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We conducted numerical experiments of stagnant lid thermal convection in 3D-Cartesian geometry, and
use these experiments to derive parameterizations for the average internal temperature, heat flux, and
stagnant lid thickness. Our experiments suggest that the non-dimensional temperature jump across
the bottom thermal boundary layer (TBL) is well described by ð1� hmÞ ¼ 1:23ðDTv=DTÞ, where hm is
the non-dimensional average temperature of the convective sublayer, and DTv=DT a viscous temperature
scale defined as the inverse of the logarithmic temperature derivative of viscosity. Due to the presence of
the stagnant lid at the top of the fluid, the frequency of the time-variations of the surface heat flux is
much lower than those of the bottom heat flux. The Nusselt number, measuring the heat transfer, is well
explain by Nu ¼ 1:46Ra0:270

m ðDTv=DTÞ1:21, where Ram is the effective Rayleigh number. This result indicates
that the heat flux through the outer ice shells of large icy moons and dwarf planets is larger than that
predicted by scalings in 2D-Cartesian geometry by 20–40%. We then apply our parameterizations to
the dynamics of the outer ice I shells of icy moons and dwarf planets. As pointed out in previous studies,
our calculations indicate that the presence of volatile in the primordial ocean of these bodies strongly
reduces the vigor of convection within their outer ice I shell, the heat transfer through these shells,
and the tectonic activity at their surface. Furthermore, thicker ice I layers may be achieved in bodies hav-
ing low (0.7 m/s2) gravity acceleration (e.g., Pluto), than in bodies having larger (1.3 m/s2 and more) grav-
ity acceleration (e.g., Europa, Ganymede, and Titan). Decrease in the surface temperature increases the
thickness of the stagnant lid, which may result in a stronger lithosphere, and thus in fewer tectonic activ-
ity. Our parameterizations may also be used as boundary conditions at zero curvature to build parame-
terizations in spherical geometry.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In fluids with large thermal viscosity contrast (typically, 104 and
more), thermal convection operates in the stagnant lid regime (e.g.,
Davaille and Jaupart, 1993; Solomatov, 1995; Moresi and Solomatov,
1995; Deschamps and Sotin, 2000). In this mode of convection, a ri-
gid lid is generated at the top of the fluid, and convection is confined
below this lid. Due to the temperature drop in the top part of the
fluid, the viscosity strongly increases and both the horizontal and
vertical components of the velocity go to zero. The dominant mode
of heat transfer in the lid switches to conduction, and compared to
isoviscous convection, the heat transfer throughout the whole fluid
layer is severely reduced. For a volumetrically heated fluid, Davaille
and Jaupart (1993) have shown that most of the viscosity contrast is
accommodated by the conductive lid, and that the temperature
jump across the thermal boundary layer (TBL) located at the top of
the convecting sublayer is proportional to a viscous temperature
scale, a result confirmed by numerical experiments (Grasset and
Parmentier, 1998). This suggests that the convective sublayer be-
haves nearly as an isoviscous fluid. For a fluid heated from below,
numerical experiments indicate that the convective sublayer also
behaves as an isoviscous fluid with a good approximation (Moresi
and Solomatov, 1995).

Stagnant lid convection may play a significant role in the cool-
ing of large icy moons and dwarf planets of the outer solar system.
The radial structures of these bodies may include a thin (100–
250 km) outer ice I layer. If it is thick enough, this layer may be-
come unstable and convect. Because the viscosity of ice is strongly
temperature-dependent (e.g., Goodman et al., 1981; Weertman,
1983), stagnant lid convection is likely to occur in the outer ice I
layer, thus limiting the heat flux that can be extracted from the sil-
icate core (or mantle). Together with the presence of volatiles,
which reduces the liquidus of water, this may strongly influences
the crystallization of the primordial ocean, leading to the presence
of a sub-surface ocean beneath the ice I layer (e.g., Grasset et al.,
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Table 1
Influence of aspect ratio.

Dg Ra0 ra Resolution hm Nu RMS(V)

105 31.62 1 64 � 64 � 64 0.88824 3.197 146.34
– – 2 128 � 128 � 64 0.89166 3.033 145.38
– – 4 128 � 128 � 64 0.89427 3.078 146.16
– – 8 256 � 256 � 64 0.89376 3.104 144.96
106 10.00 1 64 � 64 � 64 0.91087 3.541 253.33
– – 2 128 � 128 � 64 0.91303 3.410 255.19
– – 4 128 � 128 � 64 0.91163 3.452 248.92
– – 8 256 � 256 � 64 0.91068 3.449 249.97

Input parameters are the top to bottom thermal viscosity ratio, Dg, the surface
Rayleigh number, Ra0, and the aspect ratio ra. Output observables are the non-
dimensional temperature of the well-mixed interior, hm, the Nusselt number, Nu,
and the root mean square of the velocity, RMS(V).
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2000; Deschamps and Sotin, 2001; Spohn and Schubert, 2003;
McKinnon, 2006; Mitri and Showman, 2008). Sub-surface oceans
may be a common feature of large differentiated icy bodies
(Hussmann et al., 2006), including Ceres (McCord and Sotin,
2005). The observation that the convective sublayer behaves nearly
as an isoviscous fluid was used to approximate icy shells with
isoviscous layers overlain by thick rigid lids, allowing the use of
heat flux parameterizations built for isoviscous fluid to model
the thermal histories of icy moons and dwarf planets with a rea-
sonable accuracy. A more detailed description of these evolutions
however requires parameterizations directly built from stagnant
lid convection experiments.

Here, we perform series of numerical experiments of stagnant
lid convection in 3D-Cartesian geometry, from which we infer
parameterizations for heat flux and temperature. Parameteriza-
tions built from experiments in 3D-Cartesian geometry have two
main interests. First, they may be directly applied to outer ice lay-
ers of icy moons and dwarf planet, since these layers have small
curvatures. Second, they can be used as a boundary condition (with
zero curvature) for calculations in spherical geometry.

2. Physical model

We performed series of numerical experiments of thermal con-
vection, in which we solved the conservation equations of mass,
momentum, and energy for an incompressible, infinite Prandtl
number fluid in 3D-Cartesian geometry using StagYY (Tackley,
2008). At each time step, the conservation equations are solved
using a Jacobi relaxation method. Convergence of the momentum
and pressure equation is speeded up using a multigrid method
(e.g., Wesseling, 1992). Time-stepping in the conservation of en-
ergy is achieved by an explicit MPDATA (Smolarkiewicz, 1984)
algorithm for advective terms, and a second-order finite difference
scheme for diffusive terms.

The viscosity g strongly varies with the temperature T following
an exponential law,

gðx; y; zÞ ¼ g0 exp �c
Tðx; y; zÞ � T0ð Þ

DT

� �
; ð1Þ

where g0 and T0 are the reference (e.g., the surface values of) viscos-
ity and temperature, DT is the super-adiabatic temperature differ-
ence between the bottom and the top of the fluid, and c a
parameter that controls the amplitude of the viscosity variations.
Following Eq. (1), the top to bottom viscosity ratio is Dg = exp(c).
Thanks to a new pressure interpolation scheme in the prolongation
operator of the multigrid cycle, StagYY can handle very high
viscosity ratios, up to 1019 (Tackley, 2008). This scheme is
somewhat equivalent to a matrix-dependent prolongation operator
(Wesseling, 1992), which is well adapted to problems where scalar
parameters of the equations (e.g., the viscosity) strongly vary
throughout the domain.

The vigor of convection is controlled by the Rayleigh number,

Ra ¼ aqgDTD3

gK
; ð2Þ

where a, q, and j are the fluid thermal expansion, density, and ther-
mal diffusivity, g is the acceleration of gravity, and D the thickness
of the domain. Note that DT and D are used as temperature and
length scale, respectively. Because viscosity varies with tempera-
ture throughout the system, the definition of the Rayleigh number
is non-unique. It is convenient to define a reference Rayleigh num-
ber calculated at a reference temperature common to all
calculations, e.g., the surface temperature, which is always equal
to T0 in our experiments. Another frequently used reference Ray-
leigh number is the median Rayleigh number Ra1/2, calculated at
the median temperature T1/2 = T0 + DT/2. Beneath the stagnant lid,
the fluid is significantly hotter and less viscous than in the lid,
and it is useful to define a Rayleigh number of the well-mixed inte-
rior (hereafter referred to as effective Rayleigh number), Ram, calcu-
lated with the average temperature Tm of the well-mixed convective
interior. The effective Rayleigh number thus implicitly takes into ac-
count the effects of viscosity variations. In all our experiments, we
prescribe the surface Rayleigh number Ra0, and calculate Ram a pos-
teriori with

Ram ¼ Ra0 expðchmÞ; ð3Þ

where hm ¼ ðTm � T0Þ=DT is the non-dimensional temperature of
the well-mixed interior. This temperature is an output observable
that we measure from the adiabatic part of the horizontally aver-
aged profile of temperature. Another important observable is the
Nusselt number Nu, measuring the efficiency of the convective heat
transfer relatively to the conductive heat transfer, and which is gi-
ven by the ratio between the observed heat flux and the global con-
ductive heat flux Ucond = kDT/D.

Calculations are performed in 3D-Cartesian boxes with hori-
zontal to vertical aspect ratio equal to 4. Scalar quantities (tem-
perature, pressure, viscosity) are calculated at the middle of
each cell, whereas vectorial quantities (in our case, velocity) are
calculated on the side of each cell. The top and bottom boundaries
are free slip and isothermal, and we impose reflective boundary
conditions on the sidewalls. To test the influence of the aspect ra-
tio, we conducted a series of experiments with aspect ratio be-
tween 1 and 8 for two cases (Table 1). These experiments
indicate that for aspect ratio larger than 2, the average properties
of the fluid (average temperature, Nusselt number, and root mean
square of velocity) are nearly independent of the aspect ratio. We
used different grid resolution, npx � npy � npz, depending on the
expected value of the effective Rayleigh number. For effective
Rayleigh number smaller than 107 we fixed the grid resolution
to 128 � 128 � 64 points. For larger Rayleigh numbers, we in-
creased the resolution to 256 � 256 � 128 or 384 � 384 � 192
points, depending on the case (Table 2). Note that to better de-
scribe the thermal boundary layers, the grid is vertically refined
at the top and at the bottom of the domain. The initial condition
for the temperature consists of 3D-random perturbations, and the
calculations are carried on until a quasi-stationary state is
reached. In some cases, the temperature condition is given by
the temperature distribution from a previous experiment having
converged with lower Rayleigh number. In the ranges of Rayleigh
number and viscosity contrast we explored, the flow is time-
dependent, reaching a quasi-stationary state after a period of
time. During this phase, the average temperature and the Nusselt
number oscillate around values that are constant in time. For each
case, we determine these values by averaging the temperature
and the Nusselt number over several oscillations.



Table 2
Stagnant lid convection experiments in 3D-Cartesian geometry.

Dg Ra0 Resolution hm Nu dlid Ram

3.2 � 104 89.47 128 � 128 � 64 0.87894 3.469 0.224 8.15 � 105

– 178.89 128 � 128 � 64 0.88175 4.177 0.188 1.68 � 106

– 313.05 128 � 128 � 64 0.88123 4.843 0.162 2.92 � 106

– 894.65 256 � 256 � 128 0.88370 6.373 0.129 8.56 � 106

5.6 � 104 67.61 128 � 128 � 64 0.88871 3.485 0.226 1.12 � 106

– 135.22 128 � 128 � 64 0.88997 4.248 0.186 2.27 � 106

105 31.62 128 � 128 � 64 0.89427 3.078 0.257 9.36 � 105

– 50.60 128 � 128 � 64 0.89523 3.563 0.224 1.51 � 106

– 79.06 128 � 128 � 64 0.89323 4.074 0.196 2.31 � 106

– 126.49 128 � 128 � 64 0.89238 4.538 0.176 3.66 � 106

– 199.22 256 � 256 � 128 0.89248 5.192 0.158 5.78 � 106

– 316.23 256 � 256 � 128 0.89359 5.618 0.142 9.29 � 106

– 1011.89 256 � 256 � 128 0.89337 7.829 0.108 2.96 � 107

1.8 � 105 37.71 128 � 128 � 64 0.89985 3.642 0.221 2.02 � 106

– 169.68 256 � 256 � 128 0.89773 5.476 0.152 8.86 � 106

3.2 � 105 17.68 128 � 128 � 64 0.90203 3.290 0.246 1.63 � 106

– 56.57 128 � 128 � 64 0.90183 4.423 0.183 5.22 � 106

– 176.78 256 � 256 � 128 0.90243 6.071 0.139 1.64 � 107

5.6 � 105 13.36 128 � 128 � 64 0.90896 3.361 0.243 2.24 � 106

– 42.76 128 � 128 � 64 0.90603 4.556 0.180 6.90 � 106

106 4.50 128 � 128 � 64 0.91020 2.733 0.299 1.30 � 106

– 10.00 128 � 128 � 64 0.91163 3.452 0.238 2.95 � 106

– 16.00 128 � 128 � 64 0.91171 3.912 0.211 4.72 � 106

– 25.00 128 � 128 � 64 0.90968 4.416 0.186 7.18 � 106

– 40.00 256 � 256 � 128 0.91108 5.013 0.169 1.17 � 107

– 63.00 256 � 256 � 128 0.91172 5.814 0.150 1.86 � 107

– 100.00 256 � 256 � 128 0.91048 6.216 0.136 2.90 � 107

3.2 � 106 17.89 256 � 256 � 128 0.91678 4.973 0.172 1.65 � 107

– 41.93 256 � 256 � 128 0.91805 6.164 0.140 3.93 � 107

107 0.34 128 � 128 � 64 0.92208 2.162 0.386 1.08 � 106

– 0.63 128 � 128 � 64 0.92203 2.528 0.331 1.80 � 106

– 3.16 256 � 256 � 128 0.92328 3.887 0.219 9.18 � 106

– 10.12 256 � 256 � 128 0.92332 5.275 0.164 2.94 � 107

– 31.62 256 � 256 � 128 0.92348 7.011 0.124 9.21 � 107

3.2 � 107 7.07 256 � 256 � 128 0.92902 5.950 0.148 6.64 � 107

– 17.68 384 � 384 � 192 0.92597 7.527 0.114 1.57 � 108

108 0.06 128 � 128 � 64 0.93018 2.094 0.405 1.66 � 106

– 0.10 128 � 128 � 64 0.93244 2.429 0.352 2.88 � 106

– 1.00 256 � 256 � 128 0.93301 4.445 0.196 2.91 � 107

– 1.60 256 � 256 � 128 0.93299 5.021 0.175 4.66 � 107

– 3.20 256 � 256 � 128 0.93282 5.993 0.148 9.28 � 107

109 0.04 256 � 256 � 128 0.94076 3.143 0.279 1.30 � 107

– 1.00 384 � 384 � 192 0.93662 7.145 0.122 2.72 � 108

1010 0.008 256 � 256 � 128 0.94653 3.225 0.276 2.34 � 107

– 0.08 384 � 384 � 192 0.94485 5.828 0.153 2.25 � 108

Input parameters are the top to bottom thermal viscosity ratio, Dg, and the surface Rayleigh number, Ra0. Output observables are the non-dimensional temperature of the
well-mixed interior, hm, the Nusselt number, Nu, and the thickness of the stagnant lid, dlid, measured from the tangent at the point of inflexion of the horizontally averaged
vertically advected heat flux (uzT). Output observable are averaged out in time over a few oscillations after quasi-stationary state is reached. For convenience, we also list the
effective Rayleigh number Ram (Eq. (3)).
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3. Results from numerical experiments

We performed 45 experiments using the setup described in Sec-
tion 2 and varying the bottom to top thermal viscosity contrast Dg
between 3.2 � 104 and 1010 (Table 2). All 45 experiments are in the
stagnant lid regime. A consequence of the stagnant lid is that the
vertically advected heat cancels out at the top of the system. This
property may be used to infer the thickness of the stagnant lid
(see below). Another consequence of the stagnant lid is that the
top part of the temperature profile is purely conductive. This re-
sults in a non-dimensional temperature of the well-mixed interior
hm much larger than 0.5 (in all our experiments hm is larger than
0.85), and in a reduced temperature jump across the bottom ther-
mal boundary layer. A close examination at Table 2 indicates that
the temperature of the well-mixed interior is independent of the
Rayleigh number. The Nusselt number, on the contrary, increases
with increasing effective Rayleigh number.
3.1. Flow pattern

Fig. 1 plots temperature isosurfaces for selected cases with dif-
ferent effective Rayleigh number. The flow is restricted to a layer
located beneath the stagnant lid. In the stagnant lid, thermals con-
sist of horizontal surfaces slightly deflected upwards or down-
wards in regions where hot plumes or cold downwellings are
present in the underlying flow. For the aspect ratio we used and
in the range of viscosity contrast and surface Rayleigh number
we prescribed (corresponding to effective Rayleigh number Ram

between 106 and 108), the convective pattern that develops be-
neath the conductive lid forms an asymmetric network of cells
with irregular shapes (often referred to as spokes pattern), as ob-
served in analogical (White, 1988) and numerical (Ogawa et al.,
1991) experiments. Each cell consists in a central hot plume sur-
rounded by interconnected downwelling sheets bounding adjacent
cells. The hot plumes of adjacent cells are interconnected by hot



Fig. 1. Snapshots of three selected cases. For each case, a cold (left column) and a hot (right column) isosurface are shown. Snapshots are taken after the quasi-stationary state
has been reached. Cases are, from top to bottom, Ra0 = 31.6 and Dg = 105 (Ram = 9.4 � 105), Ra0 = 10 and Dg = 106 (Ram = 2.9 � 106), and Ra0 = 3.2 and Dg = 107

(Ram = 9.2 � 106).
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ridges. Cells with more regular shapes (hexagons or squares) may
be obtained for boxes with smaller (<3) aspect ratio and at lower
values of Dg and Ra1/2 (White, 1988; Christensen and Harder,
1990; Ogawa et al., 1991), but for such setups the stagnant lid re-
gime may not be fully developed. In the range of Rayleigh number
we explored, the flow is time-dependent. The size and shape of the
cells vary in time, but the time-averaged number and size of these
cells remain constant, as shown in Fig. 2 for the case Ra0 = 3.2 and
Dg = 107 (corresponding to Ram = 9.2 � 106).

3.2. Time-variation of the average heat-flux

Small time variations in the flow pattern are associated with
oscillations of the horizontally-averaged heat flux around con-
stant values. Fig. 3, which plots variations of the heat flux at
the top and at the bottom of the box for selected cases, indicates
that the frequency of the heat flux oscillations increase with
increasing effective Rayleigh number. Furthermore, for a given
effective Rayleigh number, this frequency increases with
decreasing thermal viscosity contrast (Fig. 3b and c). In all cases,
however, the time averaged surface and basal heat flux are
equal to one another, as required by conservation of energy.
By contrast, the details of the heat flux oscillations at the top
and at the bottom of the fluid differ significantly. The amplitude
of oscillations at the top of the fluid are slightly smaller than
(but still comparable to) those at the bottom of the fluid. At
the bottom, the peak-to-peak amplitude relative to the time-
averaged value varies between 1% and 7%, depending on the
case, and is 3% on average. At the top, the relative peak-to-peak
amplitude varies between 1% and 4%, and is 2% on average.
More importantly, the frequency of the heat flux oscillations is
much larger at the bottom of the fluid than below its surface.
The stagnant lid therefore acts as a low-frequency pass filter
for the variations in the heat flux, i.e., the high-frequency
oscillations of the heat flux generated at the bottom of the fluid
are filtered out by the lid.

The dependence of the frequency of heat flux oscillations on the
Rayleigh number and on the viscosity contrast, and their variations
from top to bottom, may be explained by differences in the time
needed for the growth of instabilities in the top and bottom TBL.
When quasi-equilibrium is reached, the time-averaged conductive
heat flux should be equal to the half-space cooling solution,



Fig. 2. Snapshots of the case Ra0 = 3.2 and Dg = 107 (Ram = 9.2 � 106) at four different times.
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�U ¼ 2kDTcffiffiffiffiffiffiffiffiffiffiffi
pjtc
p ; ð4Þ

where DTc is the temperature jump across the conductive domain
(in our case, either the bottom TBL, or the sum of the stagnant lid
and the top TBL, hereafter referred to as top conductive layer), j
the thermal diffusivity, and tc the time for the growth of instabili-
ties. Solving for Eq. (4), and using the total thickness of the box D,
the diffusion time D2/j, and the super-adiabatic temperature jump
DT as characteristic length, time, and temperature, the non-dimen-
sional time for the growth of instabilities in the bottom TBL and top
conductive layers are

t�bot ¼
4
p

dTbot

Nu

� �2

; ð5aÞ

and

t�top ¼
4
p

dTtop

Nu

� �2

; ð5bÞ
respectively, where Nu is the time-averaged Nusselt number
(Table 2), dTbot the non-dimensional temperature jump across
the bottom TBL, and dTtop the non-dimensional temperature jump
across the top conductive layer (stagnant lid + top TBL). Note that
Eq. (5b) implicitly assumes that the stagnant lid is an upward
extension of the top TBL. With a good approximation,
dTbot ¼ ð1� hmÞ and dTtop ¼ hm, where hm is the average tempera-
ture in the well mixed interior (Table 2). The ratios dTbot=Nu and
dTtop=Nu are also good approximations for the thickness of the bot-
tom TBL, dbot, and for the cumulated thickness of the top TBL and of
the stagnant lid, dtop, respectively. A careful examination at Table 2
shows that Nu increases with the effective Rayleigh number Ram
and, for a given value of Ram, decreases with the thermal viscosity
contrast, whereas hm increases with the thermal viscosity contrast
but does not depend on Ram (these trends are further quantified in
Section 4). On the whole, both dTbot=Nu and dTtop=Nu, and therefore
t�bot and t�top, decrease with increasing Ram and decreasing thermal
viscosity contrast. Furthermore, dTbot is smaller than dTtop by
about an order of magnitude or more (in our experiments,



Fig. 3. Time evolution of the non-dimensional surface and basal heat flux for 5
cases (the effective Rayleigh number increases from top to bottom panels). (a)
Ram = 2.9 � 106 and Dg = 108. (b) Ram = 9.2 � 106 and Dg = 107. (c) Ram = 9.4 -
� 106 and Dg = 105. (d) Ram = 1.9 � 107 and Dg = 106. (e) Ram = 3.0 � 107 and
Dg = 105.
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dTtop=dTbot varies between about 7 for Dg = 3.2 � 104, and 18 for
Dg = 1010), which implies that t�bot is smaller than t�top by about
two orders of magnitude and more. In other words, instabilities
grow faster with increasing Ram and decreasing viscosity contrast,
and they grow faster in the bottom TBL than in the top conductive
layer.
Eqs. (5a) and (5b) qualitatively explains the differences ob-
served in the frequencies of the heat flux oscillations, depending
on the location, the Rayleigh number and the viscosity contrast.
Practically, however, the shortest oscillations we observed in our
experiments are larger than the values predicted by Eqs. (5a) and
(5b) by about 30–50%. This discrepancy may be related to the fact
that both existing plumes and new instabilities participate to the
heat transfer, as pointed out for internally heated isoviscous fluids
(Parmentier and Sotin, 2000; Deschamps et al., 2012). Alterna-
tively, interactions between cold downwellings or hot plumes
and the opposite TBL may influence the growth of instabilities in
TBLs.

4. Scaling laws for stagnant lid regime

4.1. Temperature jump across and thickness of the bottom TBL

Analytical (Morris and Canright, 1984; Fowler, 1985), experi-
mental (Davaille and Jaupart, 1993), and numerical (Solomatov,
1995; Moresi and Solomatov, 1995; Deschamps and Sotin, 2000)
studies indicate that the temperature jump across the top thermal
boundary layer is controlled by the thermal viscosity contrast
through an appropriate viscous temperature scale,

DTv ¼
gðTmÞ

dg
dT jT¼Tm

; ð6Þ

where Tm is the temperature of the well-mixed interior. Following
Eq. (1), the viscous temperature scale in our experiment is related
to the logarithmic thermal viscosity contrast through DTv ¼ DT=c.
For a bottom heated fluid, numerical experiments indicate that
the temperature jump in the bottom TBL is also proportional to
the viscous temperature scale (Deschamps and Sotin, 2000). The
measure of the temperature jump across the bottom TBL is more di-
rect and more accurate than that in the top TBL, which requires an
accurate determination of the boundary between the lid and the top
TBL. Our numerical experiments can be used to determine scaling
laws for the temperature, and thus for the temperature jump in
the bottom TBL. These experiments indicate that hm varies with
the thermal viscosity contrast Dg (and thus with c), but is indepen-
dent of the Rayleigh number. The non-dimensional temperature
difference across the bottom TBL is well explained by (Fig. 4a)

ð1� hmÞ ¼ aT
DTv

DT

� �
; ð7Þ

where aT = 1.23 ± 0.05. The value of aT was determined by a least-
square fit of the data listed in Table 2, and its uncertainty was ob-
tained assuming a relative uncertainty in the average temperature
of 0.3%, corresponding to the average amplitude of the oscillations
of the average temperature during the quasi-stationary phase. An
interesting consequence of Eq. (7) is that the viscosity jump across
the bottom TBL is independent of both the Rayleigh number and the
thermal viscosity contrast, and is equal to e1.23 = 3.4.

The analytical study of Morris and Canright (1984) further indi-
cates that the thickness of the top TBL below the stagnant lid also
scales as the viscous temperature scale DTv. A similar relationship
may hold for the thickness of the bottom TBL, dbot, which may then
be deduced from the cumulated thickness of the stagnant lid and
top TBL, dtop, following

dbot ¼ addtop
DTv

DT

� �
: ð8Þ

Assuming that dtop ¼ hm=Nu and dbot ¼ ð1� hmÞ=Nu, we calcu-
lated dtop and dbot using the values of Nu and hm in Table 2, and
found that dtop and dbot fit Eq. (8) with ad = 1.36 ± 0.1 very well
(Fig. 4b).



Fig. 4. (a) Average temperature in the well-mixed interior (Eq. (7)) as a function of
the viscous temperature scale (Eq. (6)). The best fit model to Eq. (7) is indicated by
the dashed line, and the shaded band covers one error bar around this best fit
model. (b) Thickness of the bottom thermal boundary layer dbot (Eq. (8)) as a
function of the viscous temperature scale. Plotted values are relative to the
thickness of the top conductive layer (formed by the sum of the stagnant lid and the
top thermal boundary layer), dtop. The best fit model to Eq. (8) is indicated by the
dashed line, and the shaded band covers one error bar around this best fit model.
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It should be noted that Eqs. (7) and (8) and the parameter val-
ues we inverted for are not valid for small values of the viscous
temperature scale, typically DTv/DT around 0.1 and larger. The rea-
son is that for such values of the thermal viscosity contrast is too
small (104 and less), and therefore convection is not in the stagnant
lid regime.
Fig. 5. Reduced Nusselt number as a function of the effective Rayleigh number. The
reduced Nusselt number is defined by Nur = Nu/(DTv/DT)1.21. Observed values of the
Nusselt number are listed in Table 2, and are denoted by the circles. The best fit
model to Eq. (10) is indicated by the dashed line, and the shaded band covers one
error bar around this best fit model.
4.2. Nusselt number

Large thermal viscosity contrasts have two opposite effects on
the Nusselt number. The Nusselt number increases with the effec-
tive Rayleigh number, and thus implicitly with the thermal viscos-
ity contrast. However, the presence of the stagnant conductive lid
at the top of the system acts as an insulator, thus limiting the heat
transfer towards the surface. This later effect dominates, and over-
all the Nusselt number strongly decreases with increasing thermal
viscosity contrast, as noted in 2D-Cartesian numerical experiments
(Christensen, 1984; Moresi and Solomatov, 1995; Deschamps and
Sotin, 2000). For an isoviscous fluid, a TBL analysis indicates that
the non-dimensional heat flux across a TBL scales as (Moore and
Weiss, 1973)
Qadim ¼ aRabdTc
TBL; ð9Þ

where dTTBL is the temperature jump across the TBL. For stagnant lid
convection, the temperature jump in the bottom TBL is well ex-
plained by Eq. (7). Furthermore, in Cartesian geometry, the energy
conservation implies that the top and bottom horizontally averaged
heat flux are equal. Replacing Ra by the effective Rayleigh number
Ram, and dTTBL by Eq. (7), one obtains an expression for the observed
Nusselt number, i.e.,

Nu ¼ aRab
m

DTv

DT

� �c

: ð10Þ

To determine the values of a, b, and c, we inverted the values of
Nu in Table 2 following Eq. (10) and using the generalized non-lin-
ear inversion method of Tarantola and Valette (1982). This method
gives a posteriori uncertainties, provided that uncertainties in the
data are prescribed. Here, we assumed a relative uncertainty in
the Nusselt number of 2.0%, which again corresponds to the aver-
age amplitude of the oscillations of the Nusselt number during the
quasi-stationary phase. We found a = 1.46 ± 0.06, b = 0.270 ± 0.004,
and c = 1.21 ± 0.03. Fig. 5 plots the reduced Nusselt number, de-
fined as Nu/(DTv/DT)1.21, and shows that Eq. (10) with these
parameter values explain very well the Nusselt number observed
in our numerical experiments.

4.3. Thickness of the stagnant lid

A good estimate of the stagnant lid thickness, dlid, is given by the
intersection between the tangent at the point of inflexion of the
horizontally averaged profile of the vertically advected heat uzT
(where uz is the vertical component of the velocity and T the tem-
perature), and the origin axis uzT = 0 (Davaille and Jaupart, 1993).
We applied this method to our experiments (Table 2). Like the
average temperature and the Nusselt number, the thickness of
the stagnant lid oscillates around a constant value once a quasi-
equilibrium is reached. The values of dlid listed in Table 2 are
time-averaged over a few oscillations. The variance related to the
oscillations is different for each case, and is on average equal to
2% of the time-averaged values. Because in the stagnant lid heat
is transported by conduction, the temperature at the bottom of
the stagnant lid is well approximated by

hlid ¼ dlidNu; ð11Þ
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A close inspection of Table 2 indicates that dlid does not mono-
tonically decreases with increasing effective Rayleigh number.
Similarly, there is no simple scaling between the surface Rayleigh
number and dlid. Instead, dlid, depends both on Ram and on the
amplitude of the viscosity contrast. To model the thickness of the
stagnant lid, we have assumed that the sublayer behaves as an iso-
viscous fluid. In that case, the temperature jump in the top and
bottom TBL are equal, i.e., the modeled temperature at the bottom
of the lid is

hmod ¼ 2hm � 1: ð12Þ

Assuming that the temperature jump in the bottom TBL is given
by Eq. (7), and using the fact that heat is conducted across the lid,
the modeled thickness of the stagnant lid is

dmod ¼ 1:0� 2aT
DTv

DT

� �� �
Nu= ; ð13Þ

Using Eq. (10) to calculate the Nusselt number, the thickness of
the lid may thus be estimated directly from the input parameters,
Ra0 and Dg. Note that uncertainties in dmod may be estimated from
the uncertainties in Nu and in aT. Fig. 6 shows that the thickness of
the lid modeled with Eq. (13) agrees very well with the measured
thickness of the lid (Table 2). This result suggests that the convec-
tive sublayer behaves as an isoviscous fluid with a good approxi-
mation, as previously pointed out for bottom or volumetrically
heated fluids (Davaille and Jaupart, 1993; Moresi and Solomatov,
1995; Grasset and Parmentier, 1998). Assuming that the tempera-
ture at the bottom of the lid is given by Eq. (11), our results imply
that for a bottom heated fluid the viscosity jump across the sublay-
er is equal to �10, which is also the value observed for a volumet-
rically heated fluid (Davaille and Jaupart, 1993; Grasset and
Parmentier, 1998).
4.4. Properties of the convective sublayer

We have further checked whether the convective sublayer be-
haves as an isoviscous fluid by rescaling the properties of the
sublayer with its characteristic temperature and length scales,
ð1� hlidÞDT and ð1� dlidÞD. Using these new characteristic
Fig. 6. Reduced thickness of the conductive lid as a function of the effective
Rayleigh number. The reduced thickness is defined by dr = dlid[1 � 2.46(DTv/DT)]/
(DTv/DT)1.21, where dlid is the thickness of the stagnant lid. The observed values of
the stagnant lid are listed in Table 2 and were measured from the horizontally
averaged profile of the vertically advected heat (see main text). The dashed line was
constructed by replacing hm and Nu in Eq. (13) by their best fit parameterizations
(Eqs. (7) and (10), respectively), and the shaded band covers one error bar around
this best fit.
quantities, the Rayleigh number, average temperature, and Nusselt
number of the sublayer are

RaSL ¼ Rað1� hlidÞð1� dlidÞ3; ð14Þ
hSL ¼
ðhm � hlidÞ
ð1� hlidÞ

; ð15Þ

and

NuSL ¼
ð1� dlidÞ
ð1� hlidÞ

Nu: ð16Þ

Again, we calculated uncertainties in RaSL, hSL, and NuSL from the
uncertainties in hm, Nu, and dlid. The average rescaled temperature
slightly decreases with increasing RaSL (Fig. 7a), but within error
bars hSL mostly remains around 0.5, as one would expect for an iso-
viscous fluid. Furthermore, NuSL fit reasonably well along a power
law of RaSL (Fig. 7b),

NuSL ¼ aSLRabSL
SL ; ð17Þ

with aSL = 0.36 ± 0.04 and bSL = 0.31 ± 0.01. These values are close to
those expected for an isoviscous fluid in 3D-Cartesian
geometry, with pre-exponential constant and exponent around
0.27 and 0.32, respectively (e.g., Travis et al., 1990), suggesting
again that the convective sublayer behaves nearly as an isoviscous
fluid.
Fig. 7. Properties of the convective sublayer rescaled with the characteristic
temperature and length scales of this sublayer. (a) Average temperature, hSL (Eq.
(15)). (b) Nusselt number, NuSL (Eq. (16)). Results are plotted as a function of the
rescaled Rayleigh number, RaSL (Eq. (14)).



Fig. 8. Comparison between parameterizations for the temperature jump across the
bottom TBL built from 2D-Cartesian and 3D-Cartesian experiments. The blue lines
are from Moresi and Solomatov (1995) for Rayleigh number between 106 and 109

(labels on curves), the dark red line from Deschamps and Sotin (2000), and the
orange line is from this study. Results are shown as a function of the viscous
temperature scale DTv/DT.

48 F. Deschamps, J.-R. Lin / Physics of the Earth and Planetary Interiors 229 (2014) 40–54
4.5. Comparison with 2D-Cartesian parameterizations

Parameterizations for the average temperature and heat-flux,
using the same formalism as the one used in this study, have al-
ready been obtained from 2D-Cartesian geometry calculations
(e.g., Moresi and Solomatov, 1995; Deschamps and Sotin, 2000)
(Table 3). We however observe significant differences between
these parameterizations and those derived from our 3D-Cartesian
geometry experiments (Figs. 8 and 9). Moresi and Solomatov
(1995) parameterized the average temperature as a function of
the Rayleigh number (with a very weak dependence), which is
not the case in our study. Within the range of Rayleigh number
(106–108) and viscosity contrast (106–1012) expected for the outer
ice layers of icy moons and dwarf planets, the values predicted by
the 2D-Cartesian experiments of Moresi and Solomatov (1995) are
however fully consistent (Fig. 8). Differences between our 3D-
Cartesian parameterization and that from Deschamps and Sotin
(2000), which also does not account for variations of the tempera-
ture with the Rayleigh number, are larger. More importantly, we
observe substantial differences in the convective heat flux, with
3D-Cartesian parameterizations predicting a better heat transfer
than 2D-Cartesian parameterizations (Fig. 9a). Compared to our
3D-Cartesian calculations, the experiments of Moresi and Soloma-
tov (1995) predict a weaker dependence on both the Rayleigh
number and the thermal viscosity contrast (Table 3). Experiments
from Deschamps and Sotin (2000) predict a slightly weaker depen-
dence on the Rayleigh number, but a stronger dependence on the
thermal viscosity contrast. As a result, in the range of Rayleigh
number and thermal viscosity contrasts expected for the outer
ice layers of icy moons, the heat flux predicted by our 3D-Cartesian
parameterization is larger than the heat flux predicted Moresi and
Solomatov (1995) by up to 40%. Again, larger differences, between
25% and 50% are observed between our results and those of
Deschamps and Sotin (2000).

Because the 2D-Cartesian heat flux parameterization of Moresi
and Solomatov (1995) was deduced from steady calculations only,
the comparison between this scaling and our 3D-Cartesian heat
flux parameterization may be biased. Dumoulin et al. (1999)
pointed out that time-dependent calculations predict a different
heat flux parameterization than steady state calculations. For
time-dependent cases, they found that a heat flux parameteriza-
tion with exponents of the Rayleigh number and non-dimensional
viscous temperature scale equal to 1/3 and 4/3 (Table 3) explains
their data well. Solomatov and Moresi (2000) found a similar
parameterization for volumetrically heated 2D-Cartesian boxes,
and in its Cartesian limit, the parameterization obtained by Reese
et al. (2005) from spherical calculations has exponents of the Ray-
leigh number and viscous temperature scale equal again to 1/3 and
4/3, respectively, but a slightly larger value of the pre-exponential
constant (Table 3).
Table 3
Comparison between 2D- and 3D-Cartesian parameterizations.

References hm

Moresi and Solomatov (1995) ð1� hmÞ ¼ 1:1
Deschamps and Sotin (2000) ð1� hmÞ ¼ 1:4

Dumoulin et al. (1999)

Reese et al. (2005)

This study ð1� hmÞ ¼ 1:2

Non-dimensional temperature and Nusselt number are parameter
DTv/DT, which is equal to the inverse of the logarithmic thermal
the well-mixed interior, Ram. Note that the parameterization fr
experiments in boxes with aspect ratio 4. The parameterization
from experiments in spherical geometry.
Compared to our 3D-Cartesian heat flux parameterization, the
2D-Cartesian parameterization of Dumoulin et al. (1999) predicts
value of the Nusselt number lower by 20–40% in the range of Ray-
leigh number relevant to icy moons (typically, 106–108) (Fig. 9b).
Because the Rayleigh exponent used in this parameterization is lar-
ger than in our 3D-Cartesian scaling, this difference decreases with
increasing Rayleigh number. On the contrary, the discrepancies be-
tween the two parameterizations increases with increasing viscos-
ity contrast. For a Rayleigh number of 106, the Nusselt number
predicted by the parameterization of Reese et al. (2005) is still low-
er than that obtained by our parameterization by 20–30%, depend-
ing on the viscosity contrast, but for Rayleigh number around 108

the two scalings lead to similar amount of heat transfer, and for
a Rayleigh number of 109 the parameterization of Reese et al.
(2005) now predicts a more efficient heat transfer than our
parameterization.

Dumoulin et al. (1999) pointed out that the parameterization
with a 1/3 Rayleigh exponent is valid only for cases in a chaotic re-
gime, in which secondary instabilities rapidly grow in the TBL,
implying a larger heat flux. This chaotic regime appears for large
values of the effective Rayleigh number (typically, >108). Other
time-dependent cases, in quasi-stationary state and with effective
Rayleigh number around 5.0 � 107 and less, are not explained by
the 1/3 Rayleigh exponent parameterization (Fig. 10). The parame-
terization of Deschamps and Sotin (2000), on another hand,
explains both steady and time-dependent (but not chaotic) cases
(blue crosses in Fig. 10), including the data of Dumoulin et al.
Nu

DTv
DT

� �0:73
Ra�0:04

m Nu ¼ 1:89Ra0:2
m

DTv
DT

� �1:02

3 DTv
DT

� �
� 0:03 Nu ¼ 3:8Ra0:258

m
DTv
DT

� �1:63

Nu ¼ 0:52Ra1=3
m

DTv
DT

� �4=3

Nu ¼ 0:67Ra1=3
m

DTv
DT

� �4=3

3 DTv
DT

� �
Nu ¼ 1:46Ra0:270

m
DTv
DT

� �1:21

ized as a function of the non-dimensional temperature scale,
viscosity contrast c = ln(Dg), and of the Rayleigh number of

om Dumoulin et al. (1999) was built from time-dependent
of Reese et al. (2005) is the Cartesian limit of a scaling built



Fig. 9. Ratio between the Nusselt number predicted from 2D-Cartesian and 3D-
Cartesian (this study) parameterizations. Results are shown as a function of the
Rayleigh number, and for values of the thermal viscosity ratio between 106 and 1012

(labels on curves). (a) Orange curves are from Moresi and Solomatov (1995), and
dark red curves from Deschamps and Sotin (2000). (b) Dark blue curves are from the
time-dependent scaling from Dumoulin et al. (1999), and light blue curves are from
the Cartesian limit of the spherical geometry parameterization of Reese et al.
(2005).

Fig. 10. Reduced Nusselt number as a function of the effective Rayleigh number.
Dark red rings are the time-dependent data of Dumoulin et al. (1999) for Newtonian
cases with viscosity depending on temperature only. Blue crosses are all data from
Deschamps and Sotin (2000) plus additional cases at high (>108) Rayleigh number.
Two reduced Nusselt number are considered, Nur = Nu/(DTv/DT)4/3 (dashed line and
bottom series of points), as suggested by Dumoulin et al. (1999), and Nur = Nu/(DTv/
DT)1.63 (dotted line and top series of points), as found by Deschamps and Sotin
(2000). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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(1999) up to effective Rayleigh number around 108. Additional 2D-
Cartesian quasi-stationary calculations indicate that it explains
cases with Rayleigh number up to at least 3.0 � 108. A possible
explanation for the chaotic regime is that the appearance of stag-
nant lid convection may depend on both the viscosity contrast
and the Rayleigh number (Deschamps and Sotin, 2000). For values
of the Rayleigh number larger than a critical value, which increases
with the viscosity contrast, convection operates in an intermediate
regime between stagnant lid and isoviscous convection.

Whatever the nature of the chaotic regime observed by Dumo-
ulin et al. (1999), this regime implies the development of instabil-
ities at very short time scales, which may be too fast compared to
the growth of instabilities within ice layers of icy moons and dwarf
planets. Time-dependent, quasi-stationary flows predict lower
heat flux (thus, according to Eq. (4), longer time for the growth
of instabilities) and may be better suited in these cases. It is also
worth noting that the heat flux may be affected by interactions be-
tween the top and bottom TBLs. The 1/3 value of the Rayleigh num-
ber exponent in heat flux parameterizations is an asymptotic value,
which assumes that TBLs do not interact with one another and that
heat is only driven by the growth of instabilities in these layers. In
practice, however, hot plumes and cold downwellings interact
with the bottom and top TBL, respectively, thus perturbing the
growth of instabilities (e.g., Labrosse, 2002), and potentially affect-
ing the value of the Rayleigh number exponent.
5. Application to the outer ice I shells of icy moons

The parameterizations we inferred may be used to model the
cooling of icy moons and dwarf planets of the outer solar system.
A possible radial structure of the largest icy moons (Callisto, Gan-
ymede, and Titan) consists of a core of silicate, surrounded by a
layer of high pressure ices, and an outer ice I shell. If heat transfer
in this shell is not efficient enough, a subsurface ocean of water and
volatiles may subsist in between the high pressure ice and ice I lay-
ers. The moment of inertia of Ganymede indicates that its core
have further differentiated in an metallic core and a silicate shell.
By contrast, the moment of inertia of Callisto suggests that this sa-
tellite is not fully differentiated, i.e., its core consists in a mixture of
ice and silicates. Based on their average density, medium size
bodies (including Europa and Pluto) have a relatively large core,
with radius around 75% and more of the total radius. The layer of
ice may reach 250 km at most, and in these conditions, the gravity
acceleration does not allow the presence of a high pressure ice
layer above the silicate layer. However, a subsurface ocean may
still be present beneath the outer ice I shell, directly overlying
the silicate core. Subsurface oceans were first proposed to exist
in icy moons, as a consequence of the phase diagram of water
(Lewis, 1971). They may however be a more general feature of sat-
ellites and dwarf planets composed of ices and rocks (Hussmann
et al., 2006). A subsurface ocean may also exist in Ceres, provided
that this asteroid has lost little water during its history (McCord
and Sotin, 2005). The exact thickness of the ocean is likely con-
trolled by the presence of anti-freeze compounds (including
ammonia and methanol), whose effect is to decrease the liquidus
of water at a given pressure. Even in small concentrations (3 wt%
or less), ammonia can induce a 50–100 km thick subsurface ocean
(Grasset et al., 2000; Deschamps and Sotin, 2001). More recently,
Deschamps et al. (2010a) showed that the combination of 4 wt%
methanol and 1 wt% ammonia would maintain a 90 km thick ocean
in Titan. Furthermore, due to periodic switches between conduc-
tive and convective modes of heat transfer in the outer ice I shell,
the thickness of the ocean may oscillate by a few kilometers (Mitri
and Showman, 2008). An important consequence of the decrease in
the temperature is an increase in the bulk viscosity of the outer ice
I shell, which in turn strongly reduces the vigor of convection and
the heat transfer in this shell. This further opposes the crystalliza-
tion of the ocean and the cooling of the planetary interior.
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Similarly, tidal heating, if active, is likely slowing down the crystal-
lization of the ocean and the cooling of the body (e.g., Tobie et al.,
2006).

A detailed study of the thermal evolution of large icy moons and
dwarf planets is beyond the scope of this paper. Application of the
parameterizations inferred in the previous section to the heat
transfer through the outer ice I layer however leads to important
qualitative conclusions, which we discuss here. An interesting ef-
fect, when volatiles are present in the primordial ocean, is that
the Rayleigh number of the outer ice I shell increases with the
thickness of this layer up to a maximum value, and then starts
decreasing again (Grasset and Sotin, 1996; Deschamps and Sotin,
2001; Deschamps et al., 2010a). This effect is a consequence of
the phase diagram of the water + volatile system. The temperature
at the bottom of the ice I layer, which is by definition equal to the
temperature of crystallization at this depth, decreases with
increasing thickness of the ice layer. As a consequence, the temper-
ature of the well-mixed interior decreases, and the viscosity in-
creases, which compensate the increase of Rayleigh number due
to the thickening of the ice layer. For pure water, the thickening al-
ways dominates the increase in viscosity, i.e., the Rayleigh number
always increases with increasing thickness of ice I. The presence of
volatiles, however, further decreases the temperature of crystalli-
zation of the ocean, which further increases the effective viscosity.
As a result, the Rayleigh number decreases with increasing weight
fraction of volatile. Given the volume fraction of volatile, there is a
thickness for which the increase in Rayleigh number due to the
thickening is fully balanced by the increase in viscosity. For thicker
layers, the Rayleigh number decreases with increasing thickness. If
the ice I layer is too thick, the Rayleigh number of the ice I layer is
lower than the critical Rayleigh number for the onset of convec-
tion, i.e., the ice I layer is stable. Here, we used our scalings to cal-
culate the heat flux and the thickness of stagnant lid as a function
of the ice I layer, and the critical thickness of ice I at the convection
shut-off for four selected bodies, Europa, Ganymede, Titan, and
Pluto (physical properties of these bodies are listed in Table 4).

Details of the calculations can be found in Deschamps and Sotin
(2001). We first calculate the temperature at the bottom of the ice I
layer, Tbot, as a function of the thickness of the ice I layer, Dice, and
of the initial weight fraction of volatile in the ocean. The bottom
temperature derives from the phase diagram of the mix of water
and volatiles, the pressure being deduced from Dice. Here, we used
the phase diagram of the system water + ammonia, because it is
better known (Sotin et al., 1997) than that of other systems. The
presence of methanol, which in the case of Titan may be 4 times
more abundant (in weight fraction) than ammonia, can be taken
into account noting that the effect of 5 wt% methanol on the
dynamics of the ice I layer is equivalent to that of 3 wt% ammonia
(Deschamps et al., 2010a). For instance, the presence of 1 wt%
ammonia and 4 wt% methanol may be modeled assuming a pri-
mordial ocean containing 3.5 wt% ammonia. For large objects
(here, Ganymede and Titan) a high pressure ice layer also crystal-
lizes between the core and the bottom of the ocean. Assuming that
the ocean is adiabatic, and using the phase diagram of the high
pressure ices, we calculate the depth of the transition between
Table 4
Properties of selected planetary bodies.

Body R (km) q (kg/m3)

Europa 1561 3020
Ganymede 2631 1940
Titan 2575 1880
Pluto 1153 2000

Listed parameters are the total radius R, the average density q, the estimated radius of
acceleration g.
the ocean and the high pressure ice, from which we deduce the
thickness of the remaining ocean. For smaller bodies (here Europa
and Pluto), high pressure ices do not form beneath the ocean, and
the bottom of the ocean is simply given by the radius of the core).
Note that as long as the fraction of ammonia is smaller than that at
the eutectic composition (which is equal to 32.2 wt% for the
water + ammonia system), only water crystallizes, leaving volatiles
in the ocean. Thus, as the ice I thickens, the fraction of ammonia in
the remaining ocean increases, and the bottom temperature should
be updated according to this increase. We addressed this problem
using an iterative Newton–Raphson method.

The viscosity of ice I is strongly temperature dependent and is
well described by

gðTÞ ¼ gref exp
E

RTref

Tref

T
� 1

� �� �
; ð18Þ

where E is the activation energy of ice I, R is the ideal gas constant, and
gref is the reference viscosity at temperature Tref. Here, we used
gref = 5.0 � 1013 Pas (Deschamps and Sotin, 2001), a value derived
from the viscosity of pure water ice close to the melting point and
at strain rate around 10�11 s�1 (Gerrard et al., 1952). A potential flaw
in our modeling is that our numerical experiments are built for a
Newtonian flow (i.e., the stress exponent in the stress/strain relation-
ship is equal to 1). By contrast, at icy moons conditions, the ice flow is
likely non-Newtonian (e.g., Goodman et al., 1981). Interestingly,
Dumoulin et al. (1999) have shown that Newtonian scaling laws
may capture non-Newtonian behaviors by prescribing smaller values
of the activation energy. Furthermore, varying the activation energy
in the range 30–90 kJ/mol previous studies (Deschamps and Sotin,
2001; Deschamps et al., 2010a) have found that the influence of acti-
vation energy on the ice I shell properties is small compared to that of
the presence of volatiles. The error induced by using Newtonian sca-
lings instead of non-Newtonian scalings may thus be accounted for
by enlarging the uncertainty on the activation energy of ice I, and be-
cause varying this activation energy have moderate effects, the errors
induced by the use of Newtonian scalings is limited. Here, we use
E = 60 kJ/mol, which is consistent with experimental data (Durham
et al., 1997; Goldsby and Kohlstedt, 2001; Durham and Stern, 2001).

Given the temperature at the bottom of the ice I layer and the
viscosity law, the temperature of the well-mixed interior Tm can
be calculated by rescaling Eq. (7),

Tm ¼ Tbot � 1:23DTv : ð19Þ

Following Eq. (18), the viscous temperature scale (Eq. (6)) is gi-
ven by

DTv ¼
RT2

m

E
: ð20Þ

Inserting Eq. (20) in Eq. (19), Tm satisfies a degree 2 polynomial,
of which it is the positive solution.

The effective Rayleigh number of the ice I layer, calculated with
the viscosity at temperature Tm, is

Raice ¼
aIqIgDTiceD3

ice

gðTmÞjI
; ð21Þ
rc (km) Tsurf (K) g (m/s2)

1400 102 1.31
1700 110 1.43
1800 94 1.35

900 44 0.66

the silicate mantle or core rc, and the surface temperature Tsurf, the surface gravity
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where DTice = (Tbot � Tsurf) is the temperature jump across the ice I
layer, g the surface gravity acceleration, and aI, qI, jI the thermal
expansion, density, and thermal diffusivity of ice I (Table 5). When
Raice becomes smaller than a critical value, the ice I layer stops con-
vecting. For stagnant lid regime, the critical Rayleigh number de-
pends on the viscous temperature scale, a good approximation
being given by Stengel et al. (1982). Their experiments and calcula-
tions indicate that the critical surface Rayleigh number is well ex-
plained by

Racrit;surf ¼ 20:9c4 expð�cÞ; ð22Þ

where c ¼ DT=DTv . Following Eq. (3), the critical effective Rayleigh
number is

Racrit ¼ 20:9c4exp �ðTbot � TmÞ
DTv

� �
ð23Þ

which, using Eq. (19) and c ¼ DT=DTv , reduces to

Racrit ¼ 6:1
DT
DTv

� �4

: ð24Þ

We obtained the convective heat flux through the ice I layer by
rescaling Eq. (10) with the conductive heat flux Uc across the ice I
layer, leading to

Uice ¼ 1:46 Ra0:270
ice

DTv

DTice

� �1:21

Uc; ð25Þ

where the viscous temperature scale DTv is given by Eq. (20),
Uc ¼ kIDT ice=Dice, and kI the thermal conductivity of ice I. After con-
vection stopped, the heat flux through the ice I layer is of course gi-
ven by the conductive heat flux Uc.

Finally, it is interesting to calculate the thickness of the stagnant
lid at the top of the ice I layer because it is a good proxy for the
lithospheric strength. The thicker the lid, the stronger the litho-
sphere, thus reducing the surface tectonic activity. The thickness
of the lid may be obtained by rescaling Eq. (13) following

dlid ¼
DTice � 2:46DTv

Uice
; ð26Þ

where the convective heat flux Uice is given by Eq. (25).
Fig. 11 plots the Rayleigh number (Eq. (21)), the convective heat

flux (Eq. (25)) and the thickness of the stagnant lid (Eq. (26)) as a
function of the thickness of the ice I layer, Dice, for Europa, Gany-
mede, Titan, and Pluto, and for two values of the weight fraction
of ammonia. As expected, the Rayleigh number first increases with
Dice, then reaches a maximum, and decreases until it becomes
smaller than the critical Rayleigh number for the onset of convec-
tion (Fig. 11a and b). The convective heat flux (Fig. 11c and d)
monotonically decreases with increasing Dice. This is a combined
effect of the variations of the Nusselt number, which follow those
Table 5
Ice I properties.

Parameter Symbol Unit Value

Density qI kg/m3 917
Thermal conductivity kI W/m/K 2.6
Thermal expansion aI 1/K 1.56 � 10�4

Thermal diffusivity jI m2/s 1.47 � 10�4

Latent heat of fusion LI kJ/kg 284
Reference bulk viscosity gref Pas 5.0 � 1013

Activation energy Ea kJ/mol 60

All data are from Hobbs (1974), except the reference viscosity, which is deduced
from the viscosity of ice close to the melting point (Gerrard et al., 1952), and the
activation energy, which is deduced from ice flow experiments under different
regimes (Durham et al., 1997; Goldsby and Kohlstedt, 2001; Durham and Stern,
2001).
of the Rayleigh, and of the conductive heat flux Uc, which mono-
tonically decreases with Dice. Overall, the amount of heat that can
be extracted from the interior decreases as the ice I layer thickens.
Heat transfer is further reduced when the ice I layer becomes too
thick and convection shuts off. Thus, if the radiogenic heat is too
large, or if additional heat is produced by tidal heating, heat may
not be fully transported from the bottom of the ice I layer to its sur-
face, and the crystallization of this layer may stops. The thickness
of the stagnant lid, dlid, is inversely proportional to the heat flux
through the ice layer (Eq. (26)), and thus increases with Dice (note
that this increase is slightly moderated by the decrease in the tem-
perature DTice as the ice layer thickens) (Fig. 11e and f). It is inter-
esting to note that after the Rayleigh number has reached its
maximum value, dlid sharply increases. Assuming that the thick-
ness of the stagnant lid is a good proxy for the lithospheric
strength, these results suggest that the surface tectonic activity
should reduce with thickening of the ice I layer.

Unsurprisingly, increasing the weight fraction of volatile
strongly reduces the vigor of convection, and restricts the range
of Dice in which convection can operate. For xNH3 = 3.5%, convection
may operate in the ice I layers of Europa, Ganymede, and Titan if
they are thinner than 130–140 km, but for xNH3 = 8.5% convection
stops as soon as the thickness of the ice I layer reaches 90 km. This
effect is further quantified in Fig. 12a. For pure water, complete
crystallization of the ocean may be achieved. The thickness of ice
I at the convection shut-off then decreases with the weight fraction
of volatile (here ammonia). For a given thickness of ice I, an in-
crease in the weight fraction of volatile in the ocean also induces
substantial decrease in the heat flux, due the decrease in Rayleigh
number (Fig. 11c and d). If, for instance, Dice = 50 km, the heat flux
through the ice I layers of Europa, Ganymede and Titan drops from
about 30 mW/m2 for xNH3 = 3.5% to about 20 mW/m2 for
xNH3 = 8.5%. Due to the decreases in the vigor of convection, the
thickness of the stagnant lid also increases with increasing weight
fraction of volatiles. For Dice = 50 km, the thickness of the stagnant
lid for Europa, Ganymede and Titan is around 12 km for
xNH3 = 3.5%, and 18 km for xNH3 = 8.5%. An interesting consequence
of this result is that less tectonic features may be generated at the
surface bodies having an ocean rich in volatiles. This may explain
the lack of tectonic features at the surface of Titan (Moore and
Pappalardo, 2001).

Figs. 11 and 12 point out major differences between the proper-
ties of Pluto’s ice I layer and those of the three others selected
bodies. Convection in Pluto’s outer ice I layer is more vigorous
and can be maintained for thicker layers than in Europa, Gany-
mede, and Titan (Fig. 11a and b). For Pluto, and taking
xNH3 = 3.5%, the maximum Rayleigh number is reached for
Dice = 135 km, whereas for Europa, Ganymede, and Titan it is
reached around Dice = 90 km. Still for xNH3 = 3.5%, convection in
the ice I layer of Europa, Ganymede, and Titan stops if this layer
is thicker than about 130–140 km, but it is still at work in the ice
I layer of Pluto up to Dice = 200 km. Fig. 12a clearly shows that for
a given initial weight fraction of ammonia, the thickness of the out-
er ice I layer of Pluto at the convection shut-off is larger than that
of Europa, Ganymede, and Titan. From this it follows that heat
transfer is more efficient in Pluto, and that it is less affected by
the thickening of the ice I (Fig. 11c and d). These differences can
be explained by the differences in gravity acceleration and surface
temperature (Table 4). Due to Pluto’s smaller acceleration of grav-
ity, the pressure increases with depth at a smaller rate than in
other bodies. For a given thickness of ice I, the phase diagram of
water implies that the temperature at the bottom of ice I is larger
in Pluto than in other bodies. This in turn induces a larger temper-
ature of the well mixed interior, and therefore a smaller bulk vis-
cosity in Pluto than in Europa, Ganymede, and Titan. The
thickness of the stagnant lid in Pluto’s ice I layer also strongly



Fig. 11. (a) Rayleigh number of the ice I layer (Eq. (21)) of Europa, Ganymede, Titan, and Pluto (see legend) for an initial fraction of ammonia xNH3 = 3.5%. The dashed part of
the curves denotes Rayleigh number smaller than the critical Rayleigh number (Eq. (24)). (b) Same as panel (a), but for an initial fraction of ammonia xNH3 = 8.5%. (c)
Convective heat flux through the ice I layer (Eq. (25)) of Europa, Ganymede, Titan, and Pluto (see legend) for an initial fraction of ammonia xNH3 = 3.5%. (d) Same as panel (c),
but for an initial fraction of ammonia xNH3 = 8.5%. (e) Thickness of the stagnant lid at the top of the ice I layer (Eq. (26)) of Europa, Ganymede, Titan, and Pluto (see legend) for
an initial fraction of ammonia xNH3 = 3.5%. (f) Same as panel (e), but for an initial fraction of ammonia xNH3 = 8.5%. In all panels, results are presented as a function of the total
thickness of ice I, Dice. In panels (c–f), results are shown only in the range of Dice for which the ice I layer is convecting.
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differs from those in other bodies (Fig. 11e and f). These differences
have two origins, the smaller gravity acceleration at Pluto and its
smaller surface temperature (Table 4). First, a smaller gravity
acceleration induces larger effective Rayleigh number (due to the
decrease in bulk viscosity), which delays the sharp increase in
the thickness of the stagnant lid. Second, a decrease in the surface
temperature increases the temperature jump DTice. For a given
value of Dice, a smaller surface temperature therefore results in
an increase in dlid (Eq. (26)). An interesting consequence is that
tectonic activity at the surface of Pluto, where Tsurf = 44 K, should
be reduced compared to that at the surface of Europa, where
Tsurf = 102 K.

The thickness of the ice I layer at the convection shut-off may be
understood as an upper bound estimate for the current thickness of
this layer. This assumes that the heat transfer through the outer ice
I shell is large enough to allow the crystallization of the ocean as
long as this layer is animated by convection. In some cases, e.g.,
if the ice layer is thin enough, heat conduction through the ice I
layer may still be efficient enough to transport radiogenic heat
from the core and drive the crystallization of the ocean. A precise
estimate of the current thickness of the outer ice I layer requires
a full modeling of the thermal evolution of icy moons. In the case
of Titan, and using parameterizations for isoviscous fluids, Grasset
and Sotin (1996) found that the a pure water ocean may crystallize
in 300 Myr. For an ocean with 15 wt% ammonia, they found that
the thickness of the outer ice I layer reaches a limit of about
50 km. Using a more detailed modeling, which accounts for tidal
heating and parameterizations for 2D-Cartesian stagnant lid con-
vection, Tobie et al. (2006) reached similar conclusions. The thick-
ness of ice I at the convection shut-off we calculated (Fig. 12a) are
in good agreement with this limit, keeping in mind that in the cal-
culations of Grasset and Sotin (1996) and Tobie et al. (2006) the
fraction of ammonia in the ocean is kept constant throughout the
evolution, whereas in our calculations this fraction increases as
the ice I thickens. For Titan, our calculations indicate that the
fraction of ammonia in the remaining ocean reaches 15 wt% for



Fig. 12. (a) Thickness of the ice I layer at the convection shut-off. (b) Thickness of
the remaining ocean at the convection shut-off. Results are shown as a function of
the initial weight fraction of ammonia in the ocean xNH3.
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an initial fraction of ammonia equal to about 11 wt%, in which case
the thickness of ice I layer at the convection shut-off is about
60 km. This suggests that the thickness of ice I at the convection
shut-off is indeed a good estimate for the upper bound thickness
of the present ice I layer. Again, it is important to note that thicker
ice I layers may crystallize as gravity acceleration decreases
(Fig. 12a). Whatever the initial weight fraction of ammonia in the
ocean, the thickness of ice I at the convection shut-off is larger in
Pluto than in Europa, Ganymede, and Titan. Finally, a lower bound
for the thickness of the remaining ocean can be deduced from the
upper bound of the ice I thickness (Fig. 12b). This thickness de-
pends of course on the radius of the silicate core, and on the thick-
ness of the high pressure ice layer, if present.
6. Conclusion and perspectives

A good knowledge of the properties of stagnant lid convection,
including average temperature of the well-mixed interior, trans-
ported heat flux, and thickness of the stagnant lid, is essential for
a more accurate modeling of the heat transfer through the ice
shells of icy moons and dwarf planets. In this article, we derived
appropriate parameterizations for the temperature, heat flux, and
thickness of the stagnant lid based on the effective Rayleigh num-
ber and on a viscous temperature scale. Because the outer ice shells
of icy moons and dwarf planets have small curvatures (with ratio
between inner and outer radii around f = 0.8 or larger), convection
in these layers may be approximated with 3D-Cartesian calcula-
tions with a good accuracy, and the parameterizations we obtained
may be used to estimate their properties, including their ability to
transfer heat (with differences in heat flux around 10–20%,
depending on the curvature of the icy shell, see below). Coupled
with the phase diagrams of the water + volatile systems, these
parameterizations allow quantifying the influence of volatiles on
the crystallization of the primordial ocean of these bodies. Our cal-
culations further indicate that the gravity acceleration, by control-
ling the pressure at the bottom of the ice I layer, has an substantial
influence on the crystallization of the ocean. Thicker ice I layers
may be achieved in bodies such has Pluto, whose gravity accelera-
tion is small (around 0.7 m/s2), that in bodies like Europa, Gany-
mede, and Titan, whose gravity acceleration is larger (around
1.3 m/s2). Furthermore, the surface temperature partially controls
the thickness of the stagnant lid, and therefore the lithospheric
strength. Decrease in the surface temperature result in a thicker
stagnant lid, thus in a stronger lithosphere. This implies that fewer
tectonic activity may be present at the surface of Pluto than at the
surface of Europa. Note that if the surface of Pluto is not made of
pure water ice but also includes softer compounds, deformation
may still be present at its surface.

More detailed quantitative estimates for the present radial
structures of icy moons and dwarf planets require modeling the
full thermal evolution of icy moons (e.g., Grasset and Sotin, 1996;
Tobie et al., 2006). Coupled to parameterizations obtained for pure
internal heating (e.g., Grasset and Parmentier, 1998; Deschamps
et al., 2012), which may be used to model the cooling of the silicate
cores, the parameterizations obtained in the present study may
provide refined models for the thermal evolution and present ra-
dial structure of icy moons. More accurate models should also ac-
count for additional sources of heating related to tidal dissipation
within the ice layers. If the convective heat flux is not large enough
to transport the cumulated heat from radiogenic and tidal origins,
crystallization of the ocean will stop. Furthermore, if tidal heat is
generated within the ice I layer, the parameterizations for heat flux
and temperature obtained for purely bottom heated fluid may not
be valid. For an isoviscous fluid, numerical studies in various geom-
etries (e.g., Travis and Olson, 1994; Sotin and Labrosse, 1999;
Moore, 2008; Deschamps et al., 2010b) have shown that the flow
pattern and heat transfer are strongly modified as the amount of
internal heating increases. Tidal dissipation is important for satel-
lites that have not reached a synchronous spin (which may have
been the case of Europa, Ganymede and Titan early in their histo-
ries), and for large satellites that are moving on eccentric orbits
close to their parent planets. The calculations of Tobie et al.
(2005) suggest that the rate of internal heating within the ice I
layer of a generic satellite vary laterally. Typically, the average va-
lue of tidal heating is around 10�10 W/kg, corresponding to non-
dimensional rate of internal heating around 5. For an isoviscous
fluid with homogeneous internal heating, such amount of internal
heating has a moderate effect of the convection pattern (e.g., Travis
and Olson, 1994; Sotin and Labrosse, 1999; Deschamps et al.,
2010b). The effect of heterogeneous distribution of tidal heating
on convection pattern and heat transfer remain to be investigated.

Stagnant lid convection in spherical geometry will be useful to
refine the modeling of the evolution of ice shells (including the
high-pressure ice layers, if present), and the heat transfer through
them. Preliminary calculations in spherical geometry indicate that
the Nusselt number is larger than in 3D-cartesian geometry by 8%
for a ratio between inner and outer radii f = 0.9, and 16% for f = 0.8.
Our scaling may further be used as an end-member case (zero cur-
vature) for parameterizations in spherical geometry. Furthermore,
numerical experiments of isoviscous thermal convection in spher-
ical geometry pointed out that the average temperature decreases
with increasing curvature (e.g., Shahnas et al., 2008; Deschamps
et al., 2010b), which may influence the development of the stag-
nant lid regime. Since the temperature jump in the top thermal
boundary layer decreases with increasing curvature, generating a
rigid lid at the top of the system may be more difficult as the cur-
vature increases. The stagnant lid regime may thus appear at larger
viscosity ratios as the curvature increases (i.e., as the thickness of
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the ice I layer increases). Additional mineral physics experiments
are also needed to better constrain the phase diagrams of
water + volatiles systems. In particular, since it has been spectro-
scopically observed in more than ten comets with abundances (rel-
ative to water) up to 7 wt% (Mumma and Charnley, 2011),
methanol may enter the composition of the primordial ocean of
icy moons in substantial amounts. The combination of models of
stagnant lid convection in spherical geometry and of new experi-
mental data on the phase diagram of the water + volatile systems
will likely result in more accurate modeling of the structure and
thermal evolution of large icy moons and dwarf planets.
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