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S U M M A R Y
Convection is an efficient process to release heat from planetary interiors, but its efficiency de-
pends on the detailed properties of planetary mantles and materials. A property whose impact
has not yet been studied extensively is the temperature dependence of thermal conductivity. Be-
cause thermal conductivity controls heat fluxes, its variations with temperature may alter heat
transfer. Here, I assess qualitatively and quantitatively the influence of temperature-dependent
thermal conductivity on stagnant lid convection. Assuming that thermal conductivity varies
as the inverse of temperature (k ∝ 1/T ), which is the case for ice Ih, the main component of
outer shells of solar System large icy bodies, I performed numerical simulations of convection
in 3-D-Cartesian geometry with top-to-bottom viscosity and conductivity ratios in the ranges
105 ≤ �η ≤ 108 and 1 ≤ Rk ≤ 10, respectively. These simulations indicate that with increas-
ing Rk, and for given values of the Rayleigh number and �η, heat flux is reduced by a factor
Rk

0.82, while the stagnant lid is thickening. These results have implications for the structures
and thermal evolutions of large icy bodies, the impact of temperature-dependent conductivity
being more important with decreasing surface temperature, Tsurf. The heat fluxes and ther-
mal evolutions obtained with temperature-dependent conductivity are comparable to those
obtained with constant conductivity, provided that the conductivity is fixed to its value at the
bottom or in the interior of the ice shell, that is, around 2.0–3.0 W m−1 K−1, depending on the
body. By contrast, temperature-dependent conductivity leads to thicker stagnant lids, by about
a factor 1.6–1.8 at Pluto (Tsurf = 40 K) and a factor 1.2–1.4 at Europa (Tsurf = 100 K), and
smaller interior temperatures. Overall, temperature-dependent thermal conductivity therefore
provides more accurate descriptions of the thermal evolutions of icy bodies.

Key words: Composition of the planets; Numerical modelling; Planetary interiors; Dynam-
ics: convection currents, and mantle plumes.

1 I N T RO D U C T I O N

Like rocky planets, icy moons and dwarf planets are cooling down,
and their radial structure is constrained by their thermal histories.
These evolutions are themselves controlled by the mode and effi-
ciency of heat transfer through the outer ice Ih shells of icy bodies.
Several mechanisms may influence, oppose or delay this cooling,
including a regular and sustainable production of heat, the reduction
of the melting temperature at the bottom of the outer ice shell and
the limitation of heat transfer through this shell, for instance related
to its physical and material properties. Tidal dissipation may, in
some cases, provide a regular source of heat within or at the bottom
of the ice shell. The amount of heat released, and thus the evolu-
tion of the body, depends on the orbital properties of icy bodies
and may vary with time (e.g. Tobie et al. 2003, 2005; Roberts &
Nimmo 2008). The presence of antifreeze compounds, for example,
ammonia or methanol, in the subsurface ocean has long been advo-
cated to inhibit crystallization (e.g. Grasset & Sotin 1996; Spohn &

Schubert 2003; Deschamps et al. 2010a). Other properties that may
impact the evolution of icy bodies include the presence of a thin
layer of clathrate hydrates acting as an insulator either at the top
(Tobie et al. 2006) or at the bottom (Kamata et al. 2019) of the ice
shell. This process has been advocated to explain the presence of a
subsurface ocean within Titan and Pluto.

The properties of outer ice shells of icy moons and dwarf planets
allow thermal convection to operate or have operated within them.
Compared to thermal conduction, convection is an efficient mecha-
nism to release heat to the surface, but how efficient depends on the
detailed mode of convection, which depends itself on the physical
and material properties of the system. A side effect of both tidal
heating and antifreeze compounds is precisely to alter heat transfer.
If tidal dissipation occurs within the ice shell, the amount of heat
that can be extracted from the ocean and transported to the surface
is reduced, as shown by simulations of convection in mixed heated
systems (e.g. Travis & Olson 1994; Deschamps et al. 2010b). Be-
cause it lowers the water liquidus, and thus the temperature at the
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bottom of the ice shell, the presence of antifreeze compounds in
the ocean increases the bulk viscosity of the ice shell, reducing the
vigour of convection (Deschamps & Sotin 2001). Another key fac-
tor impacting heat transfer is rheology. The viscosity of ice strongly
depends on temperature, such that convection within ice shells may
operate in the so-called stagnant lid regime. In this mode of convec-
tion, a rigid, thermally conductive lid forms at the top of the system,
reducing the amount of heat that can be transported to the surface
(e.g. Christensen 1984; Moresi & Solomatov 1995).

The temperature dependence of thermal conductivity may further
influence convection and its ability to transport heat towards the sur-
face. The thermal conductivity of water ice depends on temperature
following a Debye model (Slack 1980; Andersson & Suga 1994),
implying that above the Debye temperature, which, for ice Ih, is
equal to 226 K, it is well approximated by an inverse law of the
temperature, T. Interestingly, this approximation provides a good
description of ice Ih conductivity well below the Debye tempera-
ture, from 273 K down to about 35 K (Slack 1980; Andersson &
Suga 1994). For 40 K ≤ T ≤ 260 K the measurements of Andersson
& Suga (1994) fit very well along k = 566.8/T. In this range of tem-
perature, which encompasses the expected temperature conditions
within icy bodies, thermal conductivity increases by about a factor
of 15. By contrast, up to about 0.21 GPa, the thermal conductivity of
ice Ih depends only slightly on pressure (Andersson & Suga 1994).

The amount of heat that can be extracted from the subsurface
ocean is controlled by the thermal conductivity at the bottom of
the ice Ih shell, which, if conductivity varies with temperature,
should be lower than at the surface. This, in turn, may impact mod-
els of thermal evolution of icy moons. To the first order, heat flux
limitation can be accounted for by prescribing a low conductivity
throughout the system. However, fixing conductivity to its bottom
or interior value does not capture all details of the flow, which may,
in fine, alter the structure and thermal evolution models. In partic-
ular, Tobie et al. (2003) suggested that, in the case of stagnant lid
convection, the conductive lid may be thicker if thermal conduc-
tivity depends on temperature. So far, the effects of temperature-
dependent thermal conductivity have not been explored in details.
Here, I perform numerical simulations of convection combining
temperature-dependent viscosity (stagnant lid convection) and ther-
mal conductivity. These simulations show that heat transfer in outer
ice shells of icy bodies is affected by changes in conductivity with
temperature, and that these changes should be accounted for to
refine the thermal evolutions and structures of these bodies.

2 N U M E R I C A L M O D E L

To model the dynamics of outer ice shells, I performed numerical
simulations of thermal convection in 3-D-Cartesian geometry for an
incompressible, infinite Prandtl number fluid using StagYY (Tack-
ley 2008). Both the fluid viscosity, η, and thermal conductivity, k,
vary with temperature. The conservation equations of momentum,
mass and energy are then

∇σ − ∇P = −αρgδT ez (1)

∇ · v = 0 (2)

and

ρCP
∂T

∂t
= ∇ · (k∇T ) − ρCPv · ∇T + ρH, (3)

where the elements of the deviatoric stress tensor, σ , are σi j =
η(∂vi/x j + ∂v j/xi ), P is the non-hydrostatic pressure, v the veloc-
ity, δT the temperature difference between the local temperature T
and a reference temperature (here, the surface temperature Tsurf), ez

the radial unit vector, α, ρ and CP the fluid thermal expansion, den-
sity and heat capacity (all assumed constant throughout the system),
g the gravity acceleration, and H the internal heat production per
unit of mass, which is here set to zero (i.e. the fluid is only heated
from its bottom and cooled at its top). Numerical methods used to
solve eqs (1)–(3) are detailed in Tackley (2008).

Conservation equations are non-dimensionalized with the char-
acteristic properties of the system, in particular the thickness of the
fluid layer D and the super-adiabatic temperature jump across this
layer, �T. The non-dimensional temperature and velocity are then
given by T̃ = (T − Tsurf )/�T and ṽ = vκ/D, where Tsurf is the sur-
face temperature and κ = k/ρCP is the fluid thermal diffusivity (for
convenience, non-dimensional quantities are denoted by adding a
tilde, ∼, to the corresponding symbols denoting dimensional quan-
tities). In addition, the characteristic thermal conductivity is defined
as its surface value, ksurf. In addition, the source term of the mo-
mentum equation, αρgδT, is replaced by the Rayleigh number,

Ra = αρg�T D3

ηκ
, (4)

measuring the ratio between the buoyancy and viscous forces. Be-
cause viscosity and thermal conductivity are allowed to vary with
temperature, there is no unique definition of Ra. For calculations,
one may prescribe this number at a specific temperature. Here, I
prescribed the surface Rayleigh number, Rasurf, calculated at the
surface temperature, which remains constant throughout the dura-
tion of simulations.

Viscosity varies with temperature following the Frank–
Kamenetskii (FK) approximation, which is a linearized representa-
tion of Arrhenius-type of laws, and is given by

η = η0 exp

[
−aη

(T − T0)

�T

]
, (5)

where η0 and T0 are the reference viscosity and temperature (here,
the surface values of these parameters, ηsurf and Tsurf), and aη a
parameter that controls the amplitude of viscosity variations. The
non-dimensional viscosity, η̃ = η/η0, is then given as a function of
T̃ by

η̃ = exp
(−aη T̃

)
. (6)

FK approximation is known to overestimate heat flux by up to
20–30 per cent (Reese et al. 1999; Harel et al. 2020). In addition,
because different mechanisms may control the deformation of ice
depending on the grain size, a composite viscosity law may be
more appropriate to model ice shells dynamics (Harel et al. 2020).
On another hand, FK approximation facilitates calculations and,
most importantly, a large number of simulations is available in the
literature and can be used, by comparison, to estimate the specific
influence of temperature-dependent thermal conductivity. A key pa-
rameter controlling the flow regime is the top-to-bottom viscosity
ratio, which, in the case of FK approximation and following eq. (5)
is given by �η = exp(aη). For viscosity ratios around 104 and larger
convection operates in the so-called stagnant lid regime (e.g. Chris-
tensen 1984; Davaille & Jaupart 1993; Moresi & Solomatov 1995).
In this mode of convection, a rigid (or stagnant) lid, in which heat is
transported by conduction, forms at the top of the fluid. The stag-
nant lid may be viewed as the upward extension of the top thermal
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boundary layer (TBL), but because TBLs are, strictly speaking, re-
gions where thermal instabilities are developing, I consider here
that it does not belong to the top TBL. Following this point of view,
the convective flow is confined beneath this lid and decomposes
in a top (cold) TBL, a well-mixed adiabatic interior, and a bottom
(hot) TBL. Most of the viscosity contrast is accommodated by the
stagnant lid, and the convective sub-layer is nearly isoviscous, with
viscosity ratio typically around 10. The viscosity of ice Ih strongly
depends on temperature, and rheological laws imply viscosity ratios
through outer ice shells of icy bodies much larger than 104 (Durham
et al. 2010). If it develops within these shells, convection should
thus operate in the stagnant lid regime.

Thermal conductivity also varies with temperature. Based on
laboratory experiments on ice Ih (Slack 1980; Andersson & Suga
1994), I assumed that this dependence follows an inverse law of the
temperature, k ∝ 1/T . Knowing the value of thermal conductivity
at a reference temperature, for instance the surface temperature Tsurf,
the conductivity at temperature T is

k (T ) = ksurf
Tsurf

T
, (7)

where ksurf is the conductivity at T = Tsurf. Taking ksurf as the char-
acteristic value of the conductivity, the non-dimensional conduc-
tivity is k̃ = k/ksurf and may be written as a function of the non-
dimensional temperature T̃ following

k̃ = Tsurf

Tsurf + T̃ �T
= 1

1 + RT T̃
(8)

where

RT = �T

Tsurf
(9)

is the ratio between the dimensional super-adiabatic temperature
jump, �T = (Tbot—Tsurf), and the dimensional surface temperature,
Tsurf. With this definition, the ratio between the top (T̃ = 0) and
bottom (T̃ = 1) thermal conductivities is simply given by

Rk = Tbot/Tsurf = 1 + RT . (10)

The input Rayleigh number, Rasurf, is defined with surface values
of the viscosity and thermal conductivity. To describe convection
in the convective sub-layer, it is convenient to define an effective
Rayleigh number, Raeff, calculated with values of the viscosity and
thermal conductivity at the temperature of the well-mixed interior
(or interior temperature, for short), T̃m . This temperature is an output
of the simulations and is defined as the volume averaged temperature
within the adiabatic region, that is, the region located between the
top and bottom thermal boundary layers, where the horizontally
averaged temperature profile is approximately constant with depth.
Following eqs (6) and (8), Raeff is given as a function of the Rasurf

by

Raeff = Rasurf

(
1 + RT T̃m

)
exp

(
aη T̃m

)
. (11)

A key observable, together with T̃m, is the non-dimensional hor-
izontally averaged heat flux, 
̃conv. In Cartesian geometry, and due
to energy conservation, this heat flux is constant with depth and
can be estimated either at the top or at the bottom of the domain,
once quasi-stationary state is reached. For applications to natural
systems, 
̃conv is rescaled with the characteristic values of thermal
conductivity, temperature and length, leading to a characteristic
heat flux 
carac = kref�T/D, which is equivalent to the conduc-
tive heat flux for a Cartesian geometry system with homogeneous
conductivity kref . The efficiency of convection is measured with

the Nusselt number, Nu, defined as the ratio between the convec-
tive and conductive heat fluxes, 
conv and 
cond, or equivalently
the ratio of their non-dimensional forms. A value of Nu lower
than 1 indicates that the system is not animated by convection.
For a system with constant conductivity and Cartesian geometry

cond = 
carac and Nu is equal to 
̃conv. If, however, conductivity
varies as 1/T, the conductive profile of temperature is not linear
(Section 3 and the Appendix), and the conductive heat flux is given
by


cond = ksurf Tsurf

D
ln

(
Tbot

Tsurf

)
, (12)

which is smaller than the heat flux for a system with constant con-
ductivity ksurf (Fig. A1). Its non-dimensional form (with respect to
the characteristic heat flux, ksurf�T/D) writes


̃cond = ln (1 + RT )

RT
, (13)

and is lower than 1 for RT > 1. For a given RT, convection operates if

̃conv is larger than the value of 
̃cond (i.e. Nu > 1). Because eq. (13)
monotonically decreases with RT (and thus Rk), the lower possible
value of 
̃conv decreases with increasing conductivity ratio. For
instance, taking RT = 2 (Rk = 3) and RT = 9 (Rk = 10), the lowest
possible 
̃conv are 0.549 and 0.256, respectively. In all numerical
simulations reported in this study, convection is well developed with
Nu ranging from 3.0 to a bit more than 6.0 (Table 1).

Simulations are performed in 3-D-Cartesian domains with a hor-
izontal to vertical aspect ratio equal to 4 in both x and y directions,
and a grid resolution of 256 × 256 × 128 points. The grid is verti-
cally refined at the top and at the bottom of the box, which provides a
better description of TBLs. The top and bottom boundaries are free
slip and isothermal, and reflective boundary conditions are imposed
on sidewalls. Initial conditions on temperature consist of small ran-
dom perturbations superposed on a 1-D radial adiabatic profile with
thin TBLs at the top and the bottom.

Using this set-up, I performed 24 numerical simulations (Ta-
ble 1). For comparison, I added 4 simulations from Deschamps &
Lin (2014), which were conducted with a similar set-up, but with
constant thermal conductivity. Explored ranges of top-to-bottom
viscosity and thermal conductivity ratios are 105 ≤ �η ≤ 108 and
1 ≤ Rk ≤ 10, respectively. Surface Rayleigh numbers are chosen in
the range 1–102, leading to effective Rayleigh numbers (eq. 11)
between 9.0 × 105 and 1.5 × 108. For these ranges of values
the flow is time-dependent and reaches a quasi-stationary state,
meaning that global output properties (e.g. the volume average and
interior temperatures, and the horizontally averaged heat flux) os-
cillate around values that are constant in time. Output properties
are estimated after the quasi-stationary phase has been reached, by
time-averaging of each property over several oscillations. The aver-
aging time-window is typically around 0.5–1.0 (in non-dimensional
time), corresponding to 105–106 iterations (note that the number of
iterations per time unit increases with the Rayleigh number). The
non-dimensional heat fluxes and Nusselt number are calculated
from the top and bottom temperature gradients at each time step
and averaged over the time-window, while the interior temperature
is obtained from the vertical average (in the well-mixed interior)
of the profile of horizontally averaged temperature at each output
frame (recorded with a non-dimensional time interval of 10−3, dif-
ferent from the iteration time step) and, again, averaged over the
time-window.
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Table 1. Simulations of stagnant lid convection with temperature-dependent thermal conductivity.

# Rasurf �η Rk T̃m k̃m 
̃conv Nu rms(ṽ) ṽsurf Raeff d̃lid T̃lid

1 31.62 105 1.0 0.891 1.0 3.144 3.144 148.1 3.0 × 10−1 9.06 × 105 0.257 0.809
2 10.00 106 1.0 0.913 1.0 3.437 3.437 257.3 1.4 × 10−1 2.99 × 106 0.245 0.842
3 3.16 107 1.0 0.923 1.0 3.887 3.887 458.5 3.9 × 10−2 9.18 × 106 0.218 0.848
4 1.00 108 1.0 0.933 1.0 4.445 4.445 875.2 8.6 × 10−3 2.91 × 107 0.196 0.871
5 10.00 106 1.143 0.909 0.885 3.173 3.395 240.9 1.0 × 10−1 3.23 × 106 0.249 0.836
6 31.62 105 1.333 0.885 0.772 2.659 3.080 128.1 4.9 × 10−1 1.09 × 106 0.263 0.787
7 10.00 106 1.333 0.907 0.768 2.937 3.403 224.7 1.3 × 10−1 3.62 × 106 0.249 0.826
8 3.16 107 1.333 0.922 0.765 3.336 3.865 407.6 2.9 × 10−2 1.18 × 107 0.226 0.857
9 1.00 108 1.333 0.931 0.763 3.816 4.421 751.0 7.9 × 10−3 3.69 × 107 0.201 0.874
10 10.00 106 1.5 0.908 0.688 2.749 3.389 213.1 9.9 × 10−2 4.10 × 106 0.253 0.833
11 10.00 106 2.0 0.903 0.525 2.331 3.362 184.4 1.2 × 10−1 5.01 × 106 0.256 0.816
12 14.86 107 2.0 0.919 0.521 3.867 5.578 908.6 6.8 × 10−2 7.68 × 107 0.165 0.894
13 10.00 106 2.5 0.901 0.425 2.069 3.387 161.9 9.6 × 10−2 6.01 × 106 0.258 0.817
14 31.62 105 3.0 0.878 0.363 1.723 3.137 86.6 3.8 × 10−1 2.15 × 106 0.270 0.766
15 10.00 106 3.0 0.900 0.357 1.816 3.305 152.6 1.2 × 10−1 7.02 × 106 0.264 0.806
16 16.00 106 3.0 0.899 0.357 2.066 3.761 210.4 1.6 × 10−1 1.11 × 107 0.232 0.803
17 32.00 106 3.0 0.899 0.357 2.514 4.576 328.7 2.0 × 10−1 2.22 × 107 0.193 0.817
18 100.00 106 3.0 0.901 0.357 3.374 6.142 667.4 3.6 × 10−1 7.11 × 107 0.150 0.874
19 3.16 107 3.0 0.916 0.353 2.026 3.687 279.7 2.1 × 10−2 2.31 × 107 0.242 0.832
20 1.00 108 3.0 0.927 0.350 2.279 4.149 518.7 5.5 × 10−3 7.44 × 107 0.221 0.870
21 10.00 106 4.0 0.898 0.271 1.539 3.331 133.6 8.4 × 10−2 9.06 × 106 0.265 0.801
22 4.74 107 4.0 0.914 0.267 1.876 4.060 321.9 2.5 × 10−2 4.45 × 107 0.226 0.855
23 31.62 105 6.0 0.865 0.188 1.128 3.148 61.4 6.5 × 10−1 3.54 × 106 0.274 0.737
24 10.00 106 6.0 0.895 0.183 1.173 3.272 111.5 9.0 × 10−2 1.29 × 107 0.271 0.780
25 3.16 107 6.0 0.912 0.180 1.293 3.607 207.0 1.5 × 10−2 4.29 × 107 0.254 0.830
26 1.00 108 6.0 0.925 0.178 1.438 4.013 382.8 4.0 × 10−3 1.43 × 108 0.235 0.887
27 10.00 106 8.0 0.894 0.138 0.973 3.274 97.0 8.3 × 10−2 1.68 × 107 0.274 0.781
28 10.00 106 10.0 0.894 0.111 0.837 3.270 90.7 5.5 × 10−2 2.08 × 107 0.275 0.771

All simulations are performed on 3-D-Cartesian grids of 256 × 256 × 128 points, with x and y aspect ratios both equal to 4. Calculations with constant
thermal conductivity (Rk = 1) are from Deschamps & Lin (2014). For consistency with other cases, the Rk = 1 simulations with �η = 105 and �η = 106,
originally calculated on grids with 128 × 128 × 64 points, were smoothed on grids with 256 × 256 × 128 points. Listed parameters are the surface Rayleigh
number, Rasurf, the top-to-bottom thermal viscosity ratio, �η, the top-to-bottom thermal conductivity ratio, Rk, the average non-dimensional temperature and
thermal conductivity of the well-mixed interior, T̃m and k̃m , respectively, the horizontally averaged non-dimensional convective heat flux, 
̃conv, the Nusselt
number, Nu, the root mean square velocity of the whole system, rms(ṽ), the average surface velocity, ṽsurf , the effective Rayleigh number, Raeff, calculated
with viscosity and thermal conductivity at temperature T̃m , the non-dimensional thickness of the stagnant lid, d̃lid, estimated following the method of Davaille
& Jaupart (1993), and the temperature at the base of this lid, T̃lid, deduced from eq. (21) with observed values of 
̃conv and d̃lid.

3 F L OW A N D T H E R M A L S T RU C T U R E S

All 28 experiments are well within the stagnant lid regime, as in-
dicated by the low values of the non-dimensional surface velocity,
ṽsurf , and mobility M, defined as the ratio between ṽsurf and the root
mean square (rms) velocity of the whole system. More precisely, in
all cases ṽsurf < 1 and M < 0.01, satisfying the criteria defined by
Stein et al. (2013) for the presence of a stagnant lid at the top of the
system. A more detailed analysis based on the horizontally averaged
profile of vertically advected heat (Davaille & Jaupart 1993) shows
that the thickness of the lid varies between 0.15 and 0.28 depending
on the case (Section 4.3 and Table 1).

Fig. 1 plots snapshots of temperature fields for different cases.
The flow structure is very similar to that obtained for stagnant lid
convection with constant thermal conductivity in 3-D-Cartesian and
spherical geometries (e.g. Deschamps & Lin 2014; Yao et al. 2014),
and organizes as network of plumes rising from the bottom ther-
mal boundary layer up to the base of the stagnant lid. A closer
examination indicates that, for given values of the surface Rayleigh
number, Rasurf, and viscosity contrast, �η, plumes get thinner as the
thermal conductivity ratio, Rk, increases (Fig. 2). This suggests that
convection in the well-mixed interior is more vigorous, in agree-
ment with the observation that the effective Rayleigh number, Raeff,
increases with Rk due to the decrease in the average conductivity
k̃ of this region (Table 1). Still for given values of Rasurf and �η,

the temperature of the well-mixed interior slightly decreases with
increasing Rk (Table 1). More importantly, because thermal con-
ductivity at the bottom of the system decreases, the basal heat flow
entering the system is reduced. This strongly impacts heat transfer,
outweighing the increase in the vigour of convection, and resulting
in a sharp decrease in the convective heat flux, 
̃conv. For instance,
taking �η = 106 and Rasurf = 10, 
̃conv drops by a factor 4 for Rk

in the range 1–10. In addition, because less energy is available to
entertain convection, the average flow velocity, measured with the
rms non-dimensional velocity, rms(ṽ), is reduced. Taking, again,
�η = 106 and Rasurf = 10, rms(ṽ) drops by a factor 2.5 for Rk in the
range 1–10. The horizontally averaged vertical component of the
velocity, ṽz , is also smaller, indicating that the reduction in rms(ṽ)
is not related to the thickening of the stagnant lid, and implying that
the amount of vertically advected heat, ṽz T̃ , is also substantially
reduced (Fig. 3).

Another key difference, compared to simulations with constant
thermal conductivity, is the thermal structure within the stagnant
lid. In cases with constant thermal conductivity, the top part of the
horizontally averaged profile of temperature is linear, as a result of
the presence of a stagnant and thermally conductive lid at the top
of the system. In cases with temperature-dependent conductivity,
by contrast, the thermal gradient decreases at the top of the system,
and the temperature profile is not linear (Fig. 3). A stagnant lid is
still present and heat is still transported by conduction, but due to
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(a) Rk = 1.0

(c) Rk = 3.0

(b) Rk = 4/3

(d) Rk = 10.0

Figure 1. Snapshots of the temperature field for cases with surface Rayleigh number Rasurf = 10, thermal viscosity ratio �η = 106 and different values of
the top-to-bottom thermal conductivity ratio, Rk. (a) Constant conductivity (case #2, Rk = 1). In other cases, thermal conductivity depends on temperature
following eq. (8) with (b) RT = 1/3 (case #7, Rk = 4/3), (c) RT = 2 (case #15, Rk = 3) and (d) RT = 9 (case #28, Rk = 10).

the top-to-bottom decrease in conductivity, satisfying the conserva-
tion energy (which, in Cartesian geometry, implies that the top and
bottom heat fluxes are equal) requires an adjustment of the thermal
gradient and temperature profile. Solving the heat conduction equa-
tion for a conductivity varying as 1/T (see the Appendix) indicates
that in Cartesian geometry, and in the absence of internal heating,
the conductive temperature profile through the whole domain is

T (z) = Tsurf exp

[
z

D
ln

(
Tbot

Tsurf

)]
, (14)

where Tbot is the bottom temperature, z the depth and D the thickness
of the domain. The non-dimensional form of eq. (14) writes

T̃ (z̃) = 1

RT
{exp [z̃ln (1 + RT )] − 1} , (15)

where RT = �T/Tsurf . A closer examination of the temperature
profiles shows that the top sections of these profiles fit well along a
non-dimensional version of eq. (14) in which D and Tbot are replaced
by the thickness of the stagnant lid and the temperature at its base,
respectively (Section 4.3 and dashed dark red curves in Fig. 3).

4 H E AT F LU X , T E M P E R AT U R E A N D
S TA G NA N T L I D

For planetary applications, in particular the modelling of thermal
evolution of icy bodies, it is convenient to define scaling laws, which

relate input parameters (e.g. Rayleigh number and viscosity ratio)
to observables (e.g. average temperature and surface heat flux). This
section derives scaling laws for fluids with temperature-dependent
(1/T) thermal conductivity.

4.1 Temperature of the well-mixed interior

Following previous studies (e.g. Davaille & Jaupart 1993; Moresi
& Solomatov 1995; Deschamps & Sotin 2000), I assumed that the
temperature jumps across the top and bottom TBLs are controlled
by a viscous temperature scale, �Tv, defined as

�Tv =
(

− 1

η

dη

dT

∣∣∣∣
T =Tm

)−1

. (16)

This approach implicitly assumes that the stagnant lid does not
belong to the top TBL. Estimating the temperature jump across
the top TBL therefore requires the knowledge of the temperature
at the limit between the stagnant lid and the top TBL. In practice,
this temperature is difficult to measure, and it is easier to relate the
viscous temperature scale to the temperature jump across the bottom
TBL given by (1 − T̃m). Table 1 indicates that for given values of
Rasurf and �η the interior temperature decreases only slightly with
increasing thermal conductivity ratio, Rk. These differences are
however significant, that is, they have the same trend and are larger
than the expected error bars (estimated from the time-variations of
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Figure 2. Residual non-dimensional temperature, δT̃plume = (T̃ − T̃plume) , relative to the plume threshold temperature defined as T̃plume = T̃z +
0.3(T̃max − T̃z), where T̃z and T̃max are the average and maximum temperatures at non-dimensional depth z̃. With this definition, plumes conduits appear
in orange and red. Cases represented are similar to those shown in plots (a) and (c) of Fig. 1, with surface Rayleigh number and viscosity ratio equal to
Rasurf = 10 and �η = 106 for the two cases, and thermal conductivity ratio, Rk, equal to 1 (case #2 in Table 1; left column) and 3 (case #15; right column).

the average temperature), and they should thus be accounted for
in a modified scaling law for T̃m . Here, I implemented the scaling
obtained by Deschamps & Lin (2014) for similar calculations with
constant thermal conductivity, by adding the variable Rk to describe
the influence of conductivity changes on temperature, leading to

T̃m = 1 − aT
Rk

dT

γ
, (17)

where aT and dT are two constants that can be inferred by inverting
the values of T̃m deduced from the simulations, and γ = �T/�Tv

is the inverse of the non-dimensional viscous temperature scale.
Note that in the case of FK approximation (eq. 3), γ is equal to
the logarithmic viscosity ratio, aη = ln(�η). Fixing the value of
aT to that obtained by Deschamps & Lin (2014), aT = 1.23 ±
0.05, inversion of interior temperatures listed in Table 1 leads to
dT = 0.1 ± 0.02, which, as illustrated in Fig. 4(a), fits the results of
the numerical simulations very well.

4.2 Heat flux

Thermal boundary layer analysis shows that the heat flux through
a TBL scales as a power law of the Rayleigh number and of the

temperature jump across the TBL (e.g. Moore & Weiss 1973). For
stagnant lid convection, this implies that heat flux scales as the vis-
cous temperature scale. The horizontally averaged non-dimensional
heat flux, 
̃conv, may then be written as a function of the Rayleigh
number and of the parameter γ , which controls the viscosity varia-
tions. Because heat flux is proportional to thermal conductivity, the
amount of heat entering the system is partially controlled by the bot-
tom thermal conductivity, and it is reasonable to assume that 
̃conv

also scales as this conductivity, that is, as the inverse of the top-to-
bottom conductivity ratio, Rk. Following, again, Deschamps & Lin
(2014), and adding the parameter Rk to account for top-to-bottom
variations in thermal conductivity, 
̃conv may be written


̃conv = a
Raeff

b

γ c Rk
d , (18)

where Raeff is the effective Rayleigh number (eq. 11), and a, b, c and
d are constants that can be deduced by inversion of observed 
̃conv.
Fixing the values of a, b and c to those obtained by Deschamps
& Lin (2014), that is, a = 1.46 ± 0.06, b = 0.270 ± 0.004 and
c = 1.21 ± 0.03, inversion of the values of 
̃conv listed in Table 1
using a nonlinear generalized inverse method (Tarantola & Valette
1982) leads to d = 0.82 ± 0.01. Fig. 4(b) shows that within error
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Figure 3. Horizontally averaged profiles of the vertically advected heat flow (left plot in each panel) and temperature (right plot) for cases with surface
Rayleigh number Rasurf = 10, viscosity ratio �η = 106 and different values of the top-to-bottom thermal conductivity ratio, Rk. (a) Rk = 1 (constant thermal
conductivity, case #2 in Table 1). (b) Rk = 4/3 (case #7). (c) Rk = 3 (case #15). (d) Rk = 10 (case #28). The grey areas denote the vertical extension of the
stagnant lid. The dashed lines in plots of advected heat flow show the tangent to the point of inflexion, whose intersection with the origin axis defines the bottom
of the lid. The dashed dark-red curves in temperature plots are determined assuming a conductive temperature profile in the stagnant lid and are calculated
following either T̃ (z̃) = T̃lid z/d̃lid (panel a) or eq. (19) (panels b–d) with values of 
̃conv and d̃lid listed in Table 1, and values of T̃lid. estimated from eq. (21).

bars, eq. (18) together with these parameters values fit the values of

̃conv obtained by simulations very well.

4.3 Thickness of the stagnant lid

Following a method developed by Davaille & Jaupart (1993), I in-
ferred the thickness of the stagnant lid from the intersection between
the tangent at the point of inflexion of the horizontally averaged pro-
file of vertically advected heat, ṽz T̃ , and the origin axis (ṽz T̃ = 0).
Left plots in Fig. 3 illustrate this method, and the obtained thick-
nesses of the stagnant lid, d̃lid, are reported in Table 1.

Because in the stagnant lid heat is transported by conduction, the
horizontally averaged profile of temperature in this region should be
described by eq. (14), provided that D and Tbot are replaced by the
thickness of the conductive lid, dlid, and the temperature at its base,
Tlid. With these changes, the non-dimensional temperature profile
writes

T̃ (z̃) = 1

RT

{
exp

[
z̃

d̃lid

ln
(
1 + RTT̃lid

)] − 1

}
. (19)

Eq. (14) is of course not valid for cases with constant con-
ductivity and should be replaced by a linear increase with depth,
T (z) = Tsurf + �T z/D, whose non-dimensional form applied to
the stagnant lid is T̃ (z̃) = T̃lid z̃/d̃lid. The horizontally averaged non-
dimensional heat flux is obtained by deriving eq. (19) with respect to

depth and multiplying this derivative by the non-dimensional con-
ductivity. In Cartesian geometry, changes in the thermal gradient
are compensated by changes in conductivity, such that the non-
dimensional heat flux is constant with depth and equal to 
̃conv. An
expression of this heat flux may be obtained from the thermal gradi-
ent at the surface (z̃ = 0), where the non-dimensional conductivity
is equal to 1. One then gets


̃conv = ln
(
1 + RT T̃lid

)
RT d̃lid

. (20)

This further provides a definition of T̃lid based on the measured
values of 
̃conv and d̃lid,

T̃lid = exp
(
RT 
̃convd̃lid

) − 1

RT
. (21)

Dashed red curves in Fig. 3 plot the conductive temperature
profiles calculated from eq. (19) together with the values of T̃lid

obtained from eq. (21) and the values of 
̃conv and d̃lid listed in
Table 1. These profiles are in very good agreement with the observed
temperature profiles throughout the stagnant lid, except at its base,
where the transition to the top thermal boundary layer occurs. This
agreement validates a posteriori the method used to estimate the
stagnant lid thickness.

Eq. (20) can further be used to build a scaling law for the thickness
of the stagnant lid. Assuming that the fluid layer beneath the lid is
nearly isoviscous, and considering that the top TBL is only the
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Figure 4. Comparison between observed and modelled output properties. (a) Temperature of the well-mixed interior, T̃m . Observed values are listed in Table 1,
and modelled values are given by eq. (17) with aT = 1.23, and dT = 0.1. Error bars in observed and modelled T̃m are estimated from the time-variations of T̃m

and from error bars in aT and dT, respectively. (b) Non-dimensional horizontally averaged heat flux, 
̃conv. Observed values are listed in Table 1, and modelled
values are calculated by eq. (18) with a = 1.46, b = 0.27, c = 1.21 and d = 0.82. Error bars in observed and modelled 
̃conv are estimated from time variations
of 
̃conv and from uncertainties on parameters of eq. (18), respectively. Note that because they are small (∼1 per cent of observed values), error bars on the
observed 
̃conv do not appear in the plot. (c) Stagnant lid thickness, d̃lid. Observed values are measured from the profile of vertically advected heat and are
listed in Table 1, and modelled values are calculated from eq. (23) with T̃m and 
̃conv given by eqs (17) and (18), respectively. (d) Temperature at the base
of the stagnant lid, T̃lid. Observed values are deduced from eq. (19) together with values of 
̃conv and d̃lid listed in Table 1, and modelled values are obtained
from eq. (22) with T̃m given, again, by eq. (17).

bottom part of the top conductive layer (i.e. excluding the stagnant
lid), the temperature jump across the top TBL should be equal to
that in the bottom TBL, given by (1 − T̃m). Following this approach,
the value of T̃lid is

T̃lid = 2T̃m − 1. (22)

Combining eqs (20) and (22), the thickness of the stagnant lid
writes

d̃ lid = ln
[
1 + RT

(
2T̃m − 1

)]
RT
̃conv

, (23)

where T̃m and 
̃conv can be obtained using eqs (17) and (18).
Again, eq. (23) is not valid for a system with constant thermal con-
ductivity. In this later case, d̃lid is given by (2T̃m − 1)/
̃conv. Despite
large error bars, eq. (23) provides a very good description of the stag-
nant lid thickness obtained from profiles of advected heat (Fig. 4c).
The agreement between the temperature at the base of the stagnant
lid modelled with eq. (22) and those estimated from eq. (21) with
observed 
̃conv and d̃lid is less good but still reasonable (Fig. 4d),

indicating that the system beneath the stagnant lid is close to, but
not perfectly isoviscous.

5 I M P L I C AT I O N S F O R T H E R M A L
E V O LU T I O N S O F I C Y B O D I E S

The results discussed in Sections 3 and 4 have important implica-
tions on the thermal evolutions of large solar System icy bodies,
which I underline in this section. The purpose here is not to provide
detailed descriptions of these evolutions, as several important com-
plexities are not included in my modelling, but instead to assess
quantitatively the role played by temperature-dependent thermal
conductivity.

A property shared by many, if not all, large icy bodies is the
presence of a subsurface liquid ocean beneath an outer shell of
low pressure water ice (phase Ih; e.g. Hussman et al. 2007). This
property has been hypothesized in the early 1970s (Lewis 1971)
as a consequence of the phase diagram of water ice. Since then,
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spacecraft missions brought observational evidences for the exis-
tence of such oceans in Europa (Khurana et al. 1998), Ganymede
(Kivelson et al. 2002) and Titan (Lorenz et al. 2008). The presence
of subsurface oceans may extend to smaller moons, in particularly
Enceladus (Thomas et al. 2016), and to dwarf planets, including
Ceres (McCord & Sotin 2005) and Pluto (Nimmo et al. 2016). In
Titan and Ganymede, high pressure ice (phases III, V and VI) layers
may surround the rocky core in which case the subsurface ocean
would be inserted in between ice Ih and high pressure ice shells.
The survival of subsurface oceans and their thickness is controlled
by the thermal history of each body. Complete crystallization may
be prevented by several factors, most importantly tidal dissipation
within the ice layers and/or the subsurface ocean and the silicate
core (e.g. Tobie et al. 2003, 2005; Choblet et al. 2017), the presence
of antifreeze compounds in the initial ocean (e.g. Grasset & Sotin
1996; Spohn & Schubert 2003), which lowers the temperature at
the bottom of the outer ice shells and reduce indirectly the vigour
of convection within this shell (Deschamps & Sotin 2001), and the
presence of insulating layers either at the top of the ice Ih shell (To-
bie et al. 2006) or at the interface between the outer ice shell and the
subsurface ocean (Kamata et al. 2019). Because it modifies the heat
transfer through outer ice shells and the thickness of the stagnant
lid, temperature-dependent thermal conductivity may further affect
the evolution of icy bodies.

5.1 Modelling

For applications to icy bodies, I assumed that the viscosity of ice Ih
is described by

η (T ) = ηref exp

[
E

RTref

(
Tref

T
− 1

)]
, (24)

where E is the activation energy, R the ideal gas constant and ηref the
reference viscosity at temperature Tref. The reference viscosity is
not well constrained. Close to the melting point, that is, for Tref equal
to the bottom temperature, Tbot, a range of values based on polar ice
sheet creep is 1013–1015 Pa s (Montagnat & Duval 2000). Here, I
fixed ηref to 1014 Pa s to compare shells properties (Section 5.2), and
I considered this parameter as a free parameter to compare thermal
evolutions (Section 5.3). Activation energy is better constrained,
with values in the range 49–60 kJ mol-1 depending on the creep
regime (Durham et al. 2010), and around 60 kJ mol-1 for atomic
diffusion (Weertman 1983). Here, I used E = 60 kJ mol-1 in all
calculations. Again, ice Ih rheology under icy moons conditions is
likely more complex than the diffusion creep mechanism assumed
in eq. (24) (see discussion in Section 6), but it is reasonable to think
that the impact of temperature-dependent conductivity on ice shell
dynamics follows a similar trend for different rheologies.

Following eqs (17) and (24), the viscous temperature scale is

�Tv = RTm
2

E
, (25)

such that rescalling eq. (17) leads to a degree 2 polynomial of the
temperature Tm, whose positive solution is

Tm = E

2aT Rk
dT R

(√
1 + 4TbotaT Rk

dT R/E − 1

)
, (26)

where Rk = Tbot/Tsurf (eq. 10), aT = 1.23 and dT = 0.1 (Section
4.1). In the case of constant thermal conductivity, Rk is fixed to 1
independently of the value of the bottom temperature, Tbot. This
bottom temperature is given either by the liquidus of water or, if im-
purities are present, by the liquidus of the water-impurities mixture.

Impurities act as an antifreeze and may include ammonia (NH3),
methanol (CH3OH), and salts (e.g. magnesium sulphate, MgSO4).
Here, I more specifically considered ammonia, which has been ob-
served in the water plumes of Enceladus (Waite et al. 2009). In the
case of Europa, magnesium sulphate may further be an important
compound of the ocean (Vance et al. 2018). Qualitatively, however,
the impact on the evolution of the icy bodies is similar whatever the
nature of the impurities. For instance, Vilella et al. (2020) pointed
out that the impact of 30 per cent MgSO4 on the liquidus is equiva-
lent to that of 3.5 per cent NH3. On another hand, it should be noted
that different compositions may impact physical properties of the
ocean, in particular its density. Adding 30 per cent MgSO4 would
increase density by about 150 kg m−3, while 3.5 per cent NH3 would
reduce it. Details on the calculation of the water–ammonia system
liquidus can be found in Deschamps & Sotin (2001). Importantly,
up to the eutectic composition (equal to 32.2 vol per cent in the
case of NH3), only water crystalizes and impurities (here ammo-
nia) are left in the subsurface ocean, such that their concentrations
increase and their impacts are more pronounced as the ice shell
thickens.

Heat fluxes are obtained by rescaling the heat flux scaling law
(eq. 18) with the characteristic heat flux, 
carac = kref�T/D, where
kref is the characteristic thermal conductivity. Note that because the
effective Rayleigh number, Raeff (eq. 11), depends on thermal con-
ductivity (since thermal diffusivity is given by κ = k/ρCP), heat
flux and the quantities derived from it further depend on the choice
of kref. For temperature-dependent conductivity, numerical simula-
tions (Section 3) implicitly assume that the kref used in 
carac is equal
to the surface conductivity, ksurf, while Raeff is calculated with the
conductivity at temperature Tm, as implied by eq. (11). By contrast,
for constant conductivity kref is not a priori imposed by numerical
simulations, and is not only used to define 
carac, but also Rasurf

and thus Raeff, since RT = 1. To model the thermal evolutions of
icy moons, most studies (e.g. Grasset & Sotin 1996; Hussman et al.
2002; Tobie et al. 2003; Mitri & Showman 2005; Běhounková et al.
2010) used values in the range 2.0–3.0 W m−1 K−1, corresponding
to the conductivity at the temperature of the well mixed interior or
at the bottom of the shell. These values are smaller than the surface
conductivity by a factor 2–5, depending on the surface tempera-
ture. For comparison with these studies, I fixed kref to 2.6 W m−1

K−1 (Grasset & Sotin 1996; Deschamps & Lin 2014) in constant
conductivity calculations, corresponding to the conductivity at a
temperature of ∼ 220 K (Andersson & Suga 1994). To illustrate the
potential effect of temperature-dependent conductivity, I also did
additional calculations with kref = ksurf (Table 2). Accounting for
the shells curvature, measured with the ratio between the inner and
outer radii, f, the basal and surface heat fluxes write


surf = f 
carac
̃conv (27)

and


bot = 
carac
̃conv/ f. (28)

Strictly speaking, eqs (17) and (18), which are used to estimate
Tm (eq. 26) and 
surf (eq. 27), are valid in 3-D-Cartesian geometry
and should be modified for spherical systems, as ice shell curvature
may slightly alter the interior temperature and heat fluxes (Yao
et al. 2014). In the case of bodies like Europa, the ratio between
the inner and outer radii of the shell, f, is large, around 0.90, and
the impact of curvature should be limited. For thicker shells, as
expected in the case of Pluto, Titan, or Ganymede, with f in the
range 0.7–0.8, curvature may have a more significant impact. In the
case of stagnant lid convection with constant conductivity, Yao et al.
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Table 2. Europa, Pluto and materials properties.

Parameter Symbol Unit Value/expression Europa Pluto

Ice Ih properties
Density ρI kg m−3 920
Thermal expansion αI K−1 1.56 × 10−4

Thermal conductivity k W m−1

K−1
566.8/T

Heat capacity Cp J kg−1

K−1
7.037T + 185

Thermal diffusivity κ I m2 s−1 k/ρICp

Latent heat of fusion LI kJ kg−1 284
Reference bulk viscosity ηref Pa s 1012–1015

Activation energy E kJ mol−1 60
Liquid water properties
Density ρI kg m−3 1000
Thermal expansion αw K−1 3.0 × 10−4

Heat capacity Cw J kg−1

K−1
4180

Silicate core properties
Density ρc kg m−3 3300
Thermal diffusivity κc m2 s−1 10−6

Europa/Pluto properties
Total radius R Km 1561 1188
Core radius rc Km 1400 870
Gravity acceleration g m s−2 1.31 0.62
Surface temperature Tsurf K 100 40
Surface thermal conductivity ksurf W m−1

K−1
5.7 14.2

All data for ice Ih and liquid water properties are similar to that used by Kirk and Stevenson (1987, see references
therein), except for thermal conductivity, which is from Andersson and Suga (1994), bulk viscosity, which is a free
parameter with possible range of values extended from Montagnat & Duval (2000) estimates, and the activation
energy, which is taken from the intermediate regime of Durham et al. (2010).

(2014) showed that dividing the second term of the right-hand side
of eq. (17) by f1.5 gives good fits to the non-dimensional interior
temperature provided that f is large enough, typically ≥ 0.7. Yao
et al. (2014) further suggested that the top heat flux is well described
by multiplying eq. (18) (with Rk = 1) by f0.22. A reappraisal of these
simulations however indicates that for f ≥ 0.7 it is not needed to
correct heat fluxes for the effect of curvature, that is, the top heat flux
is well described by eq. (18). Additional calculations in full spherical
geometry are however needed to verify that these geometrical effects
are valid for stagnant lid convection with temperature-dependent
thermal conductivity.

Finally, the thickness of the conductive lid is either given by

dlid = f kref (2Tm − Tbot − Tsurf )


surf
. (29)

for constant conductivity, with 
surf being given by eq. (27), or
rescaled from eq. (23) for temperature-dependent conductivity, lead-
ing to

dlid = f ksurf Tsurf


surf
ln

(
2Tm − Tbot

Tsurf

)
, (30)

where 
surf is, again, given by eq. (27).
In the following subsections, I apply this model to assess the

influence of temperature-dependent thermal conductivity on the
properties and evolutions of Europa and Pluto ice shells. The physi-
cal properties of these two bodies are listed in Table 2 together with
the properties of ice Ih.

5.2 Ice shell properties

For an ice shell of given thickness, the bottom temperature, Tbot, de-
pends only the initial composition of the ocean and on the physical
properties of the body. For reference, Fig. 5 shows Tbot as a function
of the ice shell thickness for several initial compositions (pure wa-
ter or initial fraction of NH3, x init

NH3) of the ocean. By definition, the
top-to-bottom thermal conductivity ratio, Rk, is proportional to Tbot

(eq. 10) and can thus be deduced from this temperature. Because the
liquidus temperature of water decreases with pressure, Rk dimin-
ishes as the ice layer thickens. The top-to-bottom drop in thermal
conductivity is further reduced by the presence of impurities, which
also lowers Tbot, and this effect is strongly amplified as the ice shell
thickens (i.e. as the concentration of impurities in the subsurface
ocean increases). For instance, at the conditions of Pluto, conduc-
tivity within a 200 km thick ice shell drops by a factor 6.6 for a pure
water ocean, and 6.3 for x init

NH3 = 3.0 per cent. For a 300 km thick ice
shell, and assuming a pure water ocean, conductivity still decreases
by a factor 6.4, while if ammonia is present the eutectic composition
is reached and conductivity drops by only a factor 4.5. Finally, it is
worth noting that because the surface temperature is smaller at Pluto
than at Europa, conductivity changes and their potential effects are
stronger at Pluto.

Fig. 6 plots the bottom heat flux, 
bot, and stagnant lid thickness,
dlid, as a function of the ice shell thickness, D, at the conditions of
Pluto and Europa, and assuming a pure water composition and a
reference viscosity of 1014 Pa s, corresponding to the median value
estimated from Montagnat & Duval (2000). If too thin, the ice layer
is not animated by convection, and heat is transported by conduc-
tion. Temperature-dependent conductivity slightly delays the onset
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Figure 5. Bottom temperature (top row) and abundance of ammonia (NH3, bottom row) as a function of the thickness of ice Ih layer and for different input
compositions (colour code). Two cases are considered, corresponding to conditions at Pluto (left column) and Europa (right column). Material and physical
properties of ice Ih, Pluto and Europa are listed in Table 2. The fraction of NH3 and the bottom temperature reaches maximum and minimum values, respectively,
for the eutectic composition, equal to a fraction of NH3 equal to 32.2 per cent. The top-to-bottom thermal conductivity ratio, Rk, is proportional to the bottom
temperature (eq. 10), and its value is indicated on the right scale of top row plots.

of convection within the ice shell, that is, convection starts operat-
ing for slightly thicker shells. The bottom heat flux, 
bot, obtained
for temperature-dependent conductivity is close to that predicted by
constant conductivity with a characteristic conductivity, kref, fixed to
2.6 W m−1 K−1. By contrast, compared to constant conductivity cal-
culations with kref = ksurf, temperature-dependent thermal conduc-
tivity results in a sharp reduction of 
bot. This drop increases with
decreasing surface temperature, and is therefore more pronounced
at Pluto, where 
bot is reduced by about a factor 5 compared to a
shell with constant thermal conductivity, than at Europa, where it
is reduced by only a factor 2.5. The thickness of the stagnant lid is
strongly impacted by temperature-dependent conductivity, the exact
effect depending on surface temperature. For Europa (Tsurf = 100 K),
the lid obtained with temperature-dependent conductivity is thicker
than that calculated for constant conductivity with kref = 2.6 W
m−1 K−1 by a factor 1.4, in good agreement with the estimates of
Tobie et al. (2003), and for Pluto (Tsurf = 40 K), it is thicker by a
factor 1.8. Additional calculations show that for Tsurf = 60 K and
the physical parameters of Europa, the ratio between the values of
dlid calculated with temperature-dependent and constant conduc-
tivities is about 1.6, somewhat smaller than the ratio estimated by
Tobie et al. (2003). The stagnant lid predicted by constant con-
ductivity calculations thickens as kref increases, but remains thinner
than that obtained with temperature-dependent conductivity even
for kref = ksurf. Finally, and as expected from numerical experiments
(Table 1), the temperature of the well-mixed interior is not signifi-
cantly affected by temperature-dependent conductivity, and is only
reduced by 1–3 K (plots c and f in Fig. 6).

Adding impurities in the ocean (here, ammonia) reduces the melt-
ing temperature at the bottom of the ice shell, which has two main
consequences. First, it delays the crystallization of the outer ice
layer; and second, it increases its bulk viscosity, reducing the vigour

of convection and the efficiency of heat transfer. This, in turn, de-
lays the crystallization of the ice shell. Importantly, as the ice layer
thickens the fraction of ammonia in the subsurface ocean increases,
and its impact is enhanced. As a result, variations of 
bot and dlid

as a function of D are more complex than in the case of a pure
water ocean (Fig. 7). In particular, 
bot and dlid vary more sharply
as the ice layer thickens. For ice layers thicker than about 220 km
in the case of Pluto and 120 km in the case of Europa, a small
increment in the ice layer thickness results in a large increase in
the stagnant lid thickness. Finally, if the ice shell is too thick, con-
vection stops, and heat is transported, again, by conduction. The
impact of temperature-dependent conductivity is, however, globally
unchanged, that is, heat flux is either similar or strongly reduced,
depending on whether kref is equal to 2.6 W m−1 K−1 or ksurf, and
the stagnant lid obtained with temperature-dependent conductiv-
ity is, again, thicker than that predicted by constant conductivity,
by a about a factor 1.6 and 1.2 in the cases of Pluto and Europa,
respectively, and for kref = 2.6 W m−1 K−1.

5.3 Thermal evolution

The present day radial structure of icy bodies may be deduced
from appropriate thermal evolution modelling. Here, I followed the
approach of Grasset & Sotin (1996), which calculates the evolution
of ice layers thicknesses based on an energy balance accounting for
the production of heat in the silicate core, the cooling of the ocean
and the crystallization of ice shells. Tidal heating, by contrast, is
not included, but is certainly an important ingredient, at least in the
case of Europa. Pluto and Europa are not large enough to host high
pressure ices, such that the inner radius of the outer ice Ih shell, rbot,
can be calculated by solving the energy conservation equation at
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Figure 6. Bottom convective heat flux (top row, plain curves), stagnant lid thickness (middle row, plain curves) and interior temperature (bottom row) as a
function of the ice shell thickness, D, and for conditions at Pluto (left column) and Europa (right column). Dashed lines in plots (a) and (d) correspond to
the conductive heat flux. Convective heat flux and stagnant lid thickness are drawn only for values of D at which convection operates. If convection does not
operate, the heat flux is equal to the conductive heat flux, the entire layer is conductive, and the interior temperature is much smaller, around 156 K (for constant
conductivity) and 104 K (for temperature-dependent conductivity) in the case of Pluto, and 186 and 165 K in the case of Europa. For constant conductivity, two
values of the characteristic conductivity are considered, ksurf (Table 2) and 2.6 W m−1 K−1. This does not affect the interior temperature. Ocean composition
is pure water. Calculations are made with the values of physical parameters listed in Table 2 and a reference viscosity ηref equal to 1014 Pa s. Note the different
scales for Pluto and Europa.

the boundary between this shell and the subsurface ocean. Energy
conservation at this boundary then writes

−drbot

dt

[
ρwCw

(
−∂Tad

∂r
+ ∂Tbot

∂r

) (
rbot

3 − rc
3
)

3
− ρI L Irbot

2

]

= rbot
2
bot − rc

2
c (31)

where t is time, Tbot and 
bot are the temperature and heat flux at
the bottom of the ice layer, given by the liquidus of the ocean and
by eq. (28), respectively, rc is the core radius, 
c the heat flux at
the top of the core, ρw and Cw the liquid water density and heat
capacity, ρI and LI the ice Ih density and latent heat of fusion, and
Tad, the adiabatic temperature in the ocean, given by

Tad (r ) = Tbot (rbot)

[
1 − αw

ρwCw
ρIg (r − rbot)

]
, (32)

with αw being the thermal expansion of liquid water. Within the
silicate core, heat is assumed to be produced by the decay of four
radiogenic elements, 40 K, 232Th, 235U and 238U. The heat flux at

the top of the core is then calculated following Kirk and Stevenson
(1987) by


c = 2

√
κct

π
ρc

4∑
i=1

C0,i Hi
[1 − exp (−λi t)]

λi t
, (33)

where κc and ρc are the thermal diffusivity and density of the silicate
core, and the subscript i refers to the four radiogenic elements, whose
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m−1 K−1. Ocean composition is a mixture of water and ammonia (NH3), with initial volume fraction of NH3 equal to 3.0 per cent. Calculations are made with
the values of physical parameters listed in Table 2 and a reference viscosity ηref equal to 1014 Pa s. Note the different scales for Pluto and Europa.

Table 3. Properties of radioelements.

Element Decay constant, λ Heat release, H
Initial abundance,

C0

(yr−1) (W kg−1) (ppb)

40K 5.4279 × 10−10 2.917 × 10−5 738.0
232Th 4.9405 × 10−11 2.638 × 10−5 38.7
235U 9.8485 × 10−10 5.687 × 10−4 5.4
238U 1.5514 × 10−10 9.465 × 10−5 19.9

properties are listed in Table 3. I solved eq. (31) up to t = 4.55 Gyr
using an adaptative stepsize control Runge–Kutta method (Press
et al. 1992), and assuming an initial ice Ih thickness equal to 10 km
together with the material and physical properties listed in Table 2.
Because the reference viscosity ηref is a sensitive parameter but is
poorly constrained, I performed calculations for values of ηref in
the range 1012–1015 Pa s, corresponding to an extended range of
the values estimated by Montagnat & Duval (2000). Figs 8 and 9
show the final (t = 4.55 Gyr) bottom radius, interior temperature
and stagnant lid thickness as a function of the reference viscosity,
ηref, and for two possible initial compositions, while Fig. 10 plots
the final bottom temperature and concentration in NH3. Fig. 11
illustrates the influence of the initial composition of the ocean on the
ice shell thickness, interior temperature and stagnant lid thickness
for ηref = 1014 Pa s.

For a pure water ocean, and assuming a temperature-dependent
conductivity, a subsurface ocean is still present after 4.55 Gyr of
evolution if ηref exceeds 1014 Pa s (left columns in Figs 8 and 9).
For constant conductivity, the evolution of the ice layer depends
on the assumed value of the characteristic conductivity, kref. If this
parameter is fixed to the surface conductivity, ksurf, crystallization

is completed whatever ηref, and for both Pluto and Europa. By
contrast, for kref = 2.6 W m−1 K−1 an ocean is still present for
ηref ≥ 6.0 × 1013 Pa s in the case of Pluto, and ηref ≥ 1014 Pa s
in the case of Europa. Given the value of ηref, the ice layer is
thicker than that obtained with a temperature-dependent conduc-
tivity in case of Pluto, and slightly thinner in the case of Europa.
Still for kref = 2.6 W m−1 K−1, and as expected, the stagnant lid
predicted by constant conductivity is thinner than that obtained
with temperature-dependent conductivity. If kref is fixed to ksurf, the
stagnant lid is, again, slightly thinner. For larger values of ηref, the
ice shell is thicker than that obtained with temperature-dependent
conductivity, leading to thicker lids. The interior temperature cal-
culated with constant conductivity does not depend on the value
of the conductivity. As long as the ice shell thicknesses are sim-
ilar (e.g. in the case of Pluto, for ηref ≤ 5.0 × 1014 Pa s), inte-
rior temperature is therefore unchanged whatever kref, and its value
is slightly larger than that obtained with temperature-dependent
conductivity.

The presence of ammonia in the subsurface ocean prevents full
crystallization for all the tested values of ηref (right columns in
Figs 8 and 9; middle and bottom rows in Fig. 10). The ice shell
thicknesses, bottom and interior temperatures, and abundances of
NH3 at t = 4.55 Gyr obtained for temperature-dependent conduc-
tivity are comparable to those predicted by constant conductivity
with kref = 2.6 W m−1 K−1. Remarkably, in the case of Europa,
the ice shell thicknesses predicted by these two sets of calcula-
tions are very close to each other whatever the reference viscosity
(Figs 8 and 9) and initial ocean composition (Fig. 11). Setting kref to
values smaller (larger) than 2.6 W m−1 K−1 underestimates (over-
estimates) the ice shell thickness. For Pluto, a good agreement with
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Figure 8. Pluto Ice Ih shell properties at t = 4.55 Gyr as a function of the reference viscosity (ηref) and for pure water (left column) or an initial mix of water
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respectively. Plain curves indicate heat transfer by convection, and dashed curves heat transfer by conduction. Values of the physical properties used for
calculations are listed in Table 2. For constant conductivity, two values of the characteristic conductivity are considered, ksurf and 2.6 W m−1 K−1.

the ice shell thickness predicted by temperature-dependent con-
ductivity is obtained for kref = 3.0 W m−1 K−1. As expected, the
thickness of the stagnant lid obtained with temperature-dependent
conductivity, is thicker than that predicted by constant conductivity
with kref = 2.6 W m−1 K−1. Note that, in the case of Pluto, part of
the difference is simply related to the fact that the ice shell thick-
ness obtained with temperature-dependent conductivity is slightly
larger, implying a thicker stagnant lid (Figs 7b and d). Constant
conductivity with kref = ksurf leads to systems in which convection
is weak and close to shut-off. In the case of Pluto, convection even
stops for ηref ≥ 2.0 × 1014 Pa s and x init

NH3 = 3.0 per cent (Fig. 10),
or for ηref = 1014 Pa s and x init

NH3 ≥ 3.5 per cent (Fig. 11). The ice
shell is systematically thicker (i.e. the subsurface ocean is thin-
ner) than if temperature-dependent conductivity is accounted for,
around 250 km for Pluto and 90–140 km for Europa, depending
on ηref. This implies high concentration in NH3 and low bottom
and interior temperatures (Fig. 10), increasing in turn the shell vis-
cosity and the top-to-bottom viscosity ratio, and leading, in fine,
to very thick stagnant lids. Finally, it is interesting to note that,
for cases with oceans composed of a water-ammonia mixture, the
interior temperature depends very few on the initial concentration

in ammonia (Fig. 11). The reduction in the liquidus temperature
triggered by the increase in the fraction of ammonia is compen-
sated by the thinning of the ice shell, which is also related to
the enrichment in ammonia. For similar reasons, the thickness of
the stagnant lid is only slightly impacted by the initial fraction of
ammonia.

6 C O N C LU D I N G D I S C U S S I O N

The numerical simulations performed in this study indicate that
variations of thermal conductivity with temperature have a strong
impact on heat transfer by thermal convection. In systems composed
of material with conductivity varying as the inverse of temperature
(k ∝ 1/T ), like ice Ih, and animated by stagnant lid convection, heat
transfer is reduced by a factor Rk

0.82, where Rk is the top-to-bottom
conductivity ratio (eq. 8). In addition, the stagnant lid that develops
at the top of the system thickens. This, in turn, alters heat transfer
through the outer ice layers of solar System icy bodies, and the
thermal evolution of these objects. For a given value of the bottom
temperature, and because Rk is proportional to the ratio between
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the surface and bottom temperatures, the impact of temperature-
dependent conductivity intensifies with decreasing surface temper-
ature. Compared to constant thermal conductivity calculations with
conductivity fixed to its surface value, heat transfer is reduced by
about a factor 5 in the case of Pluto (Tsurf = 40 K), and by a factor 2.5
for Europa, where the surface temperature is larger (Tsurf = 100 K).
Interestingly, calculations with constant conductivity predict heat
fluxes comparable to those obtained with temperature-dependent
conductivity, provided that the thermal conductivity is fixed to its
value in the well-mixed interior or at the bottom of the shell, that is,
around 2.0–3.0 W m−1 K−1. Thermal evolutions reconstructed in
studies using such values (e.g. Grasset & Sotin 1996; Hussman et al.
2002; Tobie et al. 2003; Mitri & Showman 2005; Běhounková et al.
2010) should thus be mostly unaffected by the fact they do not ac-
count for the temperature dependence of thermal conductivity. How-
ever, strong differences in stagnant lid thickness remain, the stagnant
lid predicted by temperature-dependent conductivity being thicker
than that obtained with constant conductivity, even if conductivity
is fixed to its surface value. Therefore, a detailed evolution of the icy
shells structure still requires to account for temperature-dependent
conductivity.

The viscosity laws used in numerical simulations and their ap-
plications to icy bodies (eqs 5 and 24) implicitly assume that the
deformation of ice Ih follows a diffusion creep mechanism. Under
icy moons conditions, ice Ih rheology is likely more complex and
would be better described by a composite viscosity taking into ac-
count, in particular, the influence of grain size (Harel et al. 2020).
Note, however, that polar ice sheet creep suggests a Newtonian be-
haviour for low (ε̇ ≤ 10−11s−1) strain rates (Montagnat & Duval
2000). Compared to the FK approximation, the scaling laws built
for a composite rheology predict smaller heat fluxes and thicker
stagnant lids (Harel et al. 2020). Because temperature-dependent
thermal conductivity acts on the transported heat flux but not on
rheology, it is reasonable to assume that the effects observed with
FK rheology are also valid with more complex rheologies, at least
in their trend, that is, a reduction of the heat flux and a thickening
of the stagnant lid. If Harel et al. (2020) conclusions still hold for
temperature-dependent conductivity, the calculations of Section 5,
quantifying the impact of temperature-dependent conductivity on
heat flux and stagnant lid thickness, may be considered as upper
and lower bounds, respectively, that is, efficiency of heat transfer
would be further reduced and the crystallization of the subsurface
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ocean further delayed with a composite rheology. Detailed calcula-
tions should however be conducted to quantify more precisely the
combined effects of complex rheology and temperature-dependent
thermal conductivity.

As demonstrated in many studies (e.g. Grasset & Sotin 1996;
Deschamps & Sotin 2001; Spohn & Schubert 2003), the presence
of antifreeze compounds delays or stops the crystallization of the
ice layer. As long as the eutectic composition is not reached, only
water ice crystallizes. Once this composition is reached impurities
crystallize together with water. This would result in a compositional
change at the bottom of the shell, which may, in turn, alter the ther-
mal conductivity at the bottom of the ice layer, further impacting the
ocean crystallization. For instance, experimental data on methanol
show that the presence of 10 wt per cent methanol reduces the ther-
mal conductivity of ice by a factor 2 (Hsieh & Deschamps 2015).
Similarly, the conductivity of methane clathrates is lower than that
of water ice by about a factor 5–10, and the presence of a thin
clathrates layer at the top or at the bottom of the ice shell may act
as an efficient insulator (Tobie et al. 2006; Kamata et al. 2019).

Another important factor limiting the crystallization of subsur-
face oceans is a regular production of heat, such as that provided

by tidal dissipation within icy bodies (e.g. Tobie et al. 2003, 2005;
Roberts & Nimmo 2008). Tidal dissipation within the ocean or
within the core increases the heat flux available at the bottom of
the ice shell. Tidal dissipation within the ice shell itself reduces the
plumes strength and the convective heat flux at the bottom of the
shell (e.g. Travis & Olson 1994; Deschamps et al. 2010b). In both
cases removing heat from the subsurface ocean is more challenging,
in particular if tidal heating is combined with stagnant lid convec-
tion and temperature-dependent thermal conductivity, which both
reduces the conductive heat flux. Temperature-dependent conduc-
tivity may, in particular, lower the threshold value of dissipated heat
for which the bottom heat flux at the bottom of the ice shell turns
negative (i.e. the ice layer heats up the ocean and thins). In addition,
because it increases the ratio between internal and basal sources of
heat and leads to thicker stagnant lids, temperature-dependent con-
ductivity may favour the existence of pockets of partially melted
material close to the surface (Vilella et al. 2020), an ingredient that
is essential to explain past and recent cryo-volcanism at the surfaces
of icy bodies.

Beside the limitations discussed in this section, temperature-
dependent thermal conductivity certainly impacts the evolution of
large icy bodies. Because the thermal conductivity of silicated rocks
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The top, middle and bottom rows show the ice shell thickness, stagnant lid thickness and ice shell interior temperature, respectively. Plain curves indicate
heat transfer by convection, and dashed curves heat transfer by conduction. The reference viscosity (ηref) is set to 1014 Pa s, and the values of other physical
properties are listed in Table 2. For constant conductivity, two values of the characteristic conductivity are considered, ksurf and 2.6 W m−1 K−1.

also varies as 1/Tn, with n depending on the mineralogical compo-
sition, it may further play a, somewhat smaller, role in heat transfer
within rocky mantles. For iron-bearing minerals, n is likely around
1/2 (Klemens et al. 1962), thus moderating the top-to-bottom ther-
mal conductivity ratio. Temperature-dependent thermal conductiv-
ity may however impact heat transfer in the mantles of the Moon and
Mercury. Note that in the case of Mercury, the high surface tempera-
ture could limit the top-to-bottom reduction in thermal conductivity.
For larger bodies, such as Mars and Venus, pressure effects should
be accounted for. Laboratory experiments then indicate that ther-
mal conductivities of the main lower-mantle minerals, bridgmanite
and ferropericlase, increase with depth (e.g. Ohta et al. 2012; Gon-
charov et al. 2015; Hsieh et al. 2017, 2018), and that the combined
effects of temperature and pressure along an adiabat lead to an in-
crease of thermal conductivity by about a factor 2 at the bottom
of the Earth’s mantle (Hsieh et al. 2018). If convection operates,
the top-to-bottom temperature jump is super-adiabatic, and the bot-
tom conductivity should be reduced compared to the adiabatic case.
For instance, assuming a surface temperature of 700 K (typical of
Venus), a super-adiabatic jump of 2000 K, and n = 1/2, the thermal
conductivity should be divided by 2, thus cancelling the pressure

effect (which, in the case of Venus, should be similar to that of the
Earth’s mantle). Additional calculations, including simulations of
convection with temperature and pressure dependent thermal con-
ductivity, are however needed to assess more precisely the impact of
heterogeneous thermal conductivity on heat transfer within rocky
mantles.
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convection and tidal dissipation: applications to Enceladus and Earth-like
planets, J. geophys. Res., 115, doi:10.1029/2009JE003564.

Choblet, G., Tobie, G., Sotin, C., Běhounková, M., Čadek, O.,Postberg &
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A P P E N D I X A : R A D I A L P RO F I L E S O F
T E M P E R AT U R E A N D H E AT F LU X F O R
T E M P E R AT U R E - D E P E N D E N T
T H E R M A L C O N D U C T I V I T Y

Experimental data show that the thermal conductivity of ice Ih
depends on temperature following an inverse law with a very good
approximation (e.g. Slack 1980; Andersson & Suga (1994). Taking
the conductivity ksurf at surface temperature Tsurf as reference, the
conductivity at temperature T writes

k (T ) = ksurf
Tsurf

T
. (A1)

This dependence modifies the radial profiles of temperature and
heat flux for a system in which heat is transported by conduction.

A1 Cartesian geometry

In Cartesian geometry, the steady state 1-D conduction equation is

∂

∂z

(
k
∂T

∂z

)
= 0, (A2)

where z is depth. Replacing k with its expression in eq. (A1), the
conduction equation is

∂

∂z

(
ksurf

Tsurf

T

∂T

∂z

)
= 0. (A3)

Double integration of eq. (A3) with respect to z leads to

ln (T ) = c1

ksurf Tsurf
z + c2

and

T (z) = T0 exp

(
c1

ksurf Tsurf
z

)
, (A4)

where c1 and T0 = ln(c2) are integration constants. As usual, these
constants may be deduced from the values of the temperature and
its derivative at the interfaces of the system. At the surface, z = 0,
T = Tsurf, and therefore T0 = Tsurf. Constant c1 may be defined
either from the bottom temperature Tbot, or from the surface heat
flux, 
surf. In the case of ice Ih shells, the bottom temperature is
known a priori because it is, by definition, equal to the liquidus of
water (or of the water-impurities mixture). For a shell of thickness
zbot = D, and reminding that T0 = Tsurf, eq. (A4) gives

c1 = ksurf Tsurf

D
ln

(
Tbot

Tsurf

)
, (A5)

and thus

T (z) = Tsurf exp

[
z

D
ln

(
Tbot

Tsurf

)]
. (A6)

Strictly speaking the liquidus temperature is given as a function
of pressure, which at depth D is given by P = ρ icegD, where g is
gravity acceleration and ρ ice ice density.

Heat flux simply derives from eq. (A6) following


 (z) = k
∂T

∂z
= ksurf

Tsurf

T

∂T

∂z
,

which leads to


 (z) = ksurf Tsurf

D
ln

(
Tbot

Tsurf

)
. (A7)

As expected, in Cartesian geometry 
 is constant with depth. A
comparison with constant c1 (eq. A5) then indicates that c1 = 
.
If surface heat flux, rather than bottom temperature, is known, the
temperature profile may then be written

T (z) = Tsurf exp

(

surf

ksurf Tsurf
z

)
. (A8)

Eq. (A8) is useful to determine the radial profile of temperature in
the top part of systems animated by stagnant lid convection, where a
rigid, thermally conductive lid is developing at the top of the system.
It allows, in particular, to derive the thickness of the conductive lid
from the surface heat flux (Section 4.3).

A2 Spherical geometry

A similar reasoning can be followed in spherical geometry, except
that the steady state conduction equation is given by

1

r 2

∂

∂r

(
r 2k

∂T

∂r

)
= 0, (A9)

where r is radius. First and second integrations with respect to r,
after replacing k with its expression in eq. (A1) gives

1

T

∂T

∂r
= c1

ksurf Tsurf

1

r 2
,

and

ln (T ) = − c1

ksurf Tsurf

1

r
+ c2. (A10)

At surface, r = R, where R is the total radius, T = Tsurf, and
therefore c2 = ln(Tsurf ) + c1

ksurf Tsurf R . Temperature is then given by

T (r ) = Tsurf exp

[
c1

ksurf Tsurf R

(
1 − R

r

)]
. (A11)

Again, the constant c1 can be either defined from temperature at
the bottom of the shell (i.e. at radius rbot), or from the surface heat
flux (note that in spherical geometry, heat flux depends on radius).
Assuming that the bottom temperature is known, one gets

c1 = −ksurf Tsurf

D
f R2ln

(
Tbot

Tsurf

)
, (A12)

where f = rbot/R is the ratio between the inner and outer radii of
the shell, and D = (R—rbot) = R(1–f) is the ice shell thickness. The
radial temperature profile is then

T (r ) = Tsurf exp

[
− R f

D

(
1 − R

r

)
ln

(
Tbot

Tsurf

)]
. (A13)

The heat flux at radius r derives form eq. (A13) following 
(r ) =
−k∂T/∂r , leading to


 (r ) = ksurf Tsurf

D
f

(
R

r

)2

ln

(
Tbot

Tsurf

)
. (A14)

Its surface value is given by


surf = ksurf Tsurf

D
f ln

(
Tbot

Tsurf

)
, (A15)

and can be used to define the constant c1 (eq. A12), which is then
given by c1 = −
surfR2. Note also that the heat flux at any radius can
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Figure A1. Radial profiles of temperature (left column) and heat flux (right column) for a purely conductive heat transfer with either constant (k-cte) or
temperature-dependent (k-var) thermal conductivity. For heat flux with constant conductivity, two values of the thermal conductivity are used: the surface
conductivity ksurf listed in Table 2 (plain curves), and 2.6 W m−1 K−1 (dashed curves). In temperature-dependent conductivity cases, conductivity varies as 1/T
(eq. A1). Calculations are made for surface temperature and ice shell thickness Tsurf = 40 K and D = 300 km (top row), and Tsurf = 100 K and D = 150 km
(bottom row), and two geometries are considered, Cartesian (C) or spherical (sph). In all calculations, the rate of internal heating is set to 0, and the bottom
temperature, Tbot, is fixed to 250 K. Relationships used to calculate these profiles are listed in Table A1.

be deduced from its surface value by 
(r ) = 
surf R2/r 2. Finally, as
in Cartesian geometry, the radial temperature profile may be defined
as a function of the surface heat flux following

T (r ) = Tsurf exp

[
− 
surf R

ksurf Tsurf

(
1 − R

r

)]
. (A16)

A3 Conductive profiles

Table A1 summarizes the relationships for radial profiles of tem-
perature and heat flux in Cartesian and spherical geometries and for
a thermal-conductivity given by eq. (A1), together with the corre-
sponding relationships for constant conductivity. Fig. A1 compares
the radial conductive profiles of temperature and heat flux obtained
with these expressions for two cases with different surface tem-
perature and ice shell thickness, Tsurf = 40 K and D = 300 km,
representative of Pluto, and Tsurf = 100 K and D = 150 km, rep-
resentative of Europa. In both cases, there is no internal heating,
and the bottom temperature is set to Tbot = 250 K, a value close to
the liquidus of water at a pressure of 0.21 GPa. The heat flux pro-
files for constant conductivity are calculated either with the surface
value of the thermal conductivity (plain curves) or with k = 2.6 W
m−1 K−1 (dashed curves), a value typical of the expected con-
ductivity within the interior of icy bodies outer ice shells. Clearly,
temperature-dependent conductivity has a strong impact on the con-
ductive thermal structure and heat flux. Compared to the constant

Table A1. Relationships for radial profiles of temperature and heat flux for
a conductive system.

Quantity Geometry Expression

k = constant
Temperature Cartesian Tsurf + �T z

D

- Spherical Tsurf − �T R
D f (1 − R

r )

Heat flux Cartesian k �T
D

- Spherical k �T
D f ( R

r )2

k (T ) = ksurf Tsurf /T

Temperature Cartesian Tsurf exp[ z
D ln( Tbot

Tsurf
)]

- Spherical Tsurf exp[− R
D f (1 − R

r )ln( Tbot
Tsurf

)]

Heat flux Cartesian
ksurf Tsur f

D ln( Tbot
Tsurf

)

- Spherical ksurf Tsurf
D f ( R

r )2ln( Tbot
Tsurf

)

Here, �T = (Tbot − Tsurf) is the bottom-to-top temperature jump, where
Tsurf and Tbot are the surface and bottom temperature, and D is the thickness
of the shell. In Cartesian geometry, z is depth, and in spherical geometry, r
is radius, R the total radius, and f = rbot/R the ratio between the inner and
outer radii of the shell. k is the thermal conductivity, and its surface value
is ksurf. Derivation of relationships for temperature-dependent conductivity
are detailed in the Appendix.

conductivity case, temperature is smaller by up to ∼40 K and ∼15 K
in the cases with Tsurf = 40 K and Tsurf = 100 K, respectively. If
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thermal conductivity is fixed to its surface value, the heat flux is
reduced by a factor 3 in the case with Tsurf = 40 K, and by a factor
2 in the case with Tsurf = 100 K. By contrast, the heat flux obtained

for temperature-dependent conductivity is slightly larger, but com-
parable to that obtained with constant conductivity and k = 2.6 W
m−1 K−1.


