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Introduction

This supporting information provides details on the calculation of radial conductive profiles of
temperature and heat flux for a mixed-heated system (section S1 and Table S1), and on the trends
predicted by scaling laws for interior temperature and surface heat flux (section S2 and Figures S1
and S2). It further describes the methods used to calculate the ice shell properties (heat flux, interior
temperature, and stagnant lid thickness; section S3 and Figures S3 to S5) and the thermal evolution
of this shell (section S4 and Figures S6 and S7). Our modelling is mostly similar to that used in
Deschamps (2021). Major differences are the treatments of the interior temperature and stagnant lid
thickness.

Text S1 - Temperature and heat flux profiles for stagnant lids in mixed-heated systems

Temperature and heat flux profiles in conductive mixed-heated systems. Radial profiles of
temperature and heat flux for a purely conductive system with internal heat production may be
obtained by integrating the heat equation, which writes
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in Cartesian geometry, and



Sar (72K 5y) +pH =0 (52)
in spherical geometry, where T is the temperature, z (in Eqg. S1) the depth, r (in Eq. S2) the radius, k
the thermal conductivity, p the density and H the heating rate per unit of mass. Considering that k,
p and H are constant throughout the system, and taking surface and bottom temperatures, T..s and
Toot, @s boundary conditions, integrations of Egs. (S1) and (S2) lead to the expressions listed in Table
S1 for the temperature and heat flux profiles. Note that in Cartesian geometry, D is the thickness of
the domain, and in spherical geometry, R and r. are the total and core radii, f = /R the ratio
between these radii, and D = (R — 1;.), again, the thickness of the conductive layer. Expressions for
radial profiles of heat flux (also listed in Table S1) are obtained by derivating the radial profiles for
temperature with respect to either z in Cartesian geometry, or r in spherical geometry. In this later
case, one may recall that the heatflux is defined as the opposite of the temperature derivative with
respect to radius.

In the case of the outer shells of icy bodies, the bottom temperature is known from the liquidus
at the bottom of the ice shell. Instead of using Tt as boundary condition, one may use the surface

heat flux, @+ This surface heat flux is given by

pHD

Doy = k Lyl (S3)

In Cartesian geometry (z=0), and, notingthat 2 — f — f9) = (1 - )2+ f)andR =D/(1 — f),
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in spherical geometry (r = R). Temperature profiles then write
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in Cartesian geometry, and

T() = Toury — LR (1-5) + 5 [2(1-5) + (1 - )] (56)

in spherical geometry.

Application to stagnant lids. Depending on whether the bottom temperature, Tuor, Or the surface
heat flux, @surt, is known or easier to access, either expressions in Table S1 or Egs. (55) and (S6) may
be used to describe temperature profiles within conductive systems or conductive layers. These
equations may, in particular be used to infer the thermal profile within the rigid lid that forms at the
top of a system animated with stagnant-lid convection (section 3.2), which writes
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in Cartesian geometry, and



ST >=Toy — 2R (1-5) + 2255 (1 - 5) 4 (1 - 5] (s8)

r

in spherical geometry. If @ is known, Eqs. (57) and (S8) can be directly used to determine the
temperature profiles within the stagnant lid.

If the thickness of the stagnant lid, di4, and the temperature at its bottom, Tiq, are specified
instead of the surface heat flux, expressions given in Table S1 lead to

z sz

< T >= Tours + ATiiq 5~  (diia — 2) (S9)

in Cartesian geometry, and

< T >= Tau = Mg g fua (1= 5) + 255 [fua 0 + fuia) (1= 5) + (1= 5)] (510)

in spherical geometry, where AT;;y = (Tjiq — Tsurr ) is the temperature jump across the stagnant lid,
and fjia = (R —d;ig)/R =1 — (1 — f)djq/D the ratio between the radius of its base and the total
radius. Numerical simulations of stagnant lid convection give easily access to the surface heat flux,
while the average temperature at the bottom of the stagnant lid, Tiq, is more difficult to estimate. To
calculate the temperature profiles within stagnant lids Eqs. (57) and (S8) are thus handier than Egs.
(S9) and (S10).

Heat flux equations in Table ST may further be used to estimate the temperature at the bottom
of stagnant lids given the surface heat flux and the lid thickness. In this case, heat flux writes
ATuid
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in Cartesian geometry, and
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in spherical geometry. Taking Egs. (S11) and (S12) at the surface (z= 0 or r = R), and rearranging the
terms, one gets the temperature at the bottom of the lid, T;;q = Tgyrf + ATyi4, as a function of the

surface heat flux and stagnant lid thickness, following
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in Cartesian geometry, and
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in spherical geometry.



Text S2 - Trends in scaling laws for temperature and heat flux

Supplementary Figures S1 and S2 plot the non-dimensional interior temperature, T,,, and surface
heat flux, @, as a function of the input parameters of numerical simulations and following scaling
laws inferred in sections 4.1 and 4.2 of the main article (Egs. 21 and 23). Input parameters are the
surface Rayleigh number, Ra.., the ratio between the inner and outer radii of the shell, f (with f=1
for Cartesian geometry), the non-dimensional rate of internal heating, H, and the non-dimensional
inverse of the viscous temperature scale, y, controlling the amplitude of viscosity variations with
temperature. In our simulations, the viscosity law follows the Frank-Kamenetskii approximation,
implying that y = In(An), where An is the top-to-bottom viscosity ratio. As discussed in sections 4.1
and 4.2, two sets of parameters are needed to explain the results of the simulations, depending on
whether the Urey number, Ur, defined by Eq. (12) of the main text, is smaller or larger than 1. This
leads to discontinuities for cases where Ur ~ 1.

Figure S1 shows that T, increases with H, as one would expect, but decreases with increasing
Ras.s, while 513mp increases monotically with both H and Ras.r. Interior temperature further
decreases as curvature gets larger (f decreases). The amplitude of variations in T,,, with f are rather
limited compared to variations of T,,, with H, but comparable to those induced by changes in Raur.
Note that CTDtop does not depend explicitly on f (Eqg. 23 of main text), but is nevertheless sensitive to
this parameter because the effective Rayleigh number, Rax (Eq. 10 of main article) depends on
temperature. As a consequence, 5top decreases with increasing curvature, but these variations are
relatively limited compared to those induced by changes in Rdu or H.

The influence of y on T, is more complex and depends in particular on the value of H (plots a
and b in Figure S2). For H < 1, T,,, monotically increases with y (and thus with An), as observed for
stagnant-lid convection with a bottom heated-fluid, i.e, H = 0 (e.g., Moresi and Solomatov, 1995;
Deschamps and Sotin, 2000). By contrast, for H around 1 and higher, T,, first decreases with
increasing v, reaches a minimum value for a value of y that increases with A, and starts increasing
again. Itis also interesting to note that the influence of H becomes smaller asy increases, i.e., for high
values of y (typically, larger than 25-30), T,, is mostly controlled by y (and thus by the thermal
viscosity contrast) regardless of /. As a consequence, T,,, < 1 (and thus Ur < 1) for such values of y,
and T,,, tends asymptotically to 1 asy goes to infinity. Finally, plots c and d in Figure S2 indicate that
CTDtOp increases monotically with y. As discussed in section 4.2, y acts on <T>t0p directly, through 1/y¢
and the exponential term defining Raer, and indirectly through T,,,. Both the 1/y¢ term in Eq. (23) and,
if yis not too large, the decrease in T,,, (and thus in Raer) lead to a decrease in €I3t0p as An gets larger.
However, the exponential term in the definition of Raer is dominant, such that for given values of
Rassand H, CTDtop increases with Ar. Again, it is worth noting that the influence of A diminishes as y
gets larger, and that for high viscosity ratios the value of CTDtOp is mostly controlled by the amplitude
of these variations.

Text S3 - Modelling of ice shell properties

For applications to Europa, we assumed that the viscosity of ice Ih is described by



TTE
N(T) = Nyepexp [RT’ief( rof _ 1)] (515)

where E is the activation energy, R the ideal gas constant, and m.r the reference viscosity at
temperature Ter. The reference viscosity is not well constrained. Close to the melting point, i.e. for T
equal to the liquidus temperature of pure water at the bottom of the ice shell, Tizob0ot, @ range of
values based on polar ice sheet creep is 10'*-10" Pa s (Montagnat and Duval, 2000). Here, we
considered this parameter as a free parameter and varied it in the range 10'>-10" Pa s, extending the
range of possible values estimated by Montagnat and Duval (2000). Activation energy is better
constrained, with values in the range 49-60 kJ/mol depending on the creep regime (Durham et al.,
2010), and around 60 kJ/mol for atomic diffusion (Weertman, 1983). Here, we used E = 60 kJ/mol in
all calculations. Under icy moons conditions, ice Ih rheology is likely more complex than the diffusion
creep mechanism assumed in Eq. (515), but it is reasonable to think that the impact of internal
heating on ice shell dynamics follows a similar trend for different rheologies.
Following Eq. (22) and the viscosity law (Eq. S15), the viscous temperature scale is
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such that the inverse of the non-dimensional viscous temperature scale, y = AT /AT, which controls
the thermal viscosity contrast, is given by
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where AT = (Tbot —Tsurf) is the top to bottom temperature jump. Still following Eq. (516),
rescaling Eq. (21) of main text gives the interior temperature
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where Tpot is the bottom temperature defined as the liquidus of the water + impurities system, H the

internal heating rate per mass unit, p and k; the density and thermal conductivity of the ice Ih,
respectively, D the thickness of the ice layer, and Ra.« the Rayleigh number calculated with the
viscosity temperature Tr,
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In Eq. (S19), au and «; are the thermal expansion and thermal diffusivity of ice lh, and N(Tw) is
calculated with Eq. (515). The values of the parameters ai, a,, and ¢; to ¢4 are given in section 4.1.
Note that parameters ¢; to ¢, have different values depending on whether the Urey ratio (Ur, Eq. 12
of main text) is smaller or larger than 1. It is also worth noting that if the sub-surface ocean is
composed of pure water, the bottom temperature Tyt is equal to the reference temperature defined
in the viscosity law (Eq. S15), but is lower than this reference temperature if impurities (e.g., ammonia)
are also present (see next paragraph). Equation (S18) does not have analytical solution, and we
solved it following a Newton-Raphson zero-search method.



Impurities act as an anti-freeze and may include ammonia (NHs), methanol (CH;OH), and salts
(e.g., magnesium sulfate, MgSO.). Here, we more specifically considered ammonia, which is
predicted to condensate in giant planets environments with amounts up to a few per cent (Mousis
et al,, 2009; Deschamps et al., 2010). In the case of Europa, magnesium sulfate may further be an
important compound of the ocean (Vance et al. 2018). Qualitatively, however, the evolution of the
icy bodies is not significantly impacted by the nature of the impurities, but only by their amount. For
instance, Vilella et al. (2020) pointed out that the impact of 30 % MgSO, on the liquidus is equivalent
to that of 3.5 % NHs. On another hand, it should be noted that different compositions may impact
physical properties of the ocean, in particular its density. Adding 30 % MgSO. would increase density
by about 150 kg/m?, while 3.5 % NH; would reduce it. Details on the calculation of the water-
ammonia system liquidus can be found in Deschamps and Sotin (2001). Practically, we prescribed
the initial fraction of ammonia, corresponding to the concentration of ammonia in the initial ocean.
The concentration in ammonia then increases as the ocean starts to freeze, since up to the eutectic
composition (equal to 32.2 wt% in the case of NH;s), only water ice crystalizes, while impurities are
left in the subsurface ocean, whose volume decreases due to the thickening of the outer ice layer.
Note that in phase diagrams, concentrations in impurities are usually measured in wt%. For practical
reasons, we perform calculations with the volume fraction, which we correct to weight fraction when
determining the liquidus, following (in the case of ammonia)

Wt — XX H3PNH3 (520)
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where pw and pwws are the densities of liquid water and ammonia, respectively.

The surface heat flux is obtained by rescaling the heat flux scaling law (Eq. 23 of main text)
with the characteristic heat flux, ®¢4pqc = kyrep AT/D, Where ki is the characteristic thermal
conductivity. Most reconstruction of icy bodies thermal evolutions used values of ks in the range
2.0-3.0 W/m/K, corresponding to the conductivity at the temperature of the well mixed interior or at
the bottom of the shell (e.g., Grassetand Sotin, 1996; Tobie et al., 2003). Here, we fixed ki to 2.6
W/m/K (Grasset and Sotin, 1996). Interestingly, in the case of Europa, this value leads to ice shell
properties and thermal evolution very close to those obtained with temperature-dependent thermal
conductivity (Deschamps, 2021). Accounting for the shell’s curvature, measured with the ratio
between the inner and outer radii, f, the basal and surface heat fluxes write

churf = cI)carctcér)top (521)
and Py, = q)caracér)top/fz . (522)

Note that this formulation is slightly different from that used in Deschamps (2021), where the non-
dimensional convective heat flux (®,,,,) was inferred from 3D-Cartesian calculations and a
correction for spherical geometry was assumed, leading to @4, = FPearac®Peony and @por =
D carac Peonw/ f- Because the curvature of outer ice layers of large icy bodies remains large (typically,
f > 0.7), this difference only triggers small to moderate effects on the calculations of ice shell
properties and thermal evolution. Note that if the surface heat flux is lower than the conductive
characteristic heat flux, ®cra, the system is not animated by convection and transfers heat by
conduction. This occurs, for instance, if the ice shell is too thin or, in the case of a sub-surface ocean



containing impurities, too thick. In this later case, the temperature at the bottom of the shell is much
lower than in the case of a pure water ocean. As a result, reference and interior viscosities are higher,
decreasing the vigor of convection or even shutting off convection (Deschamps and Sotin, 2001).

As discussed in main text, two sets of parameters for Eq. (23) may be used, depending on
whether the bottom heat flux, @wo, is positive (Ur < 1) or negative (Ur > 1). The threshold (non-
dimensional) internal heating is given by Eq. (25) of main text, and may be used as a criteria to decide
which set of parameters to use. Here, instead, we used a simpler procedure, which accounts for the
fact that temperature and heat flux scalings are not continuous at Ur = 1. First, we calculate the
internal temperature T, (Eq. S18) and the surface heat flux, @+, assuming parameter values for Ur <
1. If the corresponding @ (calculated with Eq. (11) of main text) is negative, we re-evaluate T, and
D1, but with parameter values for Ur > 1. If the resulting @y is positive again, we set arbitrarily its
value to zero, and recalculate @, and T, accordingly.

To calculate the thickness of the stagnant lid, Deschamps (2021) assumed that the
temperature at the bottom of the lid is well described by Tiq = 2T, - Teor, and then deduced diiq from
the expression of the conductive temperature profile within the lid. However, the relationship
between Tiq and T., assumes that temperature jump in the bottom and top thermal boundary layers
(excluding the stagnant lid) are equal, which is not valid for mixed-heating convection. Here, instead,
we estimated the thickness of the stagnant lid by rescaling Eq. (26) of the main article, leading to

dyjig = ;‘;dfyfb D, (S23)

where v and Ra. are given by Eqs. (S17) and (519), respectively, the constant aiq is equal to 0.633 for
Ur<1and0.667 for Ur>1,b=0.27,and c = 1.21. The temperature at the bottom of the stagnant lid
can then be calculated using Eq. (S14).

Text S4 - Thermal evolution

The present day radial structure of icy bodies may be estimated from appropriate thermal evolution
modelling. Here, we followed the approach of Grasset and Sotin (1996), which calculates the
evolution of ice layers thicknesses based on an energy balance accounting for the production of heat
in the silicate core, the cooling of the ocean, and the crystallization of ice shells. Europa is not large
enough to host high pressure ices, such that the inner radius of the outer ice lh shell, ryot, can be
calculated by solving the energy conservation equation at the boundary between this shell and the
sub-surface ocean. Energy conservation at this boundary then writes

drpo 0T, Tpot\ (Thot3-7¢3
% [prw (_ ard + al:, t)( > t3 ) - pILIrbotZ] = rbotzcbbot - Tczq)c (524)
where t is time, Tpor and Dyo: are the temperature and heat flux at the bottom of the ice layer, given
by the liquidus of the ocean and by Eq. (522), respectively, r. is the core radius, @, the heat flux at the

top of the core, pw and C,, the liquid water density and heat capacity, pi and L, the density and latent
heat of fusion of ice |h, respectively, and T.4 the adiabatic temperature in the ocean, given by
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with aw being the thermal expansion of liquid water. Within the silicate core, heat is assumed to be
produced by the decay of 4 radiogenic elements, “K, #2Th, 2°U, and #*®U. The heat flux at the top of
the core is then calculated following Kirk and Stevenson (1987) by

ct [1—exp(=4;t)]
D, =2 ’K?Pc i, Co,ﬂi%, (S26)

where k. and p. are the thermal diffusivity and density of the silicate core, and the subscript i refers
to the 4 radiogenic elements, whose properties are listed in Table S2. We solved Eq. (S24) up to t =
4.55 Gyr using an adaptative stepsize control Runge-Kutta method (Press et al., 1992), and assuming
an initial ice Ih thickness equal to 10 km together with the material and physical properties listed in
Table 3 of the main text. Again, because the reference viscosity M is a sensitive parameter but is

poorly constrained, we performed calculations for values of T in the range 10'>-10" Pa s,
corresponding to an extended range of the values estimated by Montagnat and Duval (2000).
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Figure S1. Non-dimensional interior temperature Tm deduced from Eq. (21) (top row) and surface heat flux
5t0p calculated from Eq. (23) (bottom row) as a function of the surface Rayleigh number Rasu (left column)
and non-dimensional rate of internal heating H (right column), and for several values of the ratio between the
inner and outer shell radii f (color code; f = 1 indicates Cartesian geometry). Two sets of parameters for Egs.
(21) and (23) are used, depending on whether the Urey ratio (Ur, Eqg. 12) is smaller or larger than 1 (see main
article), leading to discontinuities at Ur ~ 1. For calculations as a function of Rasr (left column), His set to 4,
and for calculations as a function of H (right column), Ras.«is equal to 10. In all cases, the surface top-to-bottom
viscosity ratio is fixed to 10°.
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Figure S2. Non-dimensional interior temperature T'm deduced from Eq. (21) (top row) and surface heat flux
a'pr calculated from Eq. (23) (bottom row) as a function inverse of the non-dimensional viscous temperature
scale, y = AT /AT, (see main text), and for several values of the non-dimensional rate of internal heating (color
code). The viscosity is described by a Frank-Kamenetskii law (Eq. 7), such that y is equal to the logarithm of the
top-to-bottom viscosity ratio. Two sets of parameters for Egs. (21) and (23) are used, depending on whether
the Urey ratio (Ur, Eq. 12) is smaller or larger than 1 (see main article) and leading to discontinuities at Ur ~ 1.
In all cases, the surface Rayleigh number is equal to 10, and geometry is Cartesian (f=1).
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Figure S4. Critical values of internal heating for partial melting of the ice shell, Hmer, as a function of the ice
shell thickness and for different values of the reference viscosity, Nrr. Calculations are made with the properties
of Europa (Table 3) and assuming a sub-surface ocean composed of pure water. Dashed parts of the curves
indicate that the system is not animated by convection, based on the observation that the convective heat flux
is smaller than the conductive heat flux. The grey dashed curves represent the heating rate for three values of
the total power dissipated within the ice shell (values in TW indicated on each curve).
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temperature. (c) and (f) Stagnant lid thickness. Physical properties used for calculations are listed in Table 3,
and two initial compositions of the ocean are considered, pure water (left column), and an initial mix of water
and 3.0 vol% ammonia (right column). Curves interruptions indicate that the average interior temperature is
larger than the liquidus of pure water at that depth. Two regimes occur depending on whether the Urey ratio
(Ur, Eq. 12) is smaller or larger than 1, leading to discontinuities at Ur ~ 1.
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Figure S6. Evolution of the ice shell thickness as a function of time for reference viscosity 1.r= 10" Pa s and
several values of the total power dissipated in the ice layer (color code). The composition of the ocean is (a)
pure water, or (b) an initial mix of water and 3.0 vol% ammonia. Note the logarithmic scale for the time axis.
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Figure S7. Properties of Europa’s outer ice shell at t = 4.55 Gyr as a function of the reference viscosity, Ner, and
for several values of the total power dissipated in the ice layer (color code). (a) and (d) Ice shell thickness. (b)
and (e) Interior temperature. (c) and (f) Stagnant lid thickness. Physical properties used for calculations are
listed in Table 3, and two initial compositions of the ocean are considered, pure water (left column), and an
initial mix of water and 3.0 vol% ammonia (right column). Dashed parts of the curves indicate that the system
is not animated by convection.
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Quantity Geometry Expression

Temperature  Cartesian z pHz
P Tsurf+AT5+W(D_Z)
- Spherical R ﬁHRZ

SRR PO R

; AT pH
Heat flux Cartesian k—+p—(D —22)
D 2
- Spherical AT (R\* pHr 1+ f)R®
p k_f(_> Lt fA+HR
D 3 2 r3

Table S1. Relationships for radial profiles of temperature and heat flux for a conductive mixed-
heated system. AT = (Toot - Teurr) is the bottom-to-top temperature jump, where Tyt and Tyor are the
surface and bottom temperature and D is the thickness of the shell. In Cartesian geometry, zis depth,
and in spherical geometry, r is radius, R the total radius, and f = 13, /R the ratio between the inner
and outer radii of the shell. k is the thermal conductivity, H the rate of internal heating, and p the
average density, which are here all considered as being constant.

Element Decay constant, A Heat release, H Initial abundance, Co
(1/yr) (W/kg) (ppb)
40K 5.4279x107° 2.917x10° 738.0
B2Th 4.9405x10™" 2.638x10° 38.7
35y 9.8485x107° 5.687x10* 54
58 1.5514%x107° 9.465%x10° 19.9

Table S2. Properties of long-lived radioactive isotopes.
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