of four parallel lobes arranged like a clover-

leaf (Figure 7.1). Each lobe uses a slotted washer design with the input coil and feedback coil running in

the slots to minimize their capacitive coupling to the SQUID. The orientation of the lobes alternates around

the SQUID, making the SQUID insensitive to first-order gradients as well as uniform fields .

The flux bias coils alternate orientation from lobe to lobe and therefore generate fields that couple

strongly to the gradiometer. The flux-ramp coil makes a half-turn around each lobe and the input coil makes

one and a half turns around each lobe. The size of these lobes enables input coupling of Min ≈ 85 pH.

Since metal traces on the chip can re-broadcast uniform fields from the environment as higher-order

fields, we took care to symmetrize metal around the chip, either by 180◦ around the junction, or by reflection

across the axis of the resonator.
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7.1.5 SQUID-Resonator Coupling

There are several ways to couple microwave flux into the SQUID. Each design has a different induc-

tance matrix between the SQUID, resonator, flux-ramp coil, and input coil. We simulated different designs

with FastHenry[89] so that we could match the peak-to-peak shift in resonance frequency to the resonator

bandwidth.

7.1.5.1 Direct Coupling

Figure 7.2: Circuit diagram for an rf SQUID directly coupling to the current anti-node of a resonator.

The theory we developed in Section 2.1 considers inductively coupled rf SQUIDs, but anti-node current

flowing directly through the rf SQUID (Figure 7.2) produces a similar effect. Instead of a peak-to-peak change

in termination inductance of

∆Lpp =
2Mc

2

LJ(1− λ2)
(7.1)

direct coupling gives a peak-to-peak change of

∆Lpp =
2λ2LJ
1− λ2

(7.2)
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For LJ ≈ 60 pH, λ ≈ 1/3, Z1 ≈ 50 Ω, and f0 ≈ 6 GHz the peak-to-peak frequency shift in response to

magnetic flux is

∆f0 =
4f0

2Lpp
Z1

(7.3)

=
4f0

2

Z1

2λ2LJ
1− λ2

(7.4)

=
4(6 GHz)2

50 Ω

2 1
9 (60 pH)

1− 1
9

(7.5)

≈ 30 MHz (7.6)

Direct coupling is therefore ideal for very high-bandwidth resonances. We tested directly coupled SQUIDs

in µmux07a, but have since focused on narrower band resonances.

7.1.5.2 Weak Inductive Coupling

Antinode current that splits around the SQUID before it returns to ground (Figure 7.3) weakly

couples flux into the SQUID. The current that wraps around the SQUID is closer than the return current

on the ground plane and therefore creates a non-zero magnetic field in the lobes of the SQUID. The flux is

stronger in the two lobes closer to the resonator and changes sign from left to right, therefore coupling to

the gradiometric SQUID. This design does not require the resonator wiring to cross over the SQUID wiring.

Figure 7.3: . Crossovers are implemented with virtual connections.
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Mij (pH) SQUID Ramp Input Resonator

SQUID 18.9 30.9 87.5 1.65

Ramp 312 115 3.64

Input 1044 8.81

Resonator 77.6

Table 7.1: Simulated inductance values for a weak inductive coupling between the resonator and the SQUID.

The simulation (Figure 7.3 and Table 7.1) gives inductance values that determine the maximum

frequency shift in response to flux:

∆f0 =
4f0

2

Z1

2λMc
2

LS(1− λ2)
(7.7)

=
4(6 GHz)2

50 Ω

( 2
3 )(1.65 pH)2

(18.9 pH)(1− 1
9 )

(7.8)

≈ 310 kHz (7.9)

This weak inductive coupling is ideal for the narrowest bandwidth resonances that we can reliably space by

ten times their bandwidth. We use this coupler design for the high-Q splits of µmux09a and for µmux10b.

7.1.5.3 Strong Inductive Coupling

Antinode current that wraps completely around two lobes strongly couples flux into the SQUID. Again

this design generates a field with the appropriate second-order gradients to couple magnetic flux into the

SQUID gradiometer. For symmetry, current can continue directly down to the ground plane along the line

of symmetry, but it does not couple flux into the gradiometer. This design requires the resonator wiring to

cross over the SQUID wiring.
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Figure 7.4: . Crossovers are implemented with virtual connections.

Mij (pH) SQUID Ramp Input Resonator

SQUID 17.9 28.9 82.5 9.42

Ramp 308 104 20.2

Input 1017 51.9

Resonator 145

Table 7.2: Simulated inductance values for a strong inductive coupling between the resonator and the SQUID.

The simulation (Figure 7.4 and Table 7.2) gives inductance values that determine the maximum

frequency shift in response to flux:

∆f0 =
4f0

2

Z1

2λMc
2

LS(1− λ2)
(7.10)

=
4(6 GHz)2

50 Ω

( 2
3 )(9.42 pH)2

(17.9 pH)(1− 1
9 )

(7.11)

≈ 11 MHz (7.12)

The stronger SQUID-resonator coupling causes a much larger frequency shift. We use this coupler design

for the low-Q splits of µmux09a.
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7.1.5.4 Adjustable Inductive Coupling

Since resonator current that flows to ground along the line of symmetry does not couple flux into the

gradiometric SQUID, we can adjust the coupling of the strong inductive coupler by changing the distribution

of current between the three branches to ground. We add inductance on the side branches to make a larger

fraction of the current flow along the line of symmetry.

Figure 7.5: . Crossovers are implemented with virtual connections.

Mij (pH) SQUID Ramp Input Resonator

SQUID 18.3 29.7 84.6 5.46

Ramp 310 108 11.7

Input 1028 30.3

Resonator 186

Table 7.3: Simulated inductance values for a variable inductive coupling between the resonator and the

SQUID.

The simulation (Figure 7.5 and Table 7.3) gives inductance values that determine the maximum
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frequency shift in response to flux:

∆f0 =
4f0

2

Z1

2λMc
2

LS(1− λ2)
(7.13)

=
4(6 GHz)2

50 Ω

( 2
3 )(5.46 pH)2

(18.3 pH)(1− 1
9 )

(7.14)

≈ 3.5 MHz (7.15)

The extra inductance on the coupling branches reduces the SQUID-resonator coupling so that the frequency

shift is intermediate between the strong and weak inductive coupling designs. We have not used a coupler

of this design, but it may be useful in the future.

7.2 Filter Design

The stronger input coupling requires stronger microwave blocking filters (Figure 7.6) on both the

flux-ramp and input coils.

Figure 7.6: that block microwave power from reaching the input circuits.

With LF ≈ 7 nH and RF ≈ 0.2 Ω, Equation 2.148 sets a limit on the internal quality factor due to

losses in the filter on flux-ramp coil of Qf ≈ 5 × 105. The limit on the quality factor due to the input coil

filter is even higher. We have observed Qi > 2× 106 in bare resonators, so it is possible for the filter to set
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the Qi of the resonator, but Qi ≈ 5× 105 is enough to make the power losses in a multiplexer insignificant

in comparison to TES bias power.

7.3 Results

Measurements of µmux09a proved that complex SQUIDs work well in microwave resonant circuits.

These SQUIDs demonstrated low input current noise. The flux-ramp modulation wire did not yield in this

fabrication, so we could not demonstrate flux-ramp modulation.

7.3.1 Resonance Spacing

We surveyed S21 of a µmux09a chip designed for Qc ≈ 400 across wide frequency range. All resonances

yielded, spaced by roughly 30 MHz, with one shifting from its design frequency to interfere with another

(Figure 7.7).

Figure 7.7: on a chip designed for Qc ≈ 400. The 4.8 GHz dip is actually two colliding resonances. One

resonance is not shown.

7.3.2 Flux-variable Resonance Frequency

The microwave resonances shifted in agreement with theory in response to magnetic flux (Figure 7.8).
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Figure 7.8: . Clockwise from the color map: |S21| in color (blue is no transmission, red is unity transmission)

as a function of both frequency and magnetic flux, Lorentzian dips in transmitted power at different flux

biases, Im[S21] as a function of flux at different excitation frequencies, S21 in the complex plane at several

excitation frequencues as a function of flux bias.

The resonance in Figure 7.8 was slightly undercoupled. Since the peak-to-peak shift in resonance

frequency of this resonance was less than the bandwidth of the resonance, we could find a microwave exci-

tation frequency for which Im[S21] was almost sinusoidal, making it well suited to operation with flux-ramp

modulation.

Unfortunately, several vias on the flux-ramp line failed to yield, preventing us from demonstrating

true flux-ramp modulation and demodulation until µmux10b.
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7.3.3 Flux Noise and Current Noise

Figure 7.9: . The noise falls to roughly 0.8 µΦ0/
√

Hz at 100 kHz. The 71 kHz tone is due to an input flux

oscillation that calibrates the measurement.

The Qc ≈ 900 resonances and wide CPWs caused the noise to reach the HEMT limit at much lower

frequencies (Figure 7.9). The larger inductance of µmux09a also raised this noise floor. The flux noise

reached roughly 0.8 µΦ0/
√

Hz at 100 kHz, which is higher than the flux noise of µmux07a but comparable

to the flux noise of the NIST dc-SQUIDs.

The larger µmux09a SQUID design allowed stronger input coupling of Min = 87.5 pH. Therefore while

flux noise increased, current noise fell to 19 pA/
√

Hz. With flux-ramp modulation we expect this current

noise to degrade to roughly 30 pA/
√

Hz, which would allow readout of many Transition-Edge Sensors without

degradation.

7.3.4 TES Readout

To demonstrate the utility of this multiplexer we obtained several TES chips designed for CMB

polarimetry and interface chips with appropriate shunt resistors. We bonded one of these to the µmux09a

(Figure 7.10) and measured its noise with the SQUID biased at a steep slope of its response curve.
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Figure 7.10: Photo of a µmux09a chip wired for readout of a CMB TES chip.

We measured a noise-equivalent power (Figure 7.11) with a plateau at 3 × 10−17 W/
√

Hz, matching

measurements of the same TES in a dc-SQUID system. The NEP rolled off at the thermal bandwidth of

the TES. It showed significant excess noise at low frequencies that we attribute to pickup on the heater line.

Figure 7.11: . The two curves were taken at two different TES bias points.

The excess noise did not depend on TES resistance, which indicated that it was a true power noise.

Pickup on the heater lines is a common problem for TES readout with Time-Division Multiplexing as well

and requires careful filtration to eliminate. See Section 8.5 for a measurement of NEP without heater lines.
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7.3.5 Summary

µmux09a demonstrated microwave readout of a complex rf SQUID with high input mutual inductance.

The strong input coupling of this SQUID produced low input current noise. We used this device to read out

a CMB TES (Figure 7.10), but could not prove non-degrading readout at low frequencies because of pickup

on the heater lines.
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µmux10b: Multiplexer for CMB TESs

8.1 Design

µmux10b was our first attempt to make a practical Microwave SQUID Multiplexer for arrays of TESs,

specifically targeting the NIST CMB polarimeters. We packed the resonances tightly enough to fit 600 in

an octave of bandwidth between 4 GHz and 8 GHz. We optimized the design to improve yield and enable

flux-ramp modulation. We used a 20 mm × 3 mm chip that matches the NIST time-division multiplexer

with an identical layout of bond pads that allows us to easily couple to any detector chip that was designed

for readout with the NIST time-division multiplexer.

8.1.1 Resonator Design

We wanted the µmux10b resonances to fit in a 275 MHz band to match the open-source electronics

described in Section 4.1. We chose to fill this band with 35 resonances, 33 to leverage the similarity with the

NIST 1 × 33 time-division SQUID multiplexer and two for diagnostics. The number of resonances and the

bandwidth indicate a spacing of roughly 6 MHz, which would allow more than 600 in the 4-8 GHz band. To

avoid cross-coupling between resonances, the resonator bandwidth must be no more than 600 kHz (Section

2.3.9), so we chose to use the weak inductive coupler design, spacing the resonances by twenty times their

bandwidth, with BW ≈ 300 kHz and Qc ≈ 16, 000.
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Figure 8.1: , each slightly different in length.

To fit the roughly 5 mm long resonators on the 3 mm wide chip we routed the resonators like trombones

(Figure 8.1) changing the slider length by 3 µm between adjacent resonators so that ∆l = 6µm and the

frequency spacing is close to 6 MHz. We also reverted to CPWs with 10 µm center strips and 6 µm gaps.

8.1.2 Resonator-Feedline Coupling

Figure 8.2: Photo of the elbow coupler in µmux10b.
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µmux10b used an elbow coupler (Figure 8.2) designed for Qc ≈ 16, 000. The elbow coupler simply

brings the resonator close to the feedline for an extended length, with a narrow strip of ground plane between

them.

This coupler is not compact, but allowed us to quickly fabricate and test a single-layer design

(µmux10a). Measurements of µmux10a showed that low inductance connections between ground planes

is critical for reliable resonator placement and Q’s.

8.1.3 Coil Geometry

We optimized the SQUID design and tuned the weak-inductive coupling to match the resonance

frequency shift to the 300 kHz bandwidth (Figure 8.3).

Figure 8.3: . (µmux10b)

We changed the design to comply with conservative design rules, particularly with regard to vias,

to improve fabrication yield. We also reduced the amount of insulator in the SQUID. This dielectric can

be a source of loss and two-level system noise, although the effect is weak at the current anti-node of the

resonator.
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8.1.4 Filter Design

Figure 8.4: that block microwave power from reaching the input circuits.

We adapted the input filters slightly for the new SQUID design (Figure 8.4). Loss in the filters places

a limit of Qi < 5× 106. We also moved these filters farther away from the SQUID to make room for a low

impedance connection between the ground planes on either side of the resonator.

8.2 Results

Measurements of µmux10b demonstrated accurate placement of resonators tightly spaced in frequency.

We demonstrated linear readout of the SQUIDs with flux-ramp modulation. We demonstrated two-pixel mul-

tiplexing of SQUIDs and TESs. Finally we demonstrated measurement of TES devices for CMB polarimetry

without degradation of the noise-equivalent power.

8.2.1 Resonance Spacing

We surveyed S21 of a µmux10b chip across a 250 MHz band (Figure 8.5). Almost all resonances

yielded, with only one shifting from its design frequency. The remaining resonances were spaced by roughly

6 MHz.



82

Figure 8.5: . The 5.42 GHz dip is the collision of two resonances.

The µmux10b couplers targeted Qc ≈ 16, 000, but measured Qc and Qi varied significantly across

the chip (Figure 8.6), although less than in previous designs. Time-domain reflectometry measurements

showed significant reflection at the microwave launch. Reflections at the microwave launches could produce

a standing wave on the feedline and change Qc by changing the effective impedance the feedline presents to

the coupling capacitor. The variation in Q is small enough that all resonances are useful for readout.

Figure 8.6: Internal and coupling quality factors for the resonances on a µmux10b chip.
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Variation in Qi is less important so long as Qi is large enough to not limit the bandwidth or dissipate

excessive power at the cold stage. We do not yet understand why the Qi of a chip that has been through

the full SQUID fabrication process is lower than that of a chip with bare niobium resonators.

8.2.2 Flux-variable Resonance Frequency

Figure 8.7: . Clockwise from the color map: |S21| in color (blue is no transmission, red is unity transmission)

as a function of both frequency and magnetic flux, Lorentzian dips in transmitted power at different flux

biases, Im[S21] as a function of flux at different excitation frequencies, S21 in the complex plane at several

excitation frequencues as a function of flux bias.

This SQUID/resonator pair from µmux10b is slightly undercoupled (Figure 8.7) and at the appropriate

measurement frequency its response in the imaginary component of S21 is approximately sinusoidal with flux,
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with the deviation matching λ ≈ 1/3. Current on the flux-ramp line shifts all resonances together and current

on the individual input lines shifts individual resonances (Figure 8.8).

Figure 8.8: through their common (left) or individual (center and right) flux bias lines. The color plots show

|S21| in color (blue is low, red is high) as a function of both frequency and current

The periodicity of the µmux10b response implies coupling inductances of Mfr ≈ 24 pH and Min ≈

88 pH, which are quite close to the simulated values.

8.2.3 Flux Noise and Frequency Noise

The increase in Q and reversion to a narrower CPW resulted in the two-level system noise dominating

the HEMT noise even at 100 kHz, as shown by the difference in noise spectrum of the two quadratures (Figure

8.9). HEMT noise should appear equally in both quadratures, but two-level system, being a resonance

frequency noise, should appear only in the imaginary quadrature.
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Figure 8.9: referred to flux noise. The Re[S21] noise has been scaled by the same factor as the Im[S21] noise,

even though there is no SQUID response in the amplitude direction, to show what a reduction in two-level

system noise can achieve. The dashed line shows a representative TES current noise of 300 pA/
√

Hz.

The noise curves in Figure 8.9 show output noise in both Re[S21] and Im[S21] referred through the

gain in Im[S21]. There is no gain in Re[S21] and so the noise in that real quadrature does not refer to

actual flux noise, but rather indicates what the flux noise would be without two-level systems, roughly 0.8

µΦ0/
√

Hz at 100 kHz. The noise of the imaginary quadrature is the actual open-loop flux noise, including

two-level systems, which falls to roughly 1.6 µΦ0/
√

Hz at 100 kHz. These noise levels show that a roughly

factor of two reduction in two-level system noise should restore HEMT-limited operation. Without flux-ramp

modulation the added noise of the Microwave SQUID Multiplexer would dominate the noise of a CMB TES

below 1 kHz.
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Figure 8.10: . The green and blue curves show noise for the same SQUID/resonator biased to be sensitive

or insensitive to magnetic flux. The red curve shows noise for a resonator without a SQUID. The overlap

of the green and blue curves shows that low-frequency flux noise in the SQUID is insignificant compared to

TLS noise in the resonator. The other resonator could have a different density of two-level systems and was

measured at a different internal power, so we expect a slight deviation.

Both fundamental noise mechanisms of an rf SQUID, flipping of magnetic dipoles on the loop[81]

and critical current fluctuations in the junction[79][80], have 1/f frequency dependence. To investigate the

contribution of these noise mechanisms we measured the frequency noise at different SQUID bias points.

Output noise due to flipping magnetic dipoles should increase on the steep slopes of the SQUID response.

Output noise due to fluctuations of the critical current should increase on the flat slopes of the SQUID

response. The frequency noise at different bias points appears identical (Figure 8.10), indicating that the

two-level-system noise of the resonator dominates.

8.2.4 Flux Ramp Modulation

To circumvent the low-frequency noise in the resonator we modulate the SQUID signal up to higher

frequencies, ideally to where the two-level system noise falls below the HEMT noise.
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Figure 8.11: . An offset of the flux ramp causes a phase shift of the SQUID response.

We drive the flux-ramp line with a sawtooth (Figure 8.11) that sweeps through multiple flux quanta

in the SQUIDs. The slew rate of this ramp must exceed that of any input signal. Therefore any input signal

looks like a flux offset during the duration of the ramp, which produces a phase shift in the SQUID response

to the ramp. This phase-modulation applies to all SQUIDs on a chip because the flux-ramp line couples to

all SQUIDs.

Low-frequency signals shift the phase of the SQUID response while low-frequency noise from Ic fluc-

tuations vary the amplitude of the SQUID response and low-frequency noise from two-level systems in the

resonator vary the offset. We can therefore reject these sources of noise by extracting the phase of the SQUID

response for each ramp.
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Figure 8.12: . The phase is the arctangent of the ratio of the data (blue) multiplied by both red curves. We

discard part of the response to let the ramp reset transient settle.

We had previously used a Wiener optimal fitting algorithm to extract the phase of the ramp response,

but have since settled on the simple Fourier solution: knowing the frequency of modulation, we multiply the

SQUID response by that frequency sine and cosine (Figure 8.12) and extract the phase angle:

φ = arctan

(∑
xt sinωmt∑
xt cosωmt

)
(8.1)

This solution is computationally efficient and requires no knowledge of the precise shape of the SQUID

response. It discards the information in higher harmonics of the SQUID response, but for matched coupling

the power in the higher harmonics is low and this has little impact on the readout noise.

Figure 8.13: . The dashed line shows a representative TES current noise of 300 pA/
√

Hz.



89

For purely sinusoidal SQUID response, flux-ramp modulation imposes a
√

2 penalty (Equation 2.170)

in flux noise compared with operation of the SQUID in a flux-locked loop because a substantial fraction

of each ramp is spent measuring the SQUID at an extremum of its response curve where it is insensitive

to changes in input flux. The noise further increases because we discard the ramp reset transient from the

beginning of each ramp response and discard information in the higher harmonics. These factors combine to

roughly double the flux noise compared to the open-loop noise at the modulation frequency (Figure 8.13).

The noise after flux-ramp modulation/demodulation is flat down to roughly 10 Hz and less than the noise

of a CMB TES.

Figure 8.14: showing linear response.

An important benefit of flux-ramp modulation is the fact that it linearizes the response of all SQUIDs

on a chip using a single twisted-pair. The phase shift of the ramp response is simply φ = 2πΦ/Φ0. To verify

this we measured readout linearity with flux-ramp modulation (Figure 8.14).
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Figure 8.15: Difference between applied flux ramp and a perfectly linear ramp.

Since we do not compensate for the ramp reset transient, the flux ramp is not perfectly linear during

its rise (Figure 8.15). This distortion affects the Fourier measurement differently at different phase shifts and

therefore creates a readout non-linearity (Figure 8.16) that is periodic with flux in the SQUID. The current

flux-ramp measurements are linear to roughly one part in 1,000, and should improve with better control of

the flux ramp. This linearity is sufficient for most applications.

Figure 8.16: . The deviation from linearity is periodic with flux.

8.3 SQUID Multiplexing Demonstration

As a demonstration, we performed multiplexed readout of a pair of synthesized flux signals:
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Figure 8.17: and performed multiplexed readout.

The signals from the two microwave resonators separated cleanly and reproduced the synthesized

input signals (Figure 8.18). We detected no significant ac crosstalk between these synthesized flux signals.

Figure 8.18: , at 2 Hz and 3 Hz (left). Power spectrum of two channels measuring synthesized signals at 210

Hz and 330 Hz (right).

A measurement of one SQUID with a slow sweep of flux in another indicates crosstalk at the part per

1,000 level (Figure 8.19). The periodicity of the crosstalk suggests that it occurs after the SQUID gain. It

depends on the relative microwave power between the resonators and not on their separation in frequency,

which suggest that it occurs in the HEMT or the IQ-mixer, for example through load on the HEMT bias

circuit affecting the gain for all microwave signals. This level of crosstalk is sufficient for most applications.
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Figure 8.19: of one channel into the other. The periodicity of the crosstalk indicates that it occurs on the

output side of the SQUID, e.g. through the HEMT amplifier.

8.4 TES Multiplexing

Figure 8.20: . In a real array the detector chips would abut the multiplexer chip and use short wire bonds,

or be integrated with the multiplexer chip.

We obtained several NIST CMB TESs (Figure 8.20) intended for future measurements of the polar-

ization B-mode signature of the cosmic microwave background[72], wired them to a µmux10b chip, and used

them to demonstrate multiplexed TES readout.
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Figure 8.21: responding to sinusoidal heater signals. Pickup on the heater lines accounts for the noisy signal.

These devices have heaters on the TES membranes that we used to inject power into the TESs.

We synthesized detector signals and performed multiplexed readout of the TESs. The signals separated

cleanly (Figure 8.21), constituting the first full demonstration of microwave frequency multiplexing of TESs.

Unfortunately, pickup on the heater lines made the readout appear noisy. Better filtration on the heater

lines, or measurement of optical signals without heaters, should eliminate this effect in the future.

8.5 TES Readout

In order for this device to be considered for large scale TES arrays in the future, it is important to show

that it does not degrade the TES sensitivity. We therefore removed the heater lines from the CMB pixels,

biased them in their transition, and measured their noise-equivalent power using the Microwave SQUID

Multiplexer (Figure 8.22).
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Figure 8.22: in its transition taken with the Microwave SQUID Multiplexer (left) and a traditional dc-SQUID

(right).

We used full flux-ramp modulation to read out the TES current and referred it to incident power

through the TES voltage bias. We measured NEP of 3 × 10−17 W/
√

Hz, precisely matching previous

measurements of the same TES using a dc-SQUID readout. The NEP is flat down to 1 Hz in contrast

to open-loop measurements like in Figure 8.10. This measurement, performed with two coaxial cables and

one twisted-pair for the flux ramp exactly as we would multiplex a large array, constitutes proof that the

Microwave SQUID Multiplexer does not degrade the sensitivity of the detector.

8.5.1 Summary

µmux10b demonstrated full flux-ramp modulation and demodulation, multiplexed SQUIDs with low-

noise and low-crosstalk, and measured NIST TESs intended for polarimetry of the cosmic microwave back-

ground without any degradation of the noise-equivalent power. These results show that the Microwave

SQUID Multiplexer is a real option for multiplexed readout of low-temperature detector arrays.
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Future Work

9.1 Multiplexer Re-design

We have already designed the next generation of the Microwave SQUID Multiplexer, incorporating

the lessons of previous designs and attempting to improve input current noise to make the device suitable

for TES detectors with higher operating resistance.

9.1.1 Surface State Reduction

We have seen evidence that the CF4 sloped sidewall etch reduces Qi, perhaps because of a suppression

of superconductivity in the thinned edges of the niobium traces. Microwave currents flow mainly at the edges

of the wires and some fraction of the resonator current could therefore pass through resistive niobium and

dissipate power. We also worry about a possible increase in two-level systems on unprotected niobium

surfaces during the insulator etch.

In the future, we intend to use a fabrication process that defines the resonator and most of the SQUID

wiring in both layers of niobium, without insulator between them. This process hides the niobium surface

that gets exposed to the insulator etch between the layers, where there is no electric field and therefore no

sensitivity to two-level systems. The bottom surface of the resonator will be deposited on clean, HF-dipped

silicon and the top surface will be protected by photoresist. This process will also restrict the CF4 etch to the

area immediately around crossovers and Josephson junctions. We expect this fabrication process to produce

resonators with higher Qi and lower two-level system noise, although we cannot predict the magnitude of

improvement.
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9.1.2 SQUID Design

The new SQUID design adds an extra loop inside each lobe of the gradiometer (Figure 9.1), reducing

the self-inductance of the SQUID, and increases junction critical current to maintain λ ≈ 1/3. These changes

increase optimal microwave power on the feedline and reduce flux noise due to the HEMT. They also allow

stronger input coupling: one full turn for the flux-ramp and two full turns for the input, which will further

reduce input current noise.

Figure 9.1: The layout for the rf SQUID in µmux11a.

9.1.3 Resonator Geometry

The new design widens the center strip of the coplanar waveguide to s = 14µm with g = 8µm

gaps to reduce the two-level system noise[82]. The resonators will couple to the feedline with interdigitated

capacitors for Qc ≈ 10, 000 to further reduce the flux noise due to two-level systems. The SQUID-resonator

coupling will increase to maintain the match between frequency shift and resonance bandwidth. We expect

the combination of these changes with the process changes to make the flux noise HEMT-limited at 100 kHz.

Our goal is to make a multiplexer that adds only 30 pA/
√

Hz, capable of reading out many existing

TES designs without degradation.
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9.2 Microwave Launches

The variation of Q with position of the resonators on the chip suggests that there is a standing wave

on the feedline, indicating reflections at the microwave launches. Time-domain reflectometry measurements

support this theory. We intend to investigate the cause of these reflections and improve the microwave

launch, for example by a flip-chip coupler, to eliminate them so that all input channels to the multiplexer

require the same readout power and exhibit the same flux noise.

9.3 Room Temperature Electronics

The multiplexing demonstrations in this dissertation used two microwave signal generators to generate

the tones for simultaneous readout of two pixels. In the future we plan to read out tens, hundreds, or

thousands of pixels but we clearly cannot afford thousands of $10,000 signal generators. Instead, we are

collaborating with MKID groups and digital electronics engineers to create a digital solution: software

defined radio (SDR) capable of digitally generating and demultiplexing hundreds of tones.

Figure 9.2: , designed and built by the Center for Astronomy Signal Processing and Electronics Research

(CASPER).

We have received the first generation of open-source electronics for SDR from the collaboration (Figure

9.2). We intend to commission it and use it to demonstrate 33 pixel multiplexing of TESs. Although 33

pixels are not qualitatively different from 2 pixels, a successful demonstration should increase confidence in
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the scalability of the Microwave SQUID Multiplexer.

9.4 Lumped-Element Resonators

Each resonator in µmux10b takes up a roughly 2.5 mm × 0.5 mm footprint on the chip. We will need

a more compact resonator design if we want to fit hundreds of resonators on a chip. A semi-lumped design,

with a meander inductor and interdigitated capacitor can achieve the same resonance frequency using a 0.3

mm × 0.3 mm area[90]. A true lumped-element design, with a spiral inductor and parallel-plate capacitor

can achieve the same resonance frequency using even less area[91].

Figure 9.3: . Lumped-element resonators could significantly reduce the resonator footprint.

With multi-SQUID resonators (Section 9.5.1) or hybrid multiplexing techniques (Section 9.5.2), the

footprint of the resonator may not be significant in future detector arrays.

9.5 Multiplexer Efficiency

Neither the Microwave SQUID Multiplexer nor the Microwave Kinetic Inductance Detector have

high Shannon efficiency for the many applications that require very low bandwidth per pixel. The CMB

polarimetry application we have been referring to requires only 100 Hz of bandwidth for each polarimeter,

set primarily by the scan rate of the telescope on the sky. Efficient use of the microwave bandwidth would

require a device with hundreds of thousands of resonators with Q > 106, spaced by roughly 10 kHz.
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We cannot now fabricate devices with total Q that high and internal Q even higher. We cannot

fabricate that many resonators on a chip. Most importantly, we cannot space the resonators that close

together. We currently measure a roughly 1 MHz variation in resonance frequency placement, likely due to

slight variations in over-etch, metal thickness, substrate thickness, etc. across the wafer. A similar scatter

is observed with MKIDs. We must space the resonances at least 3 MHz apart to prevent a large number of

collisions and excessive nearest-neighbor crosstalk (Section 2.3.9).

We would therefore use 3 MHz of bandwidth to measure a 100 Hz signal. We are pursuing more

efficient use of the microwave bandwidth with multi-SQUID resonators and hybrid multiplexing schemes.

9.5.1 Multi-SQUID Resonators

One solution is to couple multiple SQUIDs to each microwave resonator and read out multiple input

signals in its bandwidth. We can place multiple SQUIDs at the current anti-node and separate their signals

by coupling them to the flux ramp with different mutual inductances (Figure 9.4), so that they modulate

at different frequencies, e.g. 80 kHz, 100 kHz, and 120 kHz. Their input signals then appear in different

sidebands of the microwave carrier (Figure 9.5).

Figure 9.4: . Note that the flux-ramp line couples with different strength to each SQUID.
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Figure 9.5: of the microwave carrier frequency.

The coupling between each rf SQUID and the resonator must be reduced by a factor of
√
n to maintain

a match between total frequency shift and resonance bandwidth and prevent excessive coupling between the

flux-ramp response of the different SQUIDs. The optimal readout power increases therefore by a factor of n

and the voltage gain of each is reduced by
√
n. This strategy is therefore interesting but introduces a new

mechanism for crosstalk and increases flux noise by
√
n.

9.5.2 Hybrid Multiplexing

Finally, let us consider hybrid multiplexing schemes. Hybrid multiplexing is a standard solution to

reach higher Shannon efficiency in a variety of applications, for example 3G cell-phone communication[92].

Observe that the fundamental advantage of microwave multiplexing of SQUIDs is the output band-

width of a coaxial cable, not the high Q that allows a large number of resonances per cable. Instead of mul-

tiplexing hundreds of thousands of narrow-band SQUIDs we can multiplex hundreds of wide-band SQUIDs.

We can therefore use a Microwave SQUID Multiplexer to multiplex hundreds of high-bandwidth SQUIDs and

low-frequency techniques to multiplex hundreds of low-bandwidth signals into each high-bandwidth SQUID.



101

Figure 9.6: , e.g. a Code-Division Multiplexers.

Hybrid multiplexing of SQUIDs has been previously considered[93]. The complexity of combining

two technologies is outweighed by the fact that we need not push the limits of either technology. The low-

frequency multiplexing technology that seems to fit the Microwave SQUID Multiplexer best is a form of

Code-Division Multiplexing with current-steering and binary addressing.

9.5.2.1 CDMA

This promising Code-Division Multiple Access (CDMA) scheme consists of SQUID switches steering

TES current through inductors that couple with opposite polarity to the microwave SQUID. The SQUID

switches allow rapid inversion of the flux signal from any TES. A Walsh code of inversions (Figure 9.7)

provides a basis set that allows complete reconstruction of the input signals.

The code-division pre-multiplexer[53] can have very low power dissipation per pixel, on the order of

the power dissipated in the TES bias circuit. It does not suffer the noise aliasing weakness of Time-Division

Multiplexing, allowing larger multiplexing factors. Finally, because the switches are SQUIDs and therefore

selected with flux modulo Φ0, it can use a binary addressing scheme to further reduce the wirecount.
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Figure 9.7: for CDM (left). Schematic of current-steering implementation of CDM (right).

A Microwave SQUID Multiplexer with 256 channels, each fed by a Code-Division Multiplexer with

256 channels can read out 65536 pixels with high spectral efficiency. This type of hybrid multiplexer could

read out a megapixel array using only 40 coaxial cables and 24 twisted-pairs. We intend to pursue this

technology to provide a real megapixel multiplexing solution in the next ten years.
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Conclusion

We developed a microwave frequency multiplexer of dissipationless rf SQUIDs for the readout of large-

scale arrays of low-temperature detectors. This multiplexer needed to have scalability to large numbers of

input channels, input current noise low enough to read out TESs without degradation, and low per-pixel

power dissipation.

Using standard lithographic techniques we fabricated multiple superconducting microwave resonators

on each multiplexer chip. These resonators had distinct resonance frequencies, similar bandwidths, and

sufficiently low loss to limit the heat load to less than 5 pW per pixel.

Various designs exhibited flux noise as low as 0.17µΦ0/
√

Hz, input current noise as low as 20 pA/
√

Hz,

and readout of a CMB TES pixel without degrading the noise-equivalent power of 3× 10−17 W/
√

Hz. Flux-

ramp modulation avoided the low-frequency two-level system noise of the resonators and linearized the

response of all SQUIDs using only a single twisted-pair for the entire multiplexer. Flux noise after modula-

tion/demodulation remained flat to low frequencies.

Finally, we performed multiplexed readout of two SQUIDs driven by synthesized current signals and

actual TES currents. The multiplexed signals separated cleanly with crosstalk of a part per 1,000.

These results indicate that the Microwave SQUID Multiplexer is suitable to read out arrays of thou-

sands of low-temperature detectors. We are now working on hybrid multiplexing schemes to increase Shannon

efficiency beyond what can be achieved with superconducting microwave resonators alone. This will enable

the readout of tens of thousands of detectors using two coaxial cables and a handful of dc wires, providing

the multiplexing factors necessary for the megapixel arrays of the future.



Bibliography

[1] C. Enss (2005).

[2] J. Bottomley and F. King. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character 208, 349 (1908).

[3] R. Jones. JOSA 37, 879 (1947).

[4] D. H. Andrews, W. F. Brucksch, and W. T. Ziegler. Physical Review 59, 1045 (1941).

[5] D. H. Andrews, R. M. Milton, and W. Desorbo. Journal of the Optical Society of America 36, 518
(1946).

[6] W. Boyle, J. Rodgers, and Others. JOSA 49, 66 (1959).

[7] F. J. Low. Journal of the Optical Society of America 51, 1300 (1961).

[8] K. D. Irwin. Phonon-Mediated Particle Detection Using Superconducting Tungsten Transition-Edge Sensors.
Ph.D. thesis (1995).

[9] S. Bandler. SPIE Newsroom 2–4 (2010).

[10] C. Enss, A. Fleischmann, K. Horst, J. Schonefeld, J. Sollner, J. S. Adams, Y. H. Huang, Y. H. Kim,
and G. M. Seidel. Journal of Low Temperature Physics 121, 137 (2000).

[11] P. Day, H. LeDuc, B. Mazin, A. Vayonakis, and J. Zmuidzinas. Nature 425, 817 (2003).

[12] B. Mazin, P. Day, J. Zmuidzinas, and H. LeDuc. In AIP Conference Proceedings, 309–312. Citeseer
(2002).

[13] S. P. Langley. Proceedings of the American Academy of Arts and Sciences 14, 106 (1878).

[14] C. L. Hunt, J. J. Bock, P. K. Day, A. Goldin, A. E. Lange, H. G. LeDuc, A. Vayonakis, and J. Zmuidzinas.
In Proceedings of SPIE, volume 4855, 318 (2003).

[15] K. Irwin. Applied Physics Letters 66, 1998 (1995).

[16] K. D. Irwin, G. C. Hilton, D. a. Wollman, and J. M. Martinis. Applied Physics Letters 69, 1945 (1996).

[17] D. Schwan, F. Bertoldi, S. Cho, M. Dobbs, R. Guesten, N. W. Halverson, W. L. Holzapfel, E. Kreysa,
T. M. Lanting, A. T. Lee, and Others. New Astronomy Reviews 47, 933 (2003).

[18] A. Kosowsky. New Astronomy Reviews 47, 939 (2003).

[19] D. Becker, J. Beall, H. M. Cho, W. Duncan, G. Hilton, R. Horansky, K. Irwin, P. Lowell, M. Niemack,
N. Paulter, and Others (2010).



105

[20] J. J. Bock, M. Kenyon, K. Irwin, M. Bradford, J. P. L. Caltech, M. Devlin, U. Penn, A. Lange, C. Jpl,
A. Lee, U. C. Berkeley, and B. Mason. Jet Propulsion 1–11.

[21] W. S. Holland, W. Duncan, B. D. Kelly, K. D. Irwin, A. J. Walton, P. A. R. Ade, and E. I. Robson. In
Proceedings of SPIE, volume 4855, 1 (2003).

[22] D. Morozov, P. D. Mauskopf, P. Ade, M. Bruijn, P. A. J. de Korte, H. Hoevers, M. Ridder, P. Khos-
ropanah, B. Dirks, and J. R. Gao. In AIP Conference Proceedings, volume 1185, 48 (2009).

[23] B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani. Applied Physics Letters
73, 735 (1998).

[24] N. E. White and H. Tananbaum. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 436, 201 (1999).

[25] D. A. Wollman, K. D. Irwin, G. C. Hilton, L. L. Dulcie, D. E. Newbury, and J. M. Martinis. Journal
of Microscopy 188, 196 (1997).

[26] W. B. Doriese, J. N. Ullom, J. a. Beall, W. D. Duncan, L. Ferreira, G. C. Hilton, R. D. Horansky, K. D.
Irwin, J. a. B. Mates, C. D. Reintsema, L. R. Vale, Y. Xu, B. L. Zink, M. W. Rabin, a. S. Hoover, C. R.
Rudy, and D. T. Vo. Applied Physics Letters 90, 193508 (2007).

[27] R. D. Horansky, J. N. Ullom, J. A. Beall, G. C. Hilton, K. D. Irwin, D. E. Dry, E. P. Hastings, S. P.
Lamont, C. R. Rudy, and M. W. Rabin. Applied Physics Letters 93, 123504 (2008).

[28] J. C. Mather. Applied Optics 21, 1125 (1982).

[29] A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin. Applied Physics Letters 69, 1801
(1996).

[30] B. D. Josephson. Physics Letters 1, 251 (1962).

[31] B. D. Josephson. Reviews of Modern Physics 46, 251 (1974).

[32] J. Clarke and A. I. Braginski. The SQUID handbook, volume 1. Wiley-Vch (2006). ISBN 3527402292.

[33] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau. Physical Review Letters 12, 159 (1964).

[34] A. H. Silver and J. E. Zimmerman. Physical Review 157, 317 (1967).

[35] Y. Aharonov and D. Bohm. Physical Review 115, 485 (1959).

[36] M. Tinkham. Introduction to superconductivity. Dover Pubns (2004). ISBN 0486435032.

[37] T. Van Duzer and C. W. Turner. Principles of superconductive devices and circuits. Prentice Hall
(1999). ISBN 0132627426.

[38] W. Seidel, G. Forster, W. Christen, F. von Feilitzsch, H. G\\”obel, F. Pr\\”obst, and R. L.
M\\”oß bauer. Physics Letters B 236, 483 (1990).

[39] J. Zmuidzinas. historical trends. personal communication.

[40] C. Shannon. Proceedings of the IEEE 86, 447 (1998).

[41] J. a. Chervenak, K. D. Irwin, E. N. Grossman, J. M. Martinis, C. D. Reintsema, and M. E. Huber.
Applied Physics Letters 74, 4043 (1999).

[42] J. Chervenak, E. Grossman, K. Irwin, J. Martinis, C. Reintsema, C. Allen, D. Bergman, S. Mose-
ley, and R. Shafer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 444, 107 (2000).



106

[43] D. J. Benford, T. A. Ames, J. A. Chervenak, E. N. Grossman, K. D. Irwin, S. A. Khan, B. Maffei,
S. H. Moseley, F. Pajot, T. G. Phillips, and Others. In AIP Conference proceedings, 589–594. IOP
INSTITUTE OF PHYSICS PUBLISHING LTD (2002).

[44] D. Benford, C. Allen, J. Chervenak, M. Freund, A. Kutyrev, S. Moseley, R. Shafer, J. Staguhn, E. Gross-
man, G. Hilton, and Others. International Journal of Infrared and Millimeter Waves 21, 1909 (2000).

[45] A. L. Woodcraft, P. a. R. Ade, D. Bintley, J. S. House, C. L. Hunt, R. V. Sudiwala, W. B. Doriese,
W. D. Duncan, G. C. Hilton, K. D. Irwin, C. D. Reintsema, J. N. Ullom, M. D. Audley, M. a. Ellis,
W. S. Holland, M. MacIntosh, C. C. Dunare, W. Parkes, A. J. Walton, J. B. Kycia, M. Halpern, and
E. Schulte. Review of Scientific Instruments 78, 024502 (2007).

[46] T. Lanting, H. Cho, J. Clarke, M. Dobbs, A. Lee, P. Richards, A. Smith, and H. Spieler. Applied
Superconductivity, IEEE Transactions on 13, 626 (2003).

[47] M. F. Cunningham, J. N. Ullom, T. Miyazaki, S. E. Labov, J. Clarke, T. M. Lanting, A. T. Lee, P. L.
Richards, J. Yoon, and H. Spieler. Applied Physics Letters 81, 159 (2002).

[48] J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. J. Myers, P. L. Richards, and J. T. Skidmore.
Applied Physics Letters 78, 371 (2001).

[49] M. Dobbs, N. W. Halverson, P. A. R. Ade, K. Basu, A. Beelen, F. Bertoldi, C. Cohalan, H. M. Cho,
R. G\\”usten, W. L. Holzapfel, and Others. New Astronomy Review 50, 960 (2006).

[50] J. Ruhl, P. A. Ade, J. E. Carlstrom, H. M. Cho, T. Crawford, M. Dobbs, C. H. Greer, N. Halverson,
W. L. Holzapfel, T. M. Lanting, and Others. In Proceedings of SPIE (2004). ISBN 0819454303.

[51] P. Oxley, P. A. Ade, C. Baccigalupi, P. DeBernardis, H. M. Cho, M. J. Devlin, S. Hanany, B. R.
Johnson, T. Jones, A. T. Lee, and Others. In Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, volume 5543, 320–331 (2004).

[52] K. D. Irwin, M. D. Niemack, J. Beyer, H. M. Cho, W. B. Doriese, G. C. Hilton, C. D. Reintsema, D. R.
Schmidt, J. N. Ullom, and L. R. Vale. Superconductor Science and Technology 23, 34004 (2010).

[53] M. D. Niemack, J. Beyer, H. M. Cho, W. B. Doriese, G. C. Hilton, K. D. Irwin, C. D. Reintsema, D. R.
Schmidt, J. N. Ullom, and L. R. Vale. Applied Physics Letters 96, 163509 (2010).

[54] C. E. Shannon. ACM SIGMOBILE Mobile Computing and Communications Review 5, 3 (2001).

[55] K. Irwin. In AIP Conference Proceedings, volume 1185, 229 (2009).

[56] B. a. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison.
Applied Physics Letters 89, 222507 (2006).

[57] P. K. Day, H. G. Leduc, A. Goldin, T. Vayonakis, B. A. Mazin, S. Kumar, J. Gao, and J. Zmuidz-
inas. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 559, 561 (2006).

[58] J. Gao. The physics of superconducting microwave resonators. Ph.D. thesis, California Institute of
Technology (2008).

[59] K. Duh, M. Pospieszalski, W. Kopp, P. Ho, a.a. Jabra, P.-C. Chao, P. Smith, L. Lester, J. Ballingall,
and S. Weinreb. IEEE Transactions on Electron Devices 35, 249 (1988).

[60] P. R. Maloney, N. G. Czakon, P. K. Day, T. P. Downes, R. Duan, J. Gao, J. Glenn, S. R. Golwala, M. I.
Hollister, H. G. LeDuc, and Others. In Proceedings of SPIE, volume 7741, 77410F (2010).

[61] J. Schlaerth, A. Vayonakis, P. Day, J. Glenn, J. Gao, S. Golwala, S. Kumar, H. LeDuc, B. Mazin,
J. Vaillancourt, and Others. J Low Temp Phys 151, 684 (2008).



107

[62] K. Irwin and K. Lehnert. Applied Physics Letters 85, 2107 (2004).

[63] J. a. B. Mates, G. C. Hilton, K. D. Irwin, L. R. Vale, and K. W. Lehnert. Applied Physics Letters 92,
023514 (2008).

[64] P. Day, B. Bumble, and H. G. Leduc. Journal of Low Temperature Physics 151, 934 (2008).

[65] S. Corvaja. Nature 458 (2009).

[66] L. Knox and Y.-S. Song. Physical Review Letters 89, 1 (2002).

[67] S. Dodelson, R. Easther, S. Hanany, L. McAllister, S. Meyer, L. Page, P. Ade, A. Amblard, A. Ashoori-
oon, C. Baccigalupi, and Others. In AGB Stars and Related Phenomenastro2010: The Astronomy and
Astrophysics Decadal Survey, volume 2010, 67 (2009).

[68] T. Essinger-Hileman, J. W. Appel, J. A. Beal, H. M. Cho, J. Fowler, M. Halpern, M. Hasselfield, K. D.
Irwin, T. A. Marriage, M. D. Niemack, and Others. In AIP Conference Proceedings, volume 1185, 494
(2009).

[69] J. J. McMahon, K. A. Aird, B. A. Benson, L. E. Bleem, J. Britton, J. E. Carlstrom, C. L. Chang, H. S.
Cho, T. de Haan, T. M. Crawford, and Others. In American Institute of Physics Conference Series,
volume 1185, 511–514 (2009).

[70] M. C. Runyan, P. A. R. Ade, R. S. Bhatia, J. J. Bock, M. D. Daub, J. H. Goldstein, C. V. Haynes,
W. L. Holzapfel, C. L. Kuo, A. E. Lange, and Others. The Astrophysical Journal Supplement Series
149, 265 (2003).

[71] J. Britton, K. Yoon, J. Beall, D. Becker, H. Cho, G. Hilton, M. Niemack, and K. Irwin. In American
Institute of Physics Conference Series], B. Young, B. Cabrera, & A. Miller, ed., American Institute of
Physics Conference Series 1185, 375378 (Dec, 375–378 (2009).

[72] K. W. Yoon, J. W. Appel, J. E. Austermann, J. A. Beall, D. Becker, B. A. Benson, L. E. Bleem,
J. Britton, C. L. Chang, J. E. Carlstrom, and Others. In AIP Conference Proceedings, volume 1185,
515 (2009).

[73] P. K. Hansma. Journal of Applied Physics 44, 130 (1973).

[74] K. K. Likharev. Dynamics of Josephson Junctions and Circuits. Gordon and Breach (1986). ISBN
2-88124-042-9.

[75] D. M. Pozar. Microwave Engineering, 3rd (2005).

[76] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R. J. Schoelkopf,
M. H. Devoret, D. Vion, and Others. Physical review letters 94, 27005 (2005).

[77] A. Vayonakis and J. Zmuidzinas. Radiative losses from 2-d apertures.

[78] J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and
H. G. Leduc. Applied Physics Letters 92, 152505 (2008).

[79] F. C. Wellstood, C. Urbina, and J. Clarkec. APPLIED PHYSICS LETTERS 85, 22 (2004).

[80] F. C. Wellstood, C. Urbina, and J. Clarke. Applied Physics Letters 50, 772 (2009).

[81] R. H. Koch, D. P. DiVincenzo, and J. Clarke. Physical review letters 98, 267003 (2007).

[82] J. Gao, J. Zmuidzinas, B. A. Mazin, H. G. LeDuc, and P. K. Day. Applied Physics Letters 90, 102507
(2009).

[83] H. G. Leduc, B. Bumble, P. K. Day, A. D. Turner, B. H. Eom, S. Golwala, D. C. Moore, O. Noroozian,
J. Zmuidzinas, J. Gao, and Others .



108

[84] B. A. Mazin, P. K. Day, K. D. Irwin, C. D. Reintsema, and J. Zmuidzinas. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 559, 799 (2006).

[85] B. A. Mazin, J. B. Mates, and K. D. Irwin .

[86] AWR. TX-Line.

[87] J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, and L. Jensen. Microwave Theory and
Techniques, IEEE Transactions on 54, 3995 (2006).

[88] M. J. Hatridge. SQUID magnetometry from nanometer to centimeter length scales. Ph.D. thesis,
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2010).

[89] M. Kamon, M. J. Tsuk, and J. K. White. Microwave Theory and Techniques, IEEE Transactions on
42, 1750 (2002).

[90] S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe. Journal of Low Temperature Physics
151, 530 (2008).

[91] S. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi. Arxiv preprint arXiv:1102.2917 (2011).

[92] C. Huang. In Vehicular Technology Conference, 1999 IEEE 49th, volume 1, 342–345. IEEE (2002).
ISBN 0780355652.

[93] C. D. Reintsema, J. Beall, W. Doriese, W. Duncan, L. Ferreira, G. C. Hilton, K. D. Irwin, D. Schmidt,
J. Ullom, L. Vale, and Others. J Low Temp Phys 151, 927 (2008).

[94] B. A. Mazin. Microwave kinetic inductance detectors (2005). ISBN 0496944924.

[95] S. Kumar, J. Gao, J. Zmuidzinas, B. A. Mazin, H. G. LeDuc, and P. K. Day. Applied Physics Letters
92, 123503 (2008).

[96] J. D. Jackson. Classical Electrodynamics. John Wiley and Sons, Inc. (1999).

[97] J. E. Zimmerman and A. H. Silver. Physical Review 141, 367 (1966).

[98] C. M. Caves. Physical Review D 26, 1817 (1982).



Appendix A

Instruments and Components

The primary instruments used in this work were:

• Agilent E5071B Network Analyzer

• Agilent E4407B Spectrum Analyzer

• Agilent E8247C Signal Generator

• Anritsu 68369A/NV Signal Generator

• National Instruments PCI-6132 Digitizer

• HP 3562A Dynamic Signal Analyzer

The primary microwave components were:

• HEMT 0.5-11 GHz (Sander Weinreb, Caltech)

• Miteq AFS4-00101000-35-10P-4 Amplifier

• Marki Microwave IQ0307LXP IQ-Mixer

• Pamtech CTH1392K4 Circulator

We used coaxial cables from Coax-Co to minimize the heat load on our ADR.

• SC-086/50-SCN-CN

• SC-160/50-NbTi-NbTi



Appendix B

Transformer Coupling Calculations

Screening currents (Figure B.1) flow in the rf SQUID loop and change the effective load on the

resonator.

Figure B.1: Circuit diagram of an rf-SQUID screening an inductor.

To find the effective load Zeff we solve a coupled set of linear equations:

V1 = iωI1Lc − iωI2Mc (B.1)

V2 = −iωI2LS + iωI1Mc = I2ZL (B.2)

We can write the screening current in terms of the primary current:

I1 = I2
iωLS + ZL
iωMc

(B.3)

and apply it back to the primary inductor to find the voltage drop:

V1 = iωI1

(
Lc −

Mc
2

LS + ZL/iω

)
(B.4)
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which defines an effective impedance of

Zeff = iω

(
Lc −

Mc
2

LS + ZL/iω

)
(B.5)

B.1 Shunted Junction

Practical Josephson junctions have some capacitance CJ and leakage resistance Rsg which shunt the

junction inductance (Figure B.2).

Figure B.2: SQUID circuit including leakage resistance and junction capacitance.

The effect of these shunts on the effective load impedance can be calculated exactly, but it is more

elucidating to consider the perturbation theory. Let ys ≡ iωLJYs be the admittance of the parallel shunts,

normalized to the junction inductance.

Zeff = iω

(
Lc −

Mc
2

LS + LJ

cosφ+ys

)
(B.6)

We then consider ys to be small:

Zeff = iω

(
Lc −

Mc
2

LS + LJ secφ

)
− iωMc

2

LJ

(
λ+

1

cosφ

)−2

(cosφ)
−2
ys + ... (B.7)

≈ iω
(
Lc −

Mc
2

LS + LJ secφ

)
− iωMc

2

LJ
(1 + λ cosφ)

−2
ys (B.8)

≈ iω
(
Lc −

Mc
2

LS + LJ secφ

)
+

(ωMc)
2Ys

(1 + λ cosφ)
2 (B.9)

Note that the denominator minimizes to 1− λ so the greatest change in load impedance due to the junction

shunts is

∆Zeff ≈
(ωMc)

2Ys

(1 + λ)
2 (B.10)
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B.2 Input Filter

The circuit that feeds a magnetic flux signal to the SQUID (Figure 2.17) may present an impedance

with a real component. Microwave power in the resonator may therefore dissipate in the input circuit.

Figure B.3: Schematic of the rf-SQUID and input coil coupling to both the resonator and each other.

There are two ways for the microwave power to couple to the input circuit. First, there is an un-

avoidable parasitic coupling from the resonator termination into the input coil. Second, the resonator drives

microwave currents in the SQUID loop which directly couple to the input coil. Maximum coupling occurs

when φ = π and the SQUID effectively ”anti-screens” flux from the resonator. Solving the coupled set of

linear equations:

ZL = iω

(
Lc −

Mp
2LS(1− λ−1) +Mc

2(Lin + Zin/iω)− 2MinMcMp

LS(1− λ−1)(Lin + Zin/iω)−Min
2

)
(B.11)

= iω

(
Lc +

Mc
2(Lin + Zin/iω)− 2LSMp

2 − 2MinMcMp

2LS(Lin + Zin/iω) +Min
2

)
(B.12)

Assume that the input circuit can be seen as a low-pass filter Zin = iωLF +RF with a cutoff frequency

of ωF = RF

LF +Lin
far below the microwave resonance frequency. On resonance then:
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Re[ZL] = −ω0Im

[
Mc

2(Lin + Zin/iω)− 2LSMp
2 − 2MinMcMp

2LS(Lin + Zin/iω) +Min
2

]
(B.13)

= −ω0Im

[
Mc

2(Lin + LF )(1− iωF

ω0
)− 2LSMp

2 − 2MinMcMp

2LS(Lin + LF )(1− iωF

ω0
) +Min

2

]
(B.14)

= ωF
Mc

2(Lin + LF )
(
2LS(Lin + LF ) +Min

2
)
− 2LS(Lin + LF )

(
Mc

2(Lin + LF )− 2LSMp
2 − 2MinMcMp

)(
2LS(Lin + LF ) +Min

2
)2

+O
(

(ωF

ω0
)2
)

(B.15)

= RF
Mc

2
(
2LS(Lin + LF ) +Min

2
)
− 2LS

(
Mc

2(Lin + LF )− 2LSMp
2 − 2MinMcMp

)(
2LS(Lin + LF ) +Min

2
)2

+O
(

(ωF

ω0
)2
) (B.16)

= RF
Mc

2Min
2 + 4LS

(
LSMp

2 +MinMcMp

)(
2LS(Lin + LF ) +Min

2
)2

+O
(

(ωF

ω0
)2
) (B.17)

≈ RF
Mc

2Min
2 + 4LS

(
LSMp

2 +MinMcMp

)(
2LS(Lin + LF ) +Min

2
)2 (B.18)


