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1 INTRODUCTION

SUMMARY

2-D thermal convection numerical experiments are conducted for a fluid with an infinite
Prandtl number, a strongly temperature-dependent viscosity, and isothermal horizontal
boundaries. The core Rayleigh number (Rag), determined with the temperature of the
well-mixed interior, is in the range 5 x 10° < Raj<2x 107, and the ratio of the top to
the bottom viscosity (Au) can be as large as Au=10°. Different convective regimes are
possible, depending on the values of Rag and Au. This paper focuses on the conductive-
lid regime, in which convection is confined to a sublayer. First, a least-squares fit of more
than 40 numerical experiments suggests that the temperature difference across the lower
thermal boundary layer (AT)) depends mostly on the viscous temperature scale (AT,)
defined by Davaille & Jaupart (1993), and slightly on the temperature difference across
the fluid layer (AT): AT, =1.43AT,—0.03AT. Second, a generalized non-linear inversion
of the data does not support the assumptions that the temperature difference across the
upper boundary layer is proportional to AT, and that isoviscous scaling laws can be used
for describing heat flux through the convective sublayer. Third, a generalized non-linear
inversion of the data is carried out in order to avoid any assumptions on the parameters.
This leads to the following heat flux scaling law: Nu= 3.8(AT\,/AT)I'“Rag'25 8 where the
Nusselt number (Nu) is the non-dimensional heat flux. This scaling law is different from
that proposed by previous studies. It reproduces the data at better than 1 per cent and
fits the results of previous numerical experiments very well (e.g. Christensen 1984).

Finally, a thermal boundary layer analysis is performed. For a fluid heated from
below, the upper and lower thermal boundary layers interact with one another, inducing
a thermal erosion of the conductive lid. This study suggests that the dynamics of
convection is driven by the instability of the lower thermal boundary layer. Therefore,
an alternative way to determine the heat flux is to use the value of the lower thermal
boundary layer Rayleigh number (Ra;). This value is not independent of Ragy, unlike the
case for an isoviscous fluid. A least-squares fit of the data leads to Ra;=0.28 Ra>". This
law provides a very convenient way to model the thermal evolution of planetary
mantles.

Key words: heat transfer, scaling law, temperature-dependent viscosity, thermal
convection.

accretion, the rate of heat transfer through the mantle will drive
the rate of cooling of the liquid core. Convection in the mantle

The thermal history of Earth-like planets is controlled by
the efficiency of heat transfer through planetary mantles
(e.g. Schubert et al. 1979; Stevenson et al. 1983). Since it is
believed that Earth-like planets were composed of an iron-rich
liquid core surrounded by a solid convective mantle just after
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is generally described by an upper thermal boundary layer where
instabilities form and sink, and a lower thermal boundary layer
where hot instabilities grow and rise. The heat is transferred by
conduction through both boundary layers. In between these
two boundary layers, the convective fluid is nearly adiabatic.
The thermal history of planets can be described if laws relating
heat flux and mean temperature to the vigour of convection are
established with the appropriate boundary conditions and fluid
properties.
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The efficiency of convection can be described by the Nusselt
number, which is the ratio of the surface mean heat flux to the
conductive heat flux without convection. For an isoviscous fluid,
linear stability analysis (e.g. Turcotte & Oxburgh 1967) predicts
that the Nusselt number is a power law of the Rayleigh number
(Ra) with an exponent equal to 1/3. The Rayleigh number is a
measurement of the vigour of convection, and is given by

Ra=apgAThux, 1)

where « is the coefficient of thermal expansion, p the density,
g the acceleration of gravity, AT the temperature difference across
the fluid, b the thickness of the fluid layer, u the viscosity, and
k the thermal diffusivity. Numerical studies have indeed shown
that the Nusselt number is a power law of the Rayleigh number
with an exponent close to 1/3 (Table 1).

Howard (1966) pointed out that a thermal boundary layer
becomes unstable if its thickness (§) exceed a certain value
which is determined by the thermal boundary layer Rayleigh
number (Ray):

Ras = ocpg((ST)53/,uK , 2

where 67 is the temperature difference across the thermal
boundary layer. The value of Ras depends on whether the
boundaries are free-slip boundaries or rigid boundaries (Roberts
1979; Frick et al. 1983). The Nusselt number can therefore be
described as

4/3 1/3
w-(5r) (aa) @
ds
Nu=aRa". 4)

Such laws have previously been applied to describe the thermal
history of planets (e.g. Stevenson et al. 1983; Schubert & Spohn
1992). These studies used eq. (3) with a constant value of Rasg,
which is equivalent to using eq. (4) with f=1/3. Planetary
mantles are, however, far from being equivalent to the Rayleigh—
Bénard case. Among the most important differences are the
mode of heating (Parmentier et al. 1994; Sotin & Labrosse
1999) and the viscous properties of the fluid (Christensen 1984;
Davaille & Jaupart 1993; Solomatov 1995; Moresi & Solomatov
1995; Grasset & Parmentier 1998).

Viscosity controls the amount of deformation supported by a
rock submitted to a given stress. Within planetary mantles, it
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varies by several orders of magnitude due to temperature and
pressure variations. For most materials, including the minerals
of the Earth’s mantle, the deformation rate is a thermally
activated process that depends strongly on temperature and,
to a weaker extent, on pressure. In a Newtonian fluid, the
deformation rate varies linearly with differential stress. As a
result, viscosity does not depend on differential stress. Most
studies that have investigated the effect of variable viscosity
have considered a Newtonian fluid. The debate on whether the
viscosity of the mantle is Newtonian or not is still open. Other
complexities may arise due to the presence of fluids (mainly
water and CO,), which may weaken the rock (e.g. Chopra &
Paterson 1984; Karato et al. 1986). Although pressure, differ-
ential stress and the presence of fluids may affect the value
of viscosity, it is considered that viscosity is most sensitive
to temperature variations. Laboratory experiments (Booker &
Stengel 1978; Richter et al. 1983; Davaille & Jaupart 1993) and
analytical and numerical models (Christensen 1984; Morris &
Canright 1984; Ogawa et al. 1991; Solomatov 1995; Moresi
& Solomatov 1995) have shown that a fluid submitted to strong
viscosity variations separates into an upper cold, rigid lid where
viscosity is high, and a convective sublayer where viscosity
variations are small. Within the upper lid, heat is transferred by
conduction. Therefore, the value of the Nusselt number decreases
with increasing values of the viscosity contrast (Apu), defined as
the ratio of the surface viscosity to the bottom viscosity:

Ap= polpy - (5)

The 2-D numerical work of Christensen (1984) shows
clearly that the logarithmic slope f# (eq. 4) depends on the
viscosity contrast. Moreover, he finds that the slope varies
with the value of the Rayleigh number. These features suggest
that different regimes of convection occur, depending on Ra
and Ap. Solomatov (1995) distinguishes three domains. For
a viscosity contrast lower than 10?, the effect of viscosity
variations is small and the fluid behaves almost as an isoviscous
fluid. The second regime corresponds to the so-called ‘lid regime’,
and occurs for viscosity contrasts larger than 10*. Finally, a
transitional regime occurs for viscosity contrasts between 10°
and 10*.

For a fluid heated from within, there is only one thermal
boundary layer, at the top of the fluid. The study of Davaille
& Jaupart (1993) showed that the temperature variation across
this layer (AT.) is proportional to a viscous temperature

Table 1. Scaling laws for the heat flux, in the case of an isoviscous fluid. Various boundary conditions are considered: F/F: top and bottom
boundaries are free-slip; F/R: top is free-slip and bottom is rigid; R/F: top is rigid and bottom is free-slip; R/R: top and bottom boundaries are
rigid. The aspect ratio is equal to 1, except for the study of Kvernvold (1979), where r,=1.2.

Reference Ra range a B Boundary conditions
Linear stability analysis - 0.294 173 F/F
Jarvis & Peltier (1982) 4.10*-8.10° 0.279 0.313 F/F
Christensen (1984) 10*-107 0.2697 0.3185 F/F
Schubert & Anderson (1985) 8.10*-8.107 0.268 0.319 F/F
Hansen & Yuen (1993) 10*—10'" 0.250 0.323 F/F
Kvernvold (1979) 3.10°-5.10* 0.195 0.3 F/R
Frick et al. (1983) 3.10*-7.10* 0.332 0.225 R/R
This study 10%-10° 0.258 0.321 F/F
- 0.336 0.252 R/F
- 0.339 0.223 R/R
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scale (AT,):
AT.=cAT,, (6)

w(T)

ATy = duldT(T)’ @
where T is the mean temperature of the well-mixed interior.
Davaille & Jaupart (1993) found ¢=2.24. 2-D numerical studies
are in very good agreement with this value (Grasset & Parmentier
1998), although the viscous laws are different. Eqs (6) and (7)
imply that the viscosity contrast across the thermal boundary
layer is constant. Moreover, they allow for the determination of
the lid thickness, assuming the continuity of heat flux between the
top of the thermal boundary layer and the bottom of the con-
ductive lid. In the Rayleigh-Bénard case, the 2-D numerical work
of Moresi & Solomatov (1995) suggests the following scaling
relations:

R Q,2
Nu=1.89 =1 ®)
o
1.10
ATpo= ——o | 9
bot p0-73Ra?‘04 ©)
AT
p-aT (10)

where p describes the temperature dependence of viscosity, ATt
is the temperature variation across the lower thermal boundary
layer, and Rg; is the core Rayleigh number, defined with the
viscosity of the well-mixed interior. To obtain the scaling law for
heat flux, Moresi & Solomatov (1995) fixed the Rayleigh number
exponent to a theoretical value of 0.2 (Morris & Canright 1984;
Solomatov 1995). We note, however, that the scaling law for the
Nusselt number does not provide a good fit for the numerical
data of Christensen (1984) (Fig. 1).

The initial aim of the present study is to use generalized non-
linear inversion theory (Tarantola & Valette 1982) to determine
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Figure 1. Comparison between the results of Christensen (1984) and

the scaling law for heat flux suggested by Moresi & Solomatov (1995).

scaling laws such as (8) and (9). This leads us to conduct 2-D
numerical work in the conductive-lid regime. Numerical data
(T, Nu) are then inverted, and results are discussed using a
thermal boundary layer analysis. For the range of Rayleigh
number and viscosity contrast investigated in the present study,
it is found that the temperature across the lower thermal
boundary layer depends linearly on the viscous temperature
scale. A scaling relation for the Nusselt number is found
and gives a good fit for Christensen’s results. In addition, this
study suggests that convection is driven by instabilities in the
lower thermal boundary layer, and that isoviscous scaling laws
cannot be used to describe heat transfer in the convective
sublayer.

2 THE NUMERICAL MODEL

2.1 Equations

We solved the equations of convection for a Newtonian fluid
in a 2-D Cartesian box. The fluid is assumed to have an
infinite Prandtl number, and to verify the Boussinesq approxi-
mation. These assumptions lead to the following equations for
conservation of momentum, mass and energy:

67,—,- opP

— = —upgTe;, 11
ox, ox, o wete (11
Hi—o, (12)
0Xj

oT —2 oT
pcpg_kv T—uia, (13)

where x;, u; and e; are the components of the position, velocity
and vertical unit vectors, P and T are pressure and temperature
perturbations, Cp is the heat capacity at constant pressure, and
7;; 1 the deviatoric stress tensor.

The box is heated from below and cooled on the top. This is
done by fixing the surface and bottom temperatures, respectively,
to Tp and Ty =T+ AT. Internal energy sources are neglected.
To avoid lateral heat loss, we impose a zero heat flux on vertical
edges. Since the total mass is conserved, the normal velocities
on the boundaries must be zero. Finally, we impose free-slip
boundary conditions on all boundaries.

In the present work, the viscosity is strongly temperature-
dependent, and follows a simple exponential law:

(T — Tref):|

AT 14

H(T) = frer €XP {fv
where Ty.ris a reference temperature, pi..r is the viscosity at this
temperature, and y is a constant. Eq. (14) implies that vy is equal
to the parameter p in eqs (8) to (10). In addition, y is linked to
the ratio of the top viscosity to the bottom viscosity (Au):

y=In(Aw). (15)

Egs (11) to (13) are non-dimensionalized using the box’s
depth b for the length-scale, b%/x for the timescale, /b for
the velocity-scale, and AT for the temperature-scale. The body
force (right-hand term of eq. 11) is then given as a function of
the Rayleigh number. A second non-dimensional parameter,
which takes the viscosity variations into account, must be
defined. In our study, we will use the parameter 7.
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2.2 Choice of the Rayleigh number

The Rayleigh number depends on the viscosity. Viscosity
varies throughout the fluid. To discuss the results, it is therefore
necessary to define a reference Rayleigh number associated
with a reference viscosity. For instance, the surface Rayleigh
number (Rag), which is useful in understanding the onset of cold
instabilities in the top thermal boundary layer, is calculated
with the viscosity at T=Tj.

Some authors have presented their results as a function
of a Rayleigh number Ra;,, calculated with the viscosity at
T1»=AT/2 (e.g. Richter et al. 1983; Christensen 1984). This
definition is not well suited to a fluid with strong viscosity
variations, since the mean temperature of the well-mixed interior
is always greater than 7,. However, this definition will be
used to make comparisons with previous studies.

In the present study, the core Rayleigh number (Rap) is used.
The viscosity is computed at the temperature of the well-mixed
interior (7), which is well approximated by the horizontally
averaged temperature at mid-depth:

L
T~Tz:b/2=l [ T(x, z=bl2)dx, (16)
L}y

where L is the length of the box. The volumetric averaged
temperature of the well-mixed interior differs from the value
computed by eq. (16) by less than a few per cent. This definition
of the core Rayleigh number is equivalent to the definition of
Ra; used by Moresi & Solomatov (1995).

Given the temperature distribution and the viscosity law, it is
simple to calculate the relation between the Rayleigh numbers
at two distinct points. For an exponential viscosity law (eq. 14),
the relation between the core and surface Rayleigh numbers is

Rag=Rayexp (y0). (17)
Similarly, Ra,; is given by

Ray = Rag exp (y/2) . (18)

2.3 Algorithm

Calculations are made on uniform staggered grids. This
structure is well adapted to the resolution of primitive variables
(velocities and pressure). The scalar quantities (temperature and
pressure) are calculated in the centre of each cell, whereas the
vertical (horizontal) velocities are determined on the top and on
the bottom (lateral sides) of each cell.

The resolution of the energy equation is a simple time
relaxation. Problems arise from the non-linear advective
term, u;= 0T/0x;, which induces artificial transport in incorrect
directions. To avoid such disturbances, we have used an upwind
scheme well adapted to high Peclet numbers (Spalding 1972).

The momentum equation is solved by an alternate direction
implicit (ADI) relaxation method. The resolution of this equation
directly on the finest grid is, however, very expensive in cpu
time. To speed up the convergence, we have used a multigrid
method, fully described by Stiiben & Trottenberg (1982). This
method is efficient at solving for the non-dimensional form of
eq. (11), even for high viscosity ratios (Sotin et al. 1995).

The mean heat flux at depth z is given as

1 (- /oT
q(z)= I L (E —pCpu;T) dx . (19)

© 2000 RAS, GJI 143, 204-218

Inversion of 2-D numerical convection experiments 207

The Nusselt number (Nu), which is the ratio between § and
the conductive heat flux ¢q.=kAT/b, measures the efficiency of
convection. If there is no internal heating, the convective heat
flux (and so the Nusselt number) must be constant with depth.

2.4 Precision of the calculations

The calculated Nusselt number and the non-dimensional tem-
perature of the well-mixed interior have a range of uncertainty,
respectively on, and oy. There are two kinds of errors. First, the
stationary state is only reached for an infinite time. Therefore,
the accuracy of numerical solutions depends on the elapsed
time. A good convergence test is given by the variation of the
core temperature. A converged state is obtained when 0 is no
longer evolving. At time step i, the uncertainties on § and Nu
due to convergence are given by

(;l'—é,',l Nu,-—Nu,-,l
_ —_— . 20
0i—1 Nu;_y 20)

Ocg=

and oy, = ‘

In our experiments, the calculations are stopped when
|60—0;_,]<10~3, which usually implies that |Nu; — Nu; (| <
1073, In some cases (usually for high Rayleigh numbers), the
solutions are time-dependent: the solution has converged, but
the mean temperature oscillates around a stationary value. For
such cases, mean fields must be computed over a significant
time interval (usually several pseudo-periods), leading to an
uncertainty equal to the maximal variations of the parameters
(temperature and Nusselt number).

Second, errors arise from the limited resolution of the grid.
For numerical accuracy, it is desirable that at least three points
describe each thermal boundary layer. However, the limitation
in the computing time is such that calculations cannot be
performed on grids larger than 64 x 64 grid points. In Table 2,
we have reported the Nusselt number, the core temperature,
the maximum of the top and bottom horizontal velocities,
and the quadratic velocity for various resolutions of the grid.
Extrapolated values can be deduced from these results, and
used to estimate the error arising from the limited resolution of
the uniform grid spacing:

Hexlra - HN

Nutexira — Nuy
Nuextra

; @n

g

T,

and oy N, = ‘
Qextra

where the subscripts ‘extra’ and ‘N’ indicate the extrapolated
and N x N grid-point values, respectively. The grid size used in
the present study is such that g, 4 is less than 0.5 per cent and
0r.ny 18 less than 2-3 per cent.

The scaling law of the Nusselt number for isoviscous fluids
has been compared with those reported in previous studies. Our
values are in close agreement with these studies, whatever the
boundary conditions (Table 1). We have also compared our
results with those of Christensen (1984). In Fig. 2, the Nusselt
numbers are plotted as a function of Raj,. Our results for
A =10? are identical to those of Christensen (1984). We can-
not make a direct comparison for the other viscosity ratios
because they are different. However, the results are consistent.
For example, the results of Christensen for a viscosity ratio of
64 give slightly higher values of the Nusselt number than those
obtained here for a viscosity ratio of 100.
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Table 2. Accuracy of some observables as a function of the grid definition. Nu is the Nusselt number, 0 the core temperature, U, and U, the
maximum surface and bottom velocities, respectively, and U, the root-mean-square velocity. An extrapolated value is determined for each
parameter. These extrapolated values are used as a reference to compute the relative errors (number in %) of individual results. The viscosity ratio is

equal to 10* for all calculations.

Ra, Grid size Nu 0 Uf)l) U(l” Uy
10* 32x32 2.625 0.8738 2.703 —183.7 76.05
2.3% 0.36% 1.2% 2.4% 1.2%
- 48 x 48 2.652 0.8752 2.691 —182.3 76.49
1.3% 0.21% 0.71% 1.6% 0.66%
- 64 x 64 2.662 0.8758 2.686 —181.4 76.65
1.0% 0.13% 0.52% 1.1% 0.45%
- 96 x 96 2.669 0.8761 2.683 —180.7 76.77
0.7% 0.10% 0.41% 0.72% 0.30%
- 128 x 128 2.672 0.8763 2.680 —180.4 76.82
0.6% 0.08% 0.30% 0.56% 0.23%
- Extrapolation 2.688 0.877 2.672 —179.4 77.00
10° 32x32 4.999 0.8629 22.76 —757.6 355.9
4.8% 1.6% 7.1% 5.1% 2.2%
- 48 x 48 5.107 0.8686 22.01 —751.1 355.5
2.7% 0.96% 3.6% 4.2% 2.1%
- 64 x 64 5.151 0.8712 21.73 —741.2 353.1
1.9% 0.66% 2.3% 2.8% 1.4%
- 96 x 96 5.188 0.8737 21.52 —731.8 351.1
1.2% 0.38% 1.3% 1.5% 0.80%
- 128 x 128 5.203 0.8747 21.44 —727.9 350.3
0.9% 0.26% 0.89% 0.96% 0.57%
- Extrapolation 5.250 0.877 21.25 —721.0 348.3

3 RESULTS

Numerical experiments were conducted for core Rayleigh
numbers in the range 10* < Rag< 108, and viscosity ratios up
to Au=10°% In Fig. 3, the Nusselt number is plotted as a
function of the core Rayleigh number. The convective heat
transfer weakens as the viscosity ratio increases. Moreover, the
logarithmic slope i depends strongly on the value of Ap.

According to our calculations, this slope ranges from 0.24 to
0.37 for Au=10% and 10°, respectively. For small viscosity
ratios (Apu<10?), variable viscosity calculations get closer to
isoviscous laws at high Rayleigh numbers. For viscosity ratios
equal to 10° and 10*, a change in the value of f is observed
(Fig. 3). The Rayleigh number at which the transition occurs
increases with Ayu. No transition is seen for Au=10° and
Ap=10°, possibly because we did not reach high enough values

2

5 b
n i
L PN F T . |

a - Isoviscous A 103

o A . Ap=10

- -+ - - Christensen (1984) . Ap,=104
r o Ap=10 CINTS A
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Figure 2. Comparison between the present study (white and black symbols) and the results of Christensen (1984) (crosses and dashed lines).
For clarity, we have only represented Christensen’s data for Au=64, 10>, 1.6 x 10* and 2.5 x 10°. The Nusselt number is plotted as a function of the
median Rayleigh number (Ra, ;). For comparison, the isoviscous scaling law is indicated by the bold line.
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Figure 3. Heat flux as a function of the core Rayleigh number (Rap), for several viscosity ratios (Au).

of the Rayleigh number for these values of the viscosity
ratio. The most likely interpretation of these results is that
different regimes of convection occur, depending on both the
Rayleigh number and the amplitude of the viscosity variations.
Solomatov (1995) distinguishes three regimes: isoviscous con-
vection, whole-layer convection (or intermediate regime), and
conductive-lid convection. Solomatov (1995) and Moresi &
Solomatov (1995) have proposed that the limit between the
stagnant-lid regime and the intermediate regime does not depend
on the Rayleigh number. They have estimated that the critical
value of the viscosity contrast is about 10%. The present results
suggest that this limit also depends on the Rayleigh number
(see Section 4.2).

3.1 Scaling law for the core temperature

The analytical models of Morris & Canright (1984) and
Solomatov (1995) show that the temperature difference across
the bottom thermal boundary layer is proportional to 1/y.
A least-squares fit of data in Table 3(a) suggests that the
non-dimensional temperature jump across the lower thermal
boundary layer (66, =1—0) is well described by (Fig. 4)

/
a—®=%+4

with

¢,=1434001 and ¢ =—0.03+0.01. (22)

The correlation coefficient reaches 97 per cent. A slight dis-
persion of 660, as a function of the Rayleigh number is observed
and may be due to numerical uncertainties.

Although it is close to zero, the value of ¢5 is significantly
different from zero. Moreover, it is much larger than the
standard deviation on temperature, which is equal to 0.005 at a
maximum. Consequently, the viscosity ratio across the lower
thermal boundary layer (¢) decreases with increasing values of
y. Nataf (1991) noticed that the value of & should be less than
10. The present result suggests that it is even lower (around 3),
and that it varies slightly with the viscous temperature scale.
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56

Figure 4. Determination of the temperature of the well-mixed
interior (6) as a function of the parameter vy.

3.2 Scaling law for the heat flux

3.2.1 Input data and inversion method

Inversions are performed for the runs listed in Table 3(a). All
the calculations are conducted with an aspect ratio equal to 1,
free-slip boundaries, and a viscosity ratio higher than 10%
These runs fall into the conductive-lid regime, as defined by
Moresi & Solomatov (1995). Some experiments with values of
Rag larger than those reported in Table 3(a) were performed,
but are not used in the present inversions because no stationary
state was obtained.

The inversion method used in this study follows the method
proposed by Tarantola & Valette (1982) to solve the generalized
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Table 3(a). Numerical results for Au>10* when steady state has
been reached. Ap is the viscosity ratio, Rao the surface Rayleigh
number, 0 the temperature of the well-mixed interior, Nu the Nusselt
number, Ra; the core Rayleigh number, 0,4, the thickness of the
conductive lid predicted by the method of the tangent through
the inflexion point, and dpe—o the thickness of the conductive lid
predicted by the comparison between advected and conducted heat
flux.

Au Rag 0 Nu Rag Oady OAw=0

24x10° 0226  0.171
32x10° 0208  0.158
6.7x10°  0.159  0.118
9.9x10°  0.137  0.097
1.3x10°  0.116  0.082
1.9%x10°  0.094  0.063
24x10°  0.081 0.051
51x10° 0227  0.172
51x10°  0.089  0.060
73x10° 0236  0.180
1.6x10° 0.188  0.142
3.1%x10° 0145  0.109
42x10°  0.124  0.092
6.0x10° 0.110  0.081
7.5%x10°  0.100  0.072
1.1x107  0.083 0.057
1.0x10°  0.241 0.184
22x10°  0.194  0.148
44x10°  0.153 0.117
8.7x10° 0.118  0.089
1.1x107  0.108  0.081
1.6x107  0.092  0.068
22x107  0.081 0.058
1.7x10° 0244  0.187
1.8x107  0.115  0.088
24x10° 0243 0.188
50x10°  0.198  0.152
99x10° 0.160  0.122
1.5x10"  0.138  0.106
20x107  0.126  0.097
34x10° 0240  0.187
71x10°  0.196  0.152
1.0x107  0.174  0.135
1.4x107 0158  0.122

104 80 0.871  2.512
- 100 0.876  2.662
- 200 0.881  3.203
- 300 0.880  3.585
- 400 0.878  3.891
- 600 0.874  4.393
- 800 0.873  4.801
2.5% 10* 632  0.889  2.598
- 632.5 0.889  4.841
5% 10* 447  0.897  2.577
- 89.5  0.903  3.049
- 1789 0900  3.635
- 2683  0.900  4.066
- 3578 0.899  4.409
- 4472 0.899  4.691
- 670.8  0.898  5.253
10° 31.6 0903  2.575
- 633 0909  3.032
- 126.5 0907  3.597
- 253.0  0.907  4.337
- 3162 0907  4.559
- 4743 0907  5.117
- 632.5 0907 5522
2.5x10° 20.0 0912  2.595
- 200.0 0916  4.550
5% 10° 141 0917 2.625
- 283 0921  3.071
- 56.6 0920  3.629
- 849 0921  4.031
- 113.1 0921 4319
10° 10 0.922  2.667
- 20 0.925  3.116
- 30 0.924  3.425
- 40 0.925  3.697

Table 3(b). As (a), but for viscosity ratios such that 5.10> < Au < 10*

A[l Rao (7 Nu Ra(j 5adv 5A‘D=0

63x10*  0.095  0.077
9.5x10*  0.075  0.058
72x10* 0139  0.112
93x10* 0.124  0.098
14x10°  0.099  0.075
1.9x10°  0.083  0.061
1.5x10°  0.163  0.125
22x10°  0.188  0.143
46%x10°  0.138  0.103
6.8x10°  0.113  0.081
8.8x10°  0.097  0.067

5% 102 4472 0.797  3.295
- 670.8 0.798  3.773
10° 253.0 0.819 2.872
- 316.2 0.822  3.082
- 4743 0.824  3.505
- 632.5 0.823  3.846
25%10° 2000 0.848  2.863
5% 103 14142 0.863 2744
- 282.8 0.868  3.336
- 4243 0.866  3.756
- 565.7 0.863  4.096

non-linear inversion problem using the least-squares criterion.
A theoretical relation, or model, is first established among the
data (0 and Nu), the constants describing the physical problem
(Ra and 7y), and the parameters to be determined. In the

solution proposed by Tarantola & Valette (1982), data and
parameters are unknown quantities that have a small standard
deviation for the data, and a very large (infinite) standard
deviation for the parameters. The minimization of the least-
squares criterion yields theoretical values of the data (fy, and
Nuy,) and theoretical values of the parameters. In addition, it
provides an a posteriori covariance matrix. In this matrix, the
variance on the data does not change, whereas the variance
on the parameters has been reduced and yields the standard
deviation. The a posteriori analysis of the discrepancy between
the input data (f and Nu) and the inverted data (0, and Nuy,) is
compared with the uncertainty on these data. It is an efficient
way of checking the validity of the theoretical relationship
(Sotin 1986). Using this method, two kinds of models have been
tested for determining the scaling law between the Nusselt and
Rayleigh numbers.

3.2.2 Model 1

The first model is deduced from the study of Davaille & Jaupart
(1993) for a fluid heated from within. In this case, the temper-
ature difference across the top thermal boundary layer, AT, is
given by eq. (6). For a fluid heated from below, the dimensional
analysis predicts a slight deviation from eq. (6). An approxi-
mation of AT, as a function of the viscous temperature scale
defined by eq. (7) is given by

AT.=aAT,+b, (23)

where AT, is given by eq. (7). This difference is due to the
existence of a thermal boundary layer at the bottom of the
fluid. The parameter b is not a constant and should depend on
7. The present inversion assumes that this dependence is weak.
Finally, the consistency of (23) is controlled by the results of
the inversion, which will show that this kind of law is not well
constrained.

In the case of an exponential viscosity law (eq. 14), eq. (23)
becomes

0= 0— ("71 m) , (24)

where 0. is the non-dimensional temperature at the bottom of
the conductive lid. Parameters ¢; and ¢, must be determined by
inverting the results of the numerical experiments.

It is then assumed that the viscosity jump across the con-
vective sublayer is small, and that the scaling law relating the
Rayleigh and Nusselt numbers of the convective sublayer (Rasy
and Nugy ) is a power law similar to that obtained for isoviscous
fluids (eq. 4). The values for Rag; and Nus; are deduced from
the values of the Rayleigh number and the Nusselt number
of the whole cell (Rag and Nu), the temperature at the top of
the lower thermal boundary (6.), and the non-dimensional lid
thickness (.):

Rasy =(1—6:) (1—0c)Rag ,
25)
L (1-50) (
NMS]_ = m Nu.

In the conductive lid, heat is transferred by conduction, and .
is given by

Se="0./Nu. (26)
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Table 4. Chi-square and inverted values of the parameters for the various models proposed in this study.

Model K? Parameters
a p @] (&)
1 11.7D 0.69+0.2 0.276 +0.004 0.83+0.5 —0.03+0.01
- 12.5 0.51+0.02 0.273+0.004 1.5@ —0.0540.004
- 15.9 0.29+0.02 0.268 +0.005 3.4@ —0.140.006
a p ¢
2a 14.1 3.840.2 0.258 +0.009 —1.63+0.04
2b 4.5 3.840.3 0.260 4+0.006 —1.64+0.07

Notes: D best fit of eq. (27). (¥ The value of ¢, is fixed (see text, Section 4.3).

Finally, introducing (17) (24) (25) and (26) into (4) yields a
scaling law of the Nusselt number as a function of the surface

Rayleigh number:

O—cily—cs -1
Nu

Nu=a(1—

. Bl
(1—04—%4—62)

In this relation, a, 8, ¢; and ¢, are parameters which must
be determined by inverting the (8, Nu) pairs. The best fit of
eq. (27) is obtained for the set of values reported in the first
line of Table 4. In order to obtain an acceptable value of the
chi-square coefficient, the standard deviations of the Nusselt
number and the core temperature must be on, =3 per cent and

a5=0.5 per cent, respectively. The inverted parameters provide

X exp (,Byé)Rag . 27 a very good fit of the data (Fig. 5). However, parameters a and
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Figure 5. Model 1. Distribution of the relative errors on the Nusselt number (a) and on the temperature of the well-mixed interior (b). The relative
error e, of a datum x is defined by e, =(x —x,)/0,, where xy, is the modelled value of x, and o, its standard deviation. Comparison between the
numerical and modelled Nusselt numbers (c) and temperatures of the well-mixed interior (d).
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¢1 (and, to a weaker extent, ¢,) are poorly constrained. They are
strongly correlated with each other, which means that they
cannot be inverted independently. This could mean that the
conductive lid cannot be separated from the upper thermal
boundary layer. This observation led us to investigate a second
model.

3.2.3 Model 2

The second model derives a scaling law for the whole layer of the
fluid, including the conductive lid. As outlined by Christensen
(1984), a second parameter is needed to describe the heat flux
fully. The studies by Morris & Canright (1984) and Fowler
(1985) suggest the following relationship:

Nu=a)Rd). (28)

If the viscosity follows eq. (14), the parameter y is given
by eq. (15). The data in Table 3(a) were inverted following
eq. (28), and the results are given in Table 4 (model 2a). With
these coefficients, relation (28) fits the numerical results very
well (Figs 6 and 7). The standard deviations required to give a
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L [] ]
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15r .
> r i
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C o ]
5r 7
i o8 ]
e [ 3 ]
Z 4r d&@g@ ]
3:‘ ﬁ@p@ '
2_".1...|....|...,|...._
2 3 4 5 6

Nu
Figure 6. As Fig. 5, but for the model 2a.

coherent value of the chi-square coefficient are similar to those
of model 1 (3 per cent on the Nusselt number and 0.5 per cent
on the core temperature).

In order to check the consistency of eqs (22) and (28),
another inversion was carried out assuming the core temper-
ature to be given by eq. (22) (model 2b). The core temperature
is now a constant; that is to say, f is fixed for each calculation.
The parameters resulting from this inversion are nearly the
same as those found for model 2a (Table 4).

Eq. (28) with the parameters of model 2 explains our
numerical results with only 3 per cent error on Nu and 0.5 per
cent on 0. The non-stationary runs (high values of the Rayleigh
number and viscosity ratio larger than 10%), which were not
taken into account for inversion, fit well along the scaling
relation (Fig. 7). Therefore, this relation may be extrapolated
to higher values of the Rayleigh number.

4 DISCUSSION

We now discuss our results. First, we emphasize the
efficiency of non-linear inversion to interpret the numerical
data (Sections 4.1 and 4.2). Then, we use two different methods
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Figure 7. Scaling relation for the heat flux following model 2a. The
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stationary solutions, which are represented by white circles, fit well
along the parametrization. For clarity, we have represented the
‘reduced’ Nusselt number Nu,=Nuy (where ¢=1.63), instead of the
Nusselt number.

to show that the hypothesis of an isoviscous convective sub-
layer is not consistent with the experimental data (Sections 4.3
and 4.4).

4.1 Comparison with previous studies

Morris & Canright (1984) and Fowler (1985) have developed
analytical models of Rayleigh-Bénard convection that include
temperature-dependent viscosity. They both predict that heat
flux follows a power law of the form (28), with f=0.2.
A similar value is expected for an isoviscous fluid limited by
rigid top and bottom boundaries (Roberts 1979), although
numerical experiments suggest slightly larger values (Table 1).
Morris & Canright (1984) and Fowler (1985) have also com-
puted theoretical values for ¢ and c¢ (Table 5). Moresi &
Solomatov (1995) assume §=0.2 to perform a least-squares fit
of their data. They find «=1.89 and ¢= —1.02, in agreement
with the theoretical values found for the case of an infinite
Rayleigh number (Fowler 1985). The present inverted values
are different from these previous results.

Table 5. Theoretical and numerical values for the parameters of
the scaling law (28). Moresi & Solomatov (1995) fixed the value of f§ to
its theoretical value for an infinite Rayleigh number, and computed
the other parameters using a least-squares fit of their data. In the
present study, the three parameters are obtained from a generalized
non-linear inversion.

Reference a p c
Morris & Canright (1984) 1.822 0.2 —1.2
Fowler (1985) 2.043 0.2 —-1.0
Moresi & Solomatov (1995) 1.89 0.2 —1.02
This study 3.8 0.258 —1.63
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We have compared the scaling relation (28) with the results
of Christensen (1984). Christensen only gives the mean tem-
perature over the whole box. To estimate the values of his
Ragj, we have therefore extrapolated the core temperature using
eq. (22). The results are plotted in Fig. 8, together with our
proposed scaling law (solid line). Clearly, the values we have
proposed for the coefficients of eq. (28) also explain the calcu-
lations of Christensen (1984). We performed a similar com-
parison between the data of Christensen (1984) and the scaling
relations proposed by Moresi & Solomatov (1995) (eqs 8 and 9).
It turns out that the law suggested by Moresi & Solomatov
(1995) does not provide a good fit of Christensen’s data (Fig. 1).
We want to emphasize that the results of 2-D convection
numerical experiments (f and Nu) from Moresi & Solomatov
(1995), Christensen (1984) and the present study are very close
to each other. Therefore, the origin of the difference between
the scaling law we propose and that suggested by Moresi &
Solomatov (1995) may be related to the data processing. To
obtain their scaling law, Moresi & Solomatov fix the parameter
p to a theoretical value (f=0.2). This theoretical value was
obtained assuming an infinite Rayleigh number (Morris &
Canright 1984; Fowler 1985). The values of the other para-
meters (¢ and c¢) are determined by a least-squares fit of the
data. In the non-linear inversion, however, the three para-
meters are inverted simultaneously from the data. In particular,
no theoretical value is assumed for 5. According to the non-
linear inversion, the experimental value of f (Table 5) is well
constrained (g3=0.009), and is 30 per cent higher than the
theoretical value predicted for an infinite Rayleigh number.

The discrepancy between experimental and theoretical values
of f may be due to the interaction between the top and bottom
boundary layers. The plumes that form at each boundary
modify the stability of the opposite thermal boundary layer as
they reach it. Therefore, the conductive lid is eroded by the hot
plume. Moreover, analytical studies assumed that the con-
ductive lid is strictly stagnant. In fact, the lid is able to have a
horizontal sliding, although this displacement is very small
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Figure 8. Comparison between the results of Christensen (1984) and
the scaling law for heat flux proposed in the present study.
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compared with the convective flow (Fowler 1985). We propose
that the thermal erosion and the small sliding of the conductive
lid explain the difference between the inverted and theoretical
values of f.

4.2 A criterion for the conductive-lid regime

In their studies, Solomatov (1995) and Moresi & Solomatov
(1995) assume that the boundary between the transitional and
conductive-lid regimes does not depend on the value of the
Rayleigh number. Using the study of Stengel et al. (1982), they
locate this boundary for a viscosity contrast of about 10*. One
interesting feature of the inversion process is an analysis of
the a posteriori difference between the inverted law and the
data. In most cases, it allows the differentiation of sets of data
falling into different regimes (Sotin 1986). In the present study,
numerical experiments have also been conducted for viscosity
ratios lower than 10* (Table 3b). These runs fit our model 2a well.
Therefore, if the Rayleigh number is low enough, a conductive
lid may also exist for low-viscosity contrasts (5 x 10> <Au<10%),
and the limit between the transitional and conductive-lid regimes
may depend on the Rayleigh number.

The formation of a lid requires the viscous friction near
the surface to overcome the buoyancy. Therefore, the surface
Rayleigh number (Ray) must be higher than a certain value
(Ra.) for convection to exist (Grasset & Parmentier 1998). The
variations of Ra. as a function of the amplitude of viscosity
variations can be used to define the limit between the lid regime
and the conductive-lid regime. For fluids whose viscosity follows
eq. (14), Stengel et al. (1982) and Richter et al. (1983) proposed
that Ra. is approached by

Ra.=20.9y*exp (—y/2). (29)

A similar limit can be defined for the bottom Rayleigh number
(Ra,), which is computed with the viscosity at the base of the
fluid:

Rag; =20.9y* exp (y/2). (30)

In Fig. 9, we have drawn the curve defined by eq. (30). The
limit proposed by Moresi & Solomatov (1995) is also shown.

The experiments of Moresi & Solomatov (1995) conducted at
bottom Rayleigh numbers equal to 107 and 10% had very large
viscosity ratios, leading to surface Rayleigh numbers lower
than 100. Such values are lower than the critical values defined
by eq. (30), and the transition towards the transitional regime
could not be observed in their numerical experiments.

The present study supports the fact that the convective-lid
regime exists at small viscosity ratios for small values of the
bottom Rayleigh number. For instance, a viscosity ratio of 500
yields a conductive lid if the bottom Rayleigh number is smaller
than 10%. On the other hand, viscosity ratios larger than 10* are
required for bottom Rayleigh numbers larger than 10”. However,
one cannot be sure that the limit between the transitional
regime and the conductive-lid regime proposed in the present
study can be extrapolated to very high values of the Rayleigh
number. Following theoretical studies at infinite values of
the Rayleigh number, this boundary does not depend on the
Rayleigh number. It may be described by Au=10%, as proposed
by Moresi & Solomatov (1995).
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Figure 9. Location of the various regimes. I: whole-layer convection;
II: transitional regime; III: conductive-lid regime. Boundaries between
these regimes are shown. Dotted lines are from Solomatov (1995). The
boundary between II and III proposed in this study is indicated by
the curve labelled Ra. ;. Our numerical experiments are represented
by crosses (black points if they are not stationary). White circles are the
points of Christensen (1984).
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4.3 Thermal boundary layer analysis

Linear stability analysis performed for isoviscous fluids
with free-slip boundaries predicts that the upper and lower
thermal boundary layer Rayleigh numbers (Ras (op and Ras pot,
respectively) are equal and do not depend on the Rayleigh
number. For an aspect ratio equal to 1, Ras~2.46. However,
experimental and numerical studies have observed a slight
dependence on the Rayleigh number due to the fact that the
logarithmic slope is not exactly 1/3 (e.g. Sotin & Labrosse
1999). The present calculations (Table 1) fit the relation Ras=
3.64Ra*%" (line 2 in Fig. 10) well. For a fluid with mixed
boundary conditions (rigid on top and free-slip at the bottom),
a stronger dependence is expected. The core temperature is
greater than 0.5 and depends slightly on the Rayleigh number:
0=0.54Ra"°'®. The system is no longer symmetric, and the top
and bottom thermal boundary layers do not behave similarly.
The relation that describes Ras por 18 close to that found for two
free-slip boundaries, whereas Ra; o, depends more strongly on
the Rayleigh number (line 1 in Fig. 10): Ras iop= 2.28Ra’3°. A
rigid surface inhibits convective instabilities, and larger tem-
perature variations are required for downwelling instabilities
to form.

Eq. (3) can also be written for a variable viscosity fluid.
Using the non-dimensional parameters, the Rayleigh numbers
of the upper and lower thermal boundary layer are

0—0.)*
top: Ra =0 k. (31)
1-0)*
bottom: Ras= ( Nu3) Raj, (32)
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Figure 10. Upper (Rasop) and lower (Raspo) thermal boundary layer Rayleigh numbers as a function of the core Rayleigh number (Rag),
according to model 1. The lines labelled 1 and 2 represent the relation between Ra; o, and Ra, in the case of an isoviscous fluid with a rigid surface
and a free-slip surface, respectively. The values of Ra; po (White circles) do not depend on ¢; and fit relation (33) (dashed line) well. Two values of ¢,
are considered to compute Rasop: ¢ =1.5 (black circles), and ¢; =3.4 (black triangles).

where 0. is the non-dimensional temperature at the base of
the conductive lid. One difficulty is the determination of the
thickness of the conductive lid (J, eq. 26). Indeed, the results
of the previous inversion show that the transition between the
top thermal boundary layer and the conductive lid is fuzzy,
since the standard deviations of ¢; and ¢, are very large. The
following discussion is based on the determination of scaling
relations between the thermal boundary layer Rayleigh numbers
and the core Rayleigh number (Fig. 10). In the isoviscous case,
previous studies (Bergholz et al. 1979; Sotin & Labrosse 1999)
have used a far-field Rayleigh number (Ra™) for each half of
the box. In the case of a fluid with strong viscosity variations,
the definition and the meaning of Ra* are less obvious. For
clarity, we prefer to use the core Rayleigh number. This does
not change the interpretation of the thermal boundary layer
analysis.

4.3.1 Lower thermal boundary layer

In the case of the conductive-lid regime, the temperature
difference across the lower thermal boundary layer depends
on y (eq. 22). For a given value of y, a slight dispersion for
different values of the Rayleigh number is observed, but it is
smaller than the standard deviation on the mean temperature.

The development of hot instabilities, which form at the lower
thermal boundary layer, is enhanced by the decrease of viscosity
across the boundary, leading to a temperature difference across
the boundary layer smaller than that in the isoviscous case
(Rayleigh-Bénard convection). In the following calculations,
the temperature difference is given by the scaling relation (22).
Whatever the value of ¢, the value of Ra; pot is close to that
obtained in the case of an isoviscous fluid with free-slip
boundaries (Fig. 10), although the dependence on the core
Rayleigh number is larger. By computing Ras por With eq. (32),
the data in Table 3(a) fit the relation

Rats poy ~0.28 Ray?! (33)

well (dashed line in Fig. 10). Consequently, the characteristics
of the bottom thermal boundary layer (thickness, temperature
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variations) cannot be described by scaling laws based on results
for an isoviscous fluid. Scaling laws (22) and (33) are more
relevant.

4.3.2 Top thermal boundary layer

According to Morris & Canright (1984), the temperature
difference across the top thermal boundary layer is about three
times larger than that across the lower thermal boundary layer.
However, the inversion performed in the present study does not
constrain the boundary between the conductive lid and the top
thermal boundary layer. At the limit between the lid and the
top thermal boundary layer, viscosity is higher and inhibits the
formation of a cold instability. Most of the viscosity variations
occur within the conductive lid and the top thermal boundary
layer. Therefore, the value of Ras ,, depends strongly on the
thickness of the conductive lid.

Since the standard deviation on the inverted value of c,
is large, we have considered two possible sets of parameters
(Table 4) to simulate two possible dynamic patterns (isoviscous
fluid with either free-slip or rigid boundary). Note that the
solution having the minimal value of chi-square (¢; =0.83) does
not lie between these two end-member models, and yields very
small values of the thermal boundary layer Rayleigh number.

The first set of parameters assumes c¢;=1.5, in order to
simulate the values obtained for the lower thermal boundary
layer (line 2 in Fig. 10). In this case, the top and bottom
thermal boundary layers have the same thermal amplitude. The
values of Ras iop are close to, but smaller than, those obtained
for the isoviscous case with free-slip boundary conditions
(Fig. 10). Moreover, the dependence on the core Rayleigh
number is stronger than that for the isoviscous case.

The second set of parameters assumes ¢; =3.4 and was used
to provide values of Rasop close to those obtained for an
isoviscous fluid with rigid boundary conditions at the surface
(Fig. 10). Eqgs (24) and (26) allow the determination of the
thickness of the conductive lid (dyq). For ¢;=3.4, the con-
ductive lid is thinner than in the previous case (¢;=1.5), and
consequently the viscosity jump across the sublayer is slightly
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higher. On the other hand, the values of dy;q for ¢;=3.4 are
close to those computed with the law of Davaille & Jaupart
(1993) (dpy), which are obtained with ¢;=2.24 and ¢,=0
(Fig. 13). The values of Ras o are close to those for an iso-
viscous fluid with a rigid surface, with some dispersion and
smaller Ra dependence. This solution, if one accepts the validity
of the viscous temperature scale, provides a better comparison
with the isoviscous case (Fig. 10), but is unfortunately not the one
obtained by the inversion of the data (model 1 with ¢; =0.83).

Thermal boundary layer analysis suggests that the limit
between the lid and the top thermal boundary layer is not well
determined. It may be considered that the conductive lid is the
continuation of the top thermal boundary layer. In addition,
the lower thermal boundary layer seems to be more unstable
than the upper one and may drive the convection process.
Finally, the scaling law (33), which relates the bottom thermal
boundary layer Rayleigh number to the core Rayleigh number,
is useful for planetary applications. This relation can be used to
assess the thickness of the lower thermal boundary layer and
the heat flux across the fluid layer.

4.4 Thermal erosion of the conductive lid

Here, we propose two alternative methods to determine the
mean thickness of the conductive lid (Jy4). First, we use a
graphical method based on the variations of the mean vertically
advected heat flux (®.) as a function of depth (Fig. 11). In
the case of a fluid heated from within, the thickness of the
conductive lid determined by this method is equal to that
predicted by the viscous temperature scale (Davaille & Jaupart
1993). The second method is based on the comparison between
the advected (®,4y) and conducted (®P.,nq) heat fluxes. The

Conductive lid

0.2

04

uT
z
Figure 11. Mean vertical advective heat flux as a function of depth,
in the case Au=10* and Raz=3.2x10°. The thickness of the con-
ductive lid is determined by the depth at which the tangent through

the inflexion point intersects the zero heat-flux axis (Davaille &
Jaupart 1993).
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Figure 12. Difference between the total advected and conducted heat
fluxes (A®), in the case Au=10* and Rag=3.2 x 10°. The depth of the
conductive lid is defined by the minimal depth of the curve A®=0;
that is, at the top of the central uplift.

difference A®=(D,qy—Dcong) indicates which mechanism
of heat transfer is dominant (Fig. 12). The depth at which
convection balances conduction (A® =0) has very small lateral
variations. The central uplift is related to lateral advection
within the top thermal boundary layer. We propose that the
value of dj4 is equal to the minimum depth reached by the
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Figure 13. Thickness of the conductive lid predicted by the method
of the tangent through the inflexion point (white circles) and by a
comparison between the advected and conducted heat fluxes (black
circles), as a function of the thickness of the non-eroded conductive lid
(0py). Opy is computed by model 1 with ¢; =2.24 and ¢, =0 (Davaille &
Jaupart 1993). The crosses represent the thickness predicted by model
1 with ¢;=3.4 and ¢,=—0.1.
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Figure 14. Upper thermal boundary layer Rayleigh number as a function of the core Rayleigh number, predicted by the method of the tangent
through the inflexion point (white circles) and by a comparison between the advected and conducted heat fluxes (black circles).

curve A® =0. Because small horizontal motions are possible at
the base of the lid, this method may underestimate the value of
Jjia- At the top of the upper thermal boundary layer, however,
®. is not a straight line, and the first method may overestimate
the value of 0j;4. Therefore, the thickness of the conductive
lid should lie between the values computed by theses two
alternative methods.

The lid thickness computed by these methods is always
smaller than that predicted by the scaling law of Davaille &
Jaupart (1993) and by our model 1 (isoviscous rigid boundary
with ¢;=3.4) (Fig. 13). The thinning of the conductive lid may
be related to thermal erosion induced by the hot plume. In
a fluid heated from within, there are no hot plumes, and there-
fore no thermal erosion. This would explain why a viscous
temperature scale allows the determination of the conductive
lid in the case of a fluid heated from within, whereas it does not
in the case of a fluid heated from below. Moreover, the values
of Rasop predicted by the alternative methods are larger than
in the case of an isoviscous fluid with a rigid surface (Fig. 14).
In other words, the upper thermal boundary layer is less
unstable than that of an isoviscous fluid with a rigid surface.

5 CONCLUSIONS

Although the present study does not consider all the com-
plexities that exist in a real mantle, it takes into account one
major parameter, namely the temperature-dependent viscosity.
Such a study leads a better understanding of the role of this
parameter. The results from numerical experiments are in good
agreement with previous studies. Different regimes of con-
vection are observed, depending on the Rayleigh number and
on the amplitude of the viscosity variations. The limit between
the conductive-lid regime and the transitional regime depends
on the value of the surface Rayleigh number and on the global
viscosity ratio. In the case of the conductive-lid regime, the para-
meters of the scaling law for heat flux (eq. 28) are determined
by a non-linear inversion of the numerical data. Therefore, they
fit the experimental data sets independently of any prescribed
theoretical value.

Thermal boundary layer analysis shows that, in the case of a
fluid heated from below, the stability of thermal boundary layers
is completely different from the case of a fluid heated from
within (Davaille & Jaupart 1993). In the conductive-lid regime,

© 2000 RAS, GJI 143, 204-218

convection is controlled by the instability in the lower thermal
boundary layer. Moreover, the convective sublayer cannot be
considered as an isoviscous fluid. The temperature difference
across this layer can be calculated simply as a function of the
viscous temperature scale (eq. 22). The heat flux can be deter-
mined with the help of a scaling law between the lower thermal
boundary layer Rayleigh number and the core Rayleigh number
(eq. 33). The thickness of the conductive lid is smaller than
that predicted by the viscous temperature scale, suggesting that
this layer is eroded by hot plumes coming from instabilities in
the lower thermal boundary. Therefore, interactions between the
thermal boundary layers play an important role in the stability
of these layers.
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