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1. A geodesic on a given surface is a curve, lying on that surface along
which distance between two points is as small as possible. On a plane,
a geodesic is a straight line. Determine equations of geodesics on the
followi ng surfaces:

(a) Right circular cylinder. Take ds® = a®dq? +dz®and minimize

(‘)/a2 +(dz/dg)®dq or (‘)/az(dq/dz)2+1dz
(b) Spherical earth. Use geographic coordinates with
ds® = a® cos’f dl 2 +a’df 2

where aisradius of earth, f latitudeand | longitude.
2. Consider
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where W isan infinite domainin x-t plane, cand k are constants.

(@) Case where k =0. Discuss effects of a/a and ¢ on the spectral
response.

(b) Casewhere k * 0. Discuss effectsof k on the spectral response.



3. Assume that the observation of horizontal wind velocity is given
everywhere in the domain X, £X£X,, ViEVYEY,, PrEPEP..
Design a variational analysis scheme to compute the vertical velocity
w . Take image scale factor into consideration. Find the anaysis
equation(s) and proper boundary conditions. Discuss the procedure to
solve this boundary value problem.



1. Consider the following advection equation with a variable coefficient
U(x):
9z
—+U(X)— —0
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Using a centered space difference, the time-continuous equation
becomes
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To illustrate the effect of aliasing, assume the advection current has the
form

U;=Ccosjp, C=const.

Now assume a solution of the form
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Solve for the coefficients A(t) and B(t) and discuss the results.
2. Consider the following barotropic vorticity equation
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where
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(@) Show that



@’y .z)dxdy=0, gy J¢ ,z)dxdy=0, gy I .z)dxdy=0
(b) Using the results in (&) show that
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(c) Arakawa designed a Jacobian which can conserve the total vorticity,
enstrophy and kinetic energy. Write down the explicit form of the
Arakawa Jacobian.

3. Consider the motion of shalow-water gravity waves on a rotating

plane:
Wotv=0, Mifurglhog (1a)
Tt it Ty
Thn Voo (1b)
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The above shallow water system conserves the total energy:
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where E, is a constant. The set of equation (1) may be solved as an
initial problem by specifying conditions for u, v, h. The variables at the
(n+1)th time level are determined by a finite difference analog of (1)
when the variables at the nth time level are all known. These predicted
variables are denoted by T, ¥V, h. They are determined uniquely
without considering the requirement of total energy conservation (2)
which is satisfied by the true solution of the differential equation (1).
Since &, V and h may contain truncation error, we should be



allowed to adjust them dlightly to satisfy the required conservative law.
Design a variational scheme to force the predicted variables to satisfy
the conservative law (2) and summarize the entire process.

4. Assume that there are two independert functions |, T representing,
respectively, the observed geopotential and temperature in the vertical.
Design a variational scheme to minimized the difference between the
analyzed and observed values subject to the hydrostatic equation as a
strict condition (strong constraint). Find the Euler-Lagrange equation
and the natural boundary condition.

5. Explain the following terms:

(a) Nyquist frequency. (b) initialization. (c) aliasing error and nonlinear
instability.



Variational Optimization Analysis

1. Find the shortest distance between the line y=x and the parabola
y2 =x-1.
2. Determine the function y(x) which minimizes the integral

J= c‘f y&dx
subject to the constraint
Qp yZdx =1

and satisfies the end conditions
y(0)=0, y(p)=0

3. Determine the stationary function y(x) for the problem
d} Q e+ y(DI* % = y(0)=1
4. Derive the Euler-Lagrange equation of the problem
d ), F(x Y. y§y§dx=0

and obtain the natural boundary conditions.

5. Assume that the observed wind components u and v are given
everywhereinthedomain x £ XEx,, yEY£y, and pr £ p£ p,.
Design a variational optimization anaysis scheme to compute the
vertical velocity w . Take image scale into consideration. Find the
anaysis equation(s) and proper boundary conditions. Discuss the
procedure to solve this boundary value problem
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R=acosl5[1- tan(f - 45)]
N3y +Ny Nf = gN?z
y , f , Z
aim _1w
dfg qr

M =c,T+gz Montgomery , W=dp/dt.

55



(@) (R =), Vv
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(f Coriolis ):
B(U, V, ] ):ﬂ_’l((fv)- ﬂll/(fu)- N3 =0

Euler-Lagrange
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(u,v) (U, v) XEXEX,, YLEYEY,

Pr£pEp . P
, , W .
m, ,
(a
Rix(f Ny ) = N7
(b)
fh | _
[ +NxhV) =0,
Vv
Euler-Lagrage
[N U _
d{QF(x, Yy, Y9 dx - by(b)+ay(a)B—0
a b Y@ y(b) , dy(a)* 0, dy(b)* O.
( ):
€)) (stationary function).
(b) (weak constraint).

(c) (frequency response function).
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U,V) XEXEXy, iEYEY, PprE£pEp
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(b) Helmholtz
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d%QF(x, Yy, y9dx - by(b)+ay(a)g:0

a b . y(@ y(b) :
Euler-Lagrange

d gy U- 0)°+a(v- V)* +b(w- W) +21 (u, +v, +w,)|dxdydz=0

| Lagrange . Euler-Lagrange

uv w X,y z XY, Z
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(image scale factor).

(map scale factor).
(impulse response function).
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(c) Hm
(g =gH /4a2WP):
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ey g+ 8 T (g cost) =R, (13)
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Xy Iy U, R Hough
(b) Machenhauer-Tribbia (
, transformed domain
physical domain.
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