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Abstract Convection in terrestrial bodies occurs within spherical shells described by the ratio, f, of their
bounding radii. Previous studies that have modeled convection with a temperature-dependent viscosity
noted the strong effect of f on transition to the stagnant-lid regime. Here we analyze stagnant-lid
convection in 2-D and 3-D systems with curvatures including relatively small-core shells (f as small

as 0.2) as well as in thin shell and plane-layer cases. Several peculiarities of convection in a strongly
temperature-dependent viscosity fluid are identified for both high and low curvature systems. We
demonstrate that effective Rayleigh numbers may differ by orders of magnitude in systems with different
curvatures, when all other parameters are maintained at fixed values. Furthermore, as f is decreased,

the nature of stagnant-lid convection in small-core bodies shows a divergence in the temperature and
velocity fields found for 2-D annulus and 3-D spherical shell systems. In addition, substantial differences
in the behavior of thin shell (f = 0.9) and plane-layer (Cartesian geometry) models occur in both 2-D and
3-D, indicating that the latter (emulating a toroidal topology rather than spherical) may be inappropriate
approximations for modeling variable viscosity convection in thin spherical shells. Our findings are
especially relevant to understanding and accurately modeling the thermal structure that may exist in
bodies characterized by thin shells (e.g., f = 0.9) or relatively small cores, such as shells comprising the
Galilean satellites and other moons.

1. Introduction

Convection in the cryoshells of icy satellites and silicate mantles of rocky moons and planets is characterized
by a strongly temperature-dependent viscosity that can result in the formation of an immobile (or stagnant)
conductive lid at the top of the upper thermal boundary layer of the system. Formation of a stagnant lid occurs
for heating conditions ranging from entirely internal to purely basal and is dependent on both total energy
input (i.e., internal heating rate and the rate of basal heat input) and the gradient of the viscosity variation
with temperature. The formation of the stagnant lid (Christensen, 1984; Reese et al., 1999; Solomatov, 1985;
Solomatov & Moresi, 1996) also requires that a critical viscosity contrast must be established between the
cold fluid at the surface of the shell and the warm fluid in the system’s interior. Consequently, the onset of
stagnant-lid convection (SLC) is a function of multiple parameters affecting the mean temperature of the
convecting fluid.

Multiple studies have worked toward quantifying the dependence of mean temperature and heat
flux on mantle geometry and energy input in both vigorously convecting isoviscous (Choblet, 2012;
Deschamps et al., 2010; Jarvis, 1993; Jarvis et al., 1995; Moore, 2008; Shahnas et al, 2008; Sotin &
Labrosse, 1999; Vangelov & Jarvis, 1994; Weller et al., 2016) and temperature-dependent viscosity systems
(Deschamps & Lin, 2014; Yanagisawa et al., 2016; Yao et al,, 2014). Findings show that system geometry,
like rheological character, affect temperature and heat loss as strongly as the energy input associated with
the heat sources. In addition, system properties may affect mean temperature differently depending
on the geometry. For example, an increase in lower mantle viscosity (due to the effect of pressure) has a
geometry-dependent impact on mean temperature and convective regime (O'Farrell et al, 2013).
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Exact conditions required for SLC (and conversely a mobile surface) therefore remain somewhat equivocal.
Furthermore, the parameterization of mean temperature and heat flow differs in two-dimensional systems
versus three dimensions. Cartesian geometry studies have found that the behavior inferred from the analy-
sis of 2-D convection models may diverge from the parameterizations obtained from 3-D convection studies
(Deschamps & Lin, 2014). Hernlund and Tackley (2008) found that output diagnostics (i.e.,, mean temperature
and Nusselt number) for 2-D spherical annulus calculations are within 5% of the values obtained in identical
calculations performed in a 3-D spherical shell geometry. However, their study only focused on investigation
of an Earth-like core-to-planet radius ratio.

Geometrical analogues of spherical shell convection such as convection in cylinders and axisymmetric spheres
were first used to study the influence of curvature and aspect ratio on mean temperature and Nusselt number
(Jarvis, 1993; Vangelov & Jarvis, 1994). The controlling parameter that determines the degree of curvature is
the ratio of core radius (R_,,.) to outer shell radius (R, er)s (= Reore/Router)- The difference in radii is the layer
depth, d(= R,yter — Reore)- Jarvis et al. (1995) explored the influence of relative core size on temperature and
convective planform in isoviscous systems and found convection in cold spherical shells characterized by a
single plumerising from the core when f is 0.3 or less. Yao et al. (2014) reported similar planforms with viscosity
contrasts up to 10° but relatively low effective Rayleigh numbers. These authors derived parameterizations for
the interior temperature and heat flux in variable core size spherical shell SLC (Yao et al., 2014) heated solely
by an isothermal core. However, they note the absence of SLC when f < 0.4 in systems featuring parameter
values that result in SLC when f is larger (Yao et al., 2014).

The nature of convection, whether occurring presently or in the past, in bodies with small-core radii relative
to the thickness of the overlying shell may be particularly relevant to the evolution of the icy satellites of
the outer solar system and Earth’s Moon. Estimates of the f ratio for 10’s silicate mantle range from approx-
imately 0.4-0.5 (Sohl et al,, 2002), while the ratio of the inner to outer radii of Europan silicate mantle,
between its metallic core and outer ice shell, is estimated to be between 0.3 and 0.4 (Schubert et al., 2009),
although arguments for a Europan silicate mantle with f in the range 0.1 to 0.5 exist (Sohl et al., 2002).
Uncertainty in the thickness of Ganymede’s outer icy shell means that the f ratio of its silicate mantle is
also difficult to constrain. Upper bounds on the thickness of its outer layer imply that it has an f ratio of
0.4 at the most (Sohl et al., 2002). Estimates of the f ratio in the icy shells of medium-sized icy satellites like
Miranda range from 0.25 to greater than 0.5, dependent upon the partitioning of rock to ice in the body’s
core (Hammond & Barr, 2014). Much tighter constraints exist on the radius of the core of the Earth’s Moon.
Recent analysis of Apollo era lunar seismological data (Weber et al., 2011) suggests that the Moon harbors
a small inner core. The inferred f ratio for the Moon'’s silicate mantle is approximately 0.2 (e.g., Matsuyama
etal, 2016).

Cryoshells comprising the outermost layer of most icy moons are estimated to range in thickness from 10
to 200 km, resulting in a spherical shell geometry where f is greater than 0.8 (Barr, 2008; Hammond & Barr,
2014; Nimmo et al., 2003). Convective regimes hypothesized in these bodies range from possibly mobile
and plate-like on Europa (Kattenhorn & Prockter, 2014), to either episodic (O’'Neill & Nimmo, 2010) or sim-
ply sluggish-lid on Enceladus and Ganymede (Barr, 2008; Hammond & Barr, 2014), to SLC on the midsized icy
moons of Saturn (Multhaup & Spohn, 2007). Because the shells are so thin, modelers commonly use small
plane-layer calculations to investigate the nature of convection in these bodies. However, the limitation on
convective wavelength in Cartesian boxes may artificially influence convective regimes. Moreover, plane-layer
geometries have a toroidal topology rather than spherical.

With recognition that the role of initial conditions is sometimes important in determining convective regime
(Crowley & O’Connell, 2012; O'Neill et al., 2016; Weller et al., 2015), robust conclusions regarding the impact
of the relative core size on the mean temperature in a convecting shell of fluid may still be reached. In
the study presented here, we focus on differences in the transition to and character of SLC that are found
with different f values. We extend previous work by focusing on SLC in relatively small-core bodies and
comparisons of Cartesian systems to global thin shell models. As f decreases, obtaining SLC requires the
specification of higher viscosity contrast. To identify the parameters leading to SLC, we perform a large
number of simulations of convection in a spherical annulus geometry (Hernlund & Tackley, 2008). Upon
identifying parameters that yield SLC in cases featuring small cores we then examine a small number of
3-D models and compare their thermal properties to those found in 2-D calculations featuring identical
parameters.
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2. Method

Thermally driven convection in a Boussinesq fluid with infinite Prandtl number is modeled in two-dimensional
spherical annulus and three-dimensional spherical shell geometries. A hybrid finite-difference/finite-volume
code, StagYY (Tackley, 2008) solves the governing equations using a parallelized multigrid method. The
flow is modeled implementing the nondimensional form of the conservation of mass, momentum, and
energy equations:

V-u=0, (1)

VP4V (n(Vu + VuT)> — _RaT#, 2

and
aT

o =V?T—u-VT, (3)

respectively.

The nondimensional parameters are time, t; the velocity field, u; the nonhydrostatic pressure, P; the dynamic
viscosity, n; the temperature, T; and the Rayleigh number,

Ra = pogaATd3/n*K, (4)

which determines the convective vigor of the system. The parameters comprising Ra include g, the acceler-
ation due to gravity; «, the thermal expansion coefficient; #*, a reference viscosity; k, the system’s thermal
diffusivity; and AT, the superadiabatic temperature difference across the shell thickness, d. Our calculations
emulate convection in a planetary mantle or ice shell. Consequently, we shall refer to the system’s bound-
aries as the surface and core-mantle boundary (CMB). The surface and CMB are modeled as free slip in
each calculation and are isothermally fixed to nondimensional temperatures of T = 0and T = 1, respectively.
Consequently, secular cooling is not modeled. Dimensional temperatures are obtained from nondimensional
temperatures through multiplying T by AT and adding the surface temperature, T For the remainder of
this work we shall use T to represent the dimensional temperature.

A linearized (Boussinesq) equation of state, p(T) = py,(1 — a(T — T)), describes the density p as a function
of temperature where p, is the density at dimensional temperature T = T,. The controlling parame-
ters that determine the convective regime are the ratio of core radius (R ) to outer shell radius (Ryer)s
f(= Reore/Router)s the reference Rayleigh number, Ra (equation (4)) and the rheology law describing how the
viscosity depends on temperature. The dimensional reference viscosity #* appearing in the Rayleigh num-
ber has a nondimensional value of 1.0 and corresponds to a dimensional reference temperature of T* (unless
stated otherwise T* = T, + 0.5AT in the calculations presented, corresponding to a nondimensional
temperature of 0.5, and T is the dimensional surface temperature held fixed throughout the study). We
model an exponential increase in viscosity with decreasing temperature but employ a linearized approxi-
mation for the T~' (Arrhenius) dependence of the argument of the exponential on T (usually referred to
as a Frank-Kamenetskii rheology (King, 2009; Noack & Breuer, 2013; Solomatov, 1995; Stein et al., 2013)).

Specifically, the viscosity is
n(T) = n* exp(=y(T — T*)/AT). (5)

Following this approach, the viscosity contrast across the system from top to bottom is Arn; = exp(y).

For each geometry (i.e, f value) examined, unless stated otherwise, we begin with an isoviscous rheology and
aninitial condition that is conductive with random perturbations. Upon reaching a steady state, a temperature
field snapshot is used as the initial condition for the next case in the suite of calculations in which Ay is
systematically increased.

All of the results presented are from solutions that are thermally stable. Calculations are integrated forward
until a statistically steady state is achieved. Global energy balance provides a convergence criterion that
is obtained by comparing the difference in nondimensional surface and bottom heat flux (F,, and Fq,
respectively). Specifically, if F,,, and Fy,, for the system are steady then

Fiop = Foocf?. (6)
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We determine that a calculation has reached a statistically steady state when the left and right-hand side of
equation (6) agree to within a difference of less than 1% over an integration period of at least 10 transit times
(where the transit time is defined as t, = d/V,, and V,,,, is the volume averaged root-mean-square [rms]
velocity of the system). Time averages of model output reported below are performed over at least 10 transit
times satisfying the above heat flux criterion.

A middepth Rayleigh number, Ra,,, is obtained when the time-averaged middepth temperature is used to
evaluate the viscosity at middepth and this quantity replaces #* in equation (4). Using equation (5) the
middepth Rayleigh number becomes

Ra,, = Raexp(y0,,), (7)

where 6, = (T, — T*)/AT is the nondimensional temperature difference between the average dimensional
middepth temperature, T,,, and the reference temperature (this is effectively identical to the temperature in
the well-mixed adiabatic interiors of stagnant-lid systems, often described in other studies). Temperatures for
the well-mixed interiors are not known a priori so that the convective vigor quantified by Ra,, is only known
once steady solutions are obtained.

The rms surface velocity V,; and volumetric velocity V,,,, provide metrics for determining whether a sys-
tem has converged to a stagnant-lid mode of convection; specifically, the mobility M = V ¢/ V., (e.g., Stein
et al,, 2013; Tackley, 2000). Previous authors investigating Cartesian geometry systems (e.g., Stein et al., 2014;
Tackley, 2000) have stated that M > 0.9 characterizes a mobile-lid convection regime. That is, cases where
surface velocity magnitude is comparable to or greater than mean interior velocity magnitude are consid-
ered mobile. In this study, we adopt M > 1.0 as a threshold above which a system is designated mobile and
note that isoviscous cases are mobile by this criterion for all f values modeled. If M < 0.01, we consider the
system to be in the stagnant-lid regime. Intermediate values of M correspond to a transitional regime. Stein
et al. (2013) consider values of M < 0.01 and Vs < 1 as necessary conditions for the system to be identi-
fied as stagnant lid. Throughout this study we also identify stagnant-lid cases where the condition on V is
satisfied as well as the criterion for M.

We extend previous studies by exploring spherical geometries with different f for basally heated convection.
Unless stated otherwise, each calculation investigated has a fixed Ra = 3.2 x 10°. Employing the rheology
equation (5) above, transitions from mobile- to SLC are determined by systematically increasing the viscosity
contrast parameter y (beginning with an isoviscous case) while keeping the value of f fixed. A critical viscosity
contrast Ay, is determined that marks the onset of SLC for various curvatures. The range of curvatures tested
generally includes f = 0.3, 0.4, 0.5, 0.55, 0.7, and 0.9 (thus sampling the geometries of the silicate mantles of
dwarf planets, Earth-like bodies, and the thin outer shells of icy moons). In addition, we compare findings to
aspect ratio 10 two-dimensional Cartesian geometry calculations. The viscosity contrasts considered range
between 1 and 108 where 1 represents the isoviscous case.

3. Results

We first consider convection in a 2-D spherical annulus and aspect ratio 10 Cartesian geometries. Here we
isolate the effect of core surface area on convective regimes. The degree of system curvature increases
as f decreases. In general, we focus on systems where f = 0.3, 0.4, 0.5, 0.7, and 0.9. Several calculations
characterized by f = 0.2 are also included to illustrate the peculiarities of small-core systems.

In the accompanying supporting information document, we present all tables referred to in section 3 followed
by a selection of resolution-test examples.

3.1. Influence of Core-Size on the Convective Regime and Temperature

In Figure 1, we plot temperature field snapshots for calculations featuring different f and Az, values. (The
notation log denotes a base 10 logarithm in all figures of this paper unless stated otherwise.) These snapshots
show the effect that viscosity contrast has on flow pattern and convective regime as a function of system
geometry and the range of behavior possible within the regimes defined. In Figure 1a flow patterns corre-
sponding to examples of the transitional regime (0.01 < M < 1.0) in Cartesian geometry drastically contrast
between a flow featuring robust large downwelling sheets (M = 0.73 and Ay; = 10°%) and a system with a
hot convective interior and a sluggish lid (M = 0.04 and An; = 10°). The stagnant-lid regime is well estab-
lished with An; = 107 (i.e, M = 107%) and is characterized by a hot convective interior featuring drip-like
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Figure 1. Selected nondimensional temperature field snapshots for Cartesian and spherical geometries with purely
basal heating. (a) Temperature fields in an aspect ratio 10 geometry with log(Axy) = 3,5, and 7 from top to bottom,
respectively. (b) Temperature fields for convection in spherical annuli with f = 0.2,0.3,0.4,0.5,0.7, and 0.9 from left to
right and log(An7) = 5,6, and 7 (log base 10) from top to bottom, respectively. The temperature for all snapshots
correspond to the color bar. Mobility values for all cases are inset.

downwellings at the base of a conductive lid. In the first row of Figure 1b, for all f values, spherical annulus
convection with fixed viscosity contrast An; = 10° and increasing core size satisfies the mobility condition of
the transitional regime (0.01 < M < 1.0). The temperature field plots reveal a fundamentally different flow
in the spherical geometry models in comparison to the Cartesian geometry case with the same parameters
(Figure 1a, middle panel). When f < 0.7, a hemispherical dichotomy develops characterized by hot upwellings
that are dominant in one hemisphere and a large downwelling in the opposite hemisphere. When f = 0.9,
distinct hemispheres are no longer found. Given that the annuli are solutions in the equatorial cross section
of a spherical shell with no variation in colatitude, upwelling and downwelling features in the 2-D solutions
can be thought of as a crescent-like sheet of maximum thickness in the equatorial plane that tapers until van-
ishing at the poles of the sphere. (That is, in a spherical geometry where the colatitude # = /2 coincides
with the plane of the annulus; a 3-D spherical harmonic decomposition of the solution obtained would have
only sectoral harmonics, analogous to the segments in an orange.) The volume of the downwelling depends
on the viscosity contrast and decreases as Az increases. The onset of SLC, hereafter referred to as SLC occurs
with the elimination of the cold (blue) downwelling. In the second row of Figure 1b, the small core (f < 0.4)
cases are convecting with a sluggish-lid character and each system is at the threshold of SLC. In the final row of
Figure 1b (An; = 107), SLC occurs for all curvatures except the f = 0.2 case. However, even when a stagnant-lid
is present, as f decreases mean temperature decreases so that upwelling strength increases. Thus, when f is
small, SLC is obtained with distinct upwellings and a thermal boundary layer above the core.
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Figure 2. Horizontally averaged temperature profiles for selected viscosity contrasts. Curvature is represented by the
color scheme: f = 0.3 (blue), f = 0.4 (cyan), f = 0.5 (green), f = 0.7 (magenta), f = 0.9 (red), and f = 1.0 (black).
Convective regimes are denoted by dashed lines (transitional) and solid lines (stagnant lid) and the horizontal
dot-dashed lines mark the base of the conductive stagnant lid.

Figure 2 shows temporally averaged temperature profiles for selected thermal viscosity contrasts. Due to the
high viscosity contrasts required to obtain SLC when f = 0.2, we generally analyze behavior when f > 0.3
and present only select cases for f = 0.2. Transitional regime cases are denoted by dashed curves and SLC is
denoted by solid curves (as determined by the mobility criterion). In each stagnant-lid case, the base of the
conductive lid is marked by a horizontal dot-dashed line; the depth of the lid is calculated by finding the y
intercept of the line tangent to the inflection point on the profile of the vertically advected heat (Davaille &
Jaupart, 1993). In the stagnant-lid regime, the upper thermal boundary becomes thinner as curvature
decreases (i.e, f increases).

Due to the asymmetry in the areas of the heating and cooling surfaces, in isoviscous convection the temper-
ature gradient across the upper thermal boundary layer decreases as f is decreased (e.g., Vangelov & Jarvis,
1994). In convection with a strongly temperature-dependent viscosity, as curvature increases the temperature
change across the stagnant lid is reduced for the same reason. Thus, a higher viscosity contrast is required to
obtain the same viscosity increase across the conducting lid. Moreover, the temperature of the deep interior
(i.e, middepth) is closer to the reference temperature when f is smaller so that the viscosity increase across
the upper thermal boundary layer is much less than in higher f geometries. For example, Figure 2 shows that
when f =0.3 and Ay = 1052 the difference in viscosity between the surface and the top of the lower thermal
boundary layer is approximately (An;)'/2. However, for f > 0.5 similar behavior is not observed in any cases.
In summary, the viscosity contrast across the upper thermal boundary layer must be increased by increas-
ing the global viscosity contrast, in order to obtain the contrast required across the upper thermal boundary
layer that allows for decoupling of the conductive lid and convecting interior. An additional consequence
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Figure 3. All panels except the upper right show mobility (solid curve, right-hand scale), volume-averaged rms velocity
(open triangles, left-hand scale) and surface rms velocity (closed triangles, left-hand scale) as a function of thermal
viscosity contrast for systems with different curvature, f. Triangles with a vertex at the top indicate that for the
associated datum point, viscosity was increased relative to the field used to obtain the initial condition, and triangles
with a vertex at the bottom (i.e., pointing down) indicate that viscosity was decreased relative to the field used to obtain
the initial condition. In the f = 0.3 and f = 0.7 cases, data are presented for two suites of calculations, one where
viscosity is systematically increased and the other where it is decreased. In the latter case mobility is plot with a dashed
curve. (For other f values, the only cases plotted correspond to viscosity contrast being increased.) In the upper right
panel, open circles denote time averaged middepth temperatures, closed circles denote the temperature difference
between the hottest and coldest regions at middepth and the solid black curve denotes the ratio of the lateral thermal
contrast difference to the average (only the cases where viscosity is being increased are plotted). All calculations feature
Ra((T* — Ty¢)/AT = 0.5) = 3.2 x 10°. Green symbols denote cases with M > 1.0 (mobile lid), black symbols with

0.01 <M < 1.0 (transitional), blue symbols with M < 0.01, and red symbols denote M < 0.01 and Vs < 1 (stagnant lid).
The upper horizontal dotted line denotes M = 1.0, the lower horizontal dotted line denotes M = 0.01 and the solid
horizontal line denotes Vs = 1.

of the effect of curvature on producing a cooler global mean temperature occurs below the conducting lid.
Using the thickness of the conductive lid as a reference for determining the thickness of the convecting layer,
the viscosity variation across the latter, Az, is seen to increase as curvature increases.

For the highest viscosity contrast examined, the intersection of the temperature profiles and the dashed lines
in Figure 2 show that the viscosity contrast across the convective layer remains below 102 except for in the
highest curvature case (f = 0.3) where temperature variation across the convecting layer is greater than 0.4
and viscosity variation is almost 3 orders of magnitude. For larger f SLC cases, once viscosity contrasts exceed
Any = 108 further increases only add to the contrast across the stagnant lid. These findings are consistent
with the analysis presented by Yao et al. (2014) thatimplies the convective layer is almost isoviscous regardless
of the value y once SLC is obtained (Davaille & Jaupart, 1993; Solomatov, 1995). However, with f < 0.5 the
convective layer features larger An_and greater sensitivity of Ay toy.

Figure 3 plots mobility, volume-averaged velocity and surface rms velocity versus the magnitude of the vis-
cosity contrast Any for varying curvature f. For the case f = 0.3, the upper right panel of Figure 3 shows the
onset of an increase in mean temperature of the system interior, as well as temperature contrasts, as M drops
below 1.0 (upper left panel). In particular, the thermal field transitions between end-member states charac-
teristic of the mobile and stagnant-lid regimes, while mobility drops by approximately 2 orders of magnitude.
Comparing the f =0.3 and f = 1.0 cases shows that the thermal viscosity contrast required for the onset of SLC
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Figure 4. Convective regimes for purely basally heated calculations are plotted as a function of curvature f and
logarithm of the thermal viscosity contrast log(A#y). Color indicates the temporally averaged mobility of the indicated
case. To emphasize the onset of stagnant-lid convection symbols are used to indicate convective regime by rounding
the mobility values to a single digit. Circles correspond to mobile regime (M > 1.0), squares correspond to stagnant-lid
cases (M < 0.01), and triangles correspond to transitional cases. Diamonds represent stagnant-lid convection with

M < 0.01 and Vs < 1. Mobility values for all cases represented in this figure are listed in the supporting information
(Tables S1-S3).

at this Ra differs by an order of magnitude. Specifically, if only the mobility criterion is considered the onset
of SLC is obtained with An; ~ 107 for f = 0.3 and An; = 10° for f = 0.7. Augmenting the mobility criterion
with the stricter surface velocity condition, V¢ < 1 (Stein et al., 2013), we find the contrast required for the
onset of SLC is increased. For a Cartesian geometry, the onset of SLC occurs for a lower viscosity contrast with
Anr =~ 10°° (and An; > 10% when V¢ < 1). For each core size, the decreasing values in mobility result from a
decreasing surface velocity and corresponding increase in interior velocity. The latter effect occurs as viscosity
drops with the global temperature increase that accompanies the decrease in surface velocity. When the tem-
perature below the stagnant-lid increases above the reference temperature, the Rayleigh number increases
above the reference value and the convection becomes characterized by a V,,,; that is increased relative to
the isoviscous case. The onset of SLC (defined by a critical value of Az; as a function of f, Axg ) follows a

monotonically decreasing but nonlinear trend in f — log(Any) space (discussed further in section 5.2).

In the panels corresponding to f = 0.3 and 0.7 in Figure 3 data are plotted for two suites of calculations. In
the first case (the case used for all geometries) each experiment uses a solution corresponding to the next
lowest viscosity contrast as the initial condition, starting from the isoviscous solution that is obtained from a
randomly perturbed conductive field. In the second suite, a stagnant-lid solution is the starting initial condi-
tion and viscosity is systematically decreased (further information is given in the figure caption). For the two
geometries examined we generally find convergence of the solutions (yielding a six-vertex star) for a given
viscosity contrast for each of the initial conditions but with minor differences. Where the solutions differ more
substantially we find that the difference is explained by the number of convection cells in the final state. We
discuss this further in section 3.3.

Figure 4 summarizes convective regime as a function of logarithm of thermal viscosity contrast, for varying
curvature f when Ra = 3.2 x 10°. Color indicates the temporally averaged mobility of the cases shown. The
onset of SLC determined by a mobility criterion alone (M < 0.01) is shown by square symbols. As f decreases
the viscosity contrast required to reach the stagnant-lid regime increases. An irregular trend in the circles and
triangles (i.e., nonmonotonic increase in Az with f) occurs due to variation in the number of convection cells
(discussed further in section 3.3).

In addition to convective regime, middepth temperature changes substantially as a function of the log(A#;)
for different geometries. Temperatures increase by more than a factor of 4 for f = 0.3 versus f = 0.9 when
An; = 10° (for convection in the transitional regime). When Ay, = 107 all geometries (except f = 0.2)
exhibit SLC, but interior temperatures in f = 0.9 and Cartesian geometries are more than 30% above the
temperature in a f = 0.3 case. Prior to the onset of SLC, temperature is strongly dependent on the number of
downwellings present. In this context, the downwellings we refer to feature cold fluid sourced from the upper
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Figure 5. Middepth Rayleigh number as a function of viscosity contrast.
Curvature is represented by the color scheme: f = 0.2 (purple), f = 0.3

case, while increasing until a local maximum is reached in the latter geom-
etry (before decreasing). Equivalently, in a spherical shell the effective

(blue), f = 0.4 (cyan), f = 0.5 (green), f = 0.55 (brown), f = 0.7 (magenta), Rayleigh number first decreases as Ay is increased from the isoviscous
f = 0.9 (red), and f = 1.0 (black). The inset defines the correspondence state. For any f value, this same behavior will cause convection to eventu-
between symbols and the number of downwelling observed in the case ally cease if T* is set equal to the CMB temperature and y is systematically

reported, where the term downwelling refers to cold fluid sourced from the
upper thermal boundary layer sinking deep into the convecting system
(for example, see Figure 1). Open symbols indicate stagnant-lid convection.

increased. In a spherical shell system T* should be set to, at most, the mean
temperature characterizing isoviscous convection, in order to obtain an
increase in the effective Rayleigh number as Ay is increased relative to
the isoviscous state.

This effect is illustrated with system results that are analyzed by plotting convective vigor (effective Rayleigh
number at middepth) against the viscosity contrast (Figure 5). The Rayleigh numbers, Ra,,,, were calculated
by taking the time averaged temperature at middepth and applying equation (7). For all curvatures, the mid-
depth Ra is 3.2 x 10° in the isoviscous case. However, middepth temperatures are increasingly cooler as f
decreases. Accordingly, for cases with curvature f < 1 convective vigor first decreases with increasing viscos-
ity contrast, eventually reaching a minimum value. The minimum value increases with increasing curvature
(decreasing f). When f = 0.3, as Ay isincreased (e.g., when Ax; = 10°), the middepth Rayleigh number, Ra,,,
drops by more than 3 orders of magnitude relative to the Cartesian case and a factor of 30 relative to the iso-
viscous case. When f = 0.2 and Ay, = 107 the Ra,, has dropped by approximately a factor of 50 relative to
the isoviscous case while all other cases have converged to the stagnant-lid regime with Ra,,, at least a factor
of 50 greater than in the isoviscous case.

By adopting a value for T*—T, . of 0.5AT, at first equation (5) appears to be preferentially tailored to modeling
Cartesian geometry systems. For example, as noted above when T* — T+ = 0.5AT it is only for this geometry
that Rayleigh number is not effectively lowered as Anjy is first increased. The change in mean temperature
that occurs with f (e.g., in isoviscous convection) therefore suggests that it may be appropriate to change the
reference temperature T* to account for geometry so that transitions, say to the stagnant-lid regime, will occur
for the same viscosity contrast in different geometries. However, the rheology modeled by equation (5) does
not make T* an independent parameter from Ra. For example, if we set T* = T, ¢ + 0.17AT (the mean of the
conductive temperature profile in an f = 0.3 spherical shell) then a much larger volume of the shell will feature
nondimensional viscosities less than 1.0 (thus raising the effective Rayleigh number). Mathematically, this is
equivalent to holding T* equal to T, s + 0.5AT and increasing the Ra by a factor of (An;)%>=%17 = (An;)033
(which is equal to 20.9 for Ay = 10%) because equation (5) can be written

n(T) = 1" exp(—y (T = Toup)/(AT) = 0.17)) = 1" exp(—0.33y) exp(—y((T — Typ)/(AT) = 0.5)),  (8)
that is,
n(T) = n*(Anp) %33 exp(—y (T = (Tyy¢ + 0.5AT))/AT)). )
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T=0.5

T=0.0

Figure 6. Nondimensional temperature field snapshots for basally heated spherical annulus models with

(T* = Touf)/AT = 0.5 (top row) and T* — T, ¢ = Teong (bOttom row). Each system has a viscosity contrast Ayy = 10°.
Teond(f = 0.3) = 0.17AT, Tegng(f = 0.4) = 0.23AT, Teong(f = 0.5) = 0.29AT, Tong(f = 0.7) = 0.38AT and

Teond(f = 0.9) = 0.46AT (left to right, respectively). Mobility values are inset.

Accordingly, changing the reference temperature from T; to T; yields the same system as changing the
reference Ra to (Ax;)Ti~"/ATRa while leaving the reference temperature as T,.

In Figure 6 we present temperature field snapshots from calculations in which T* is set equal to the mean of
the conductive temperature profiles for cases with various geometries. When Ar; = 10° the changes in T*
are equivalent to multiplying the Rayleigh numbers by 95.5 (f = 0.3), 41.7 (f=0.4), 18.2 (f = 0.5), 5.2 (f = 0.7),
and 1.74 (f = 0.9) in comparison to cases where T* — T, s = 0.5AT. We limit the remainder of the study of
the role of f to cases where we vary only y with a fixed Rayleigh number and T* = 0.5AT + T,¢ (with an
understanding that variation of T* is equivalent to varying Ra).

3.3. Discontinuities and Anomalies in the Onset of Convective Regimes

In Figure 4, an apparent discontinuity (or at least a very high gradient) is observed for the onset of the tran-
sitional convective regime between systems with zero (f = 1.0) and low curvature (f = 0.9). The change to
convection in the transitional regime occurs with a viscosity contrast of An; = 10° for each spherical sys-
tem examined whereas (for the aspect ratio 10 calculations we examined) Cartesian geometry convection
transitions with An; = 102. Transitional regimes are characterized by downwelling/upwelling sheets in 2-D
Cartesian geometry versus sectoral-harmonic “segments” in 2-D spherical annulus systems. The fundamental
difference in the topology of the systems may explain the disparity in the required Ax; for the onset of the
transitional regime.

Figure 5 shows that a transition to a single downwelling flow pattern typically precedes the onset of SLC as
Anyisincreased. For the Rayleigh number specified here, prior to the transition to SLC, flow characterized by a
single downwelling appears to be a robust feature for curvatures with f < 0.7. Moreover, single downwellings
are obtainable in our f = 1.0 calculations as convection cell widths do not need to exceed an aspect ratio of
5 (similar to the cell widths found with a single downwelling when f ~ 0.50). However, when curvatures are
small (f > 0.9) single downwelling flow is difficult to achieve because extremely long wavelength convection
cells must be generated. Consistent with this observation, it appears that the onset of transitional surface
mobility is delayed when long aspect ratio cells are obtainable. The aspect ratio 10 limit when f = 1.0 may
thus be an alternative explanation for the discontinuity in Figure 4 (between f = 0.9 and 1.0 transitional
regime onset).

Figure 7 compares f = 0.5 and f = 0.7 spherical annulus cases featuring viscosity contrasts increasing from
102 to 10°. In the top two rows, for each adjacent pair the solution to the right is obtained starting from the
field to the left. In the bottom row, the solution to the left is obtained starting from the field to the right.
When f = 0.5, the number of convection cells decreases from four to a pair before the onset of SLC as An;
is increased, and mobility decreases smoothly from left to right in the figure. In contrast, when f = 0.7 and
viscosity contrast is systematically increased, the number of convection cells changes sharply between the
An; = 10% and 10* cases and mobility increases before starting a monotonic decrease as Az is increased
further (see Figures 3 and 4). Similar behavior also occurs as viscosity contrast is decreased systematically
(bottom row) as mobility drops when four cells are superseded by multiple cells with a decrease in viscosity
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T=1.0

Figure 7. Temperature field snapshots featuring Ay = 102,103, 104, 10°, and 108 (left to right) for f = 0.5 (top) and

f = 0.7 (bottom two rows) curvatures. Mobility values are inset. In the top two rows, solutions are obtained from an
initial condition field with a factor of 10 lower total viscosity contrast. In the bottom row, solutions are obtained from an
initial condition with a factor of 10 higher total viscosity contrast (i.e., for each adjacent pair, the solution to the left is
obtained starting from the field to the right).
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Figure 8. Observed middepth temperatures for basally heated stagnant-lid
convection calculations are plotted against predicted temperatures using
the equation for average temperature in the well-mixed interior below a
stagnant lid, (T,, — Tg,f)/AT, determined by Yao et al. (2014). Open squares
represent the 3-D cases analyzed by Yao et al. (2014). The open circles
represent 2-D cases from this study with Ra = 3.2 x 10°. Triangles represent
our findings for 2-D calculations with the same parameters as cases marked
by open squares. Open triangles represent stagnant-lid convection and solid
triangles represent transitional convection. Open diamonds represent 3-D
stagnant-lid convection cases for f = 0.2(An; = 108), f = 0.3(Any = 107),
and f = 0.4(Anr; = 10%°). Curvature is represented by the color scheme:

f =0.2 (purple), f = 0.3 (blue), f = 0.4 (cyan), f = 0.5 (green), f = 0.55
(brown), f = 0.6 (orange), f = 0.7 (magenta), f = 0.9 (red), and

f =1.0 (black).

contrast from 103 to 102. Generally, system mobility decreases monoton-
ically as Ay is increased when the number of convection cells does not
change, but trends can change when the downwelling number changes
with increasing (or decreasing) viscosity contrast.

Figure 7 also shows that different steady convective patterns are obtain-
able for the same set of system parameters and that the cell number is
dependent on the initial condition. Moreover, the time-dependent aver-
aging of the mobility calculated may yield some differences in values
for seemingly identical solutions (e.g., f = 0.7 cases with viscosity con-
trasts of 10° and 10°). However, we did not find examples of the same
set of parameters yielding SLC for one initial condition versus transitional
or mobile-lid convection for a different initial condition. (Such behav-
ior, commonly termed “hysteresis,” has been widely observed in systems
that include stress-dependent viscosities (e.g., O'Neill et al., 2016; Weller &
Lenardic, 2012).)

4, Comparison Between 2-D and 3-D Systems

Figure 8 plots observed middepth temperatures for calculations of SLC
against the mean temperatures below the stagnant lid predicted by the
analysis of Yao et al. (2014). The colors correspond to specific f values as
in Figure 5 and T* — T+ = 0.5AT in all cases. The square symbols rep-
resent the 3-D spherical shell stagnant-lid cases reported by Yao et al.
(2014), and the triangles represent 2-D spherical annulus calculations fea-
turing the same parameters as the cases corresponding to the squares
(Ra varies). Open triangles represent SLC and solid triangles represent tran-
sitional convection. The circles plot all of the spherical annulus stagnant-lid
cases in our study featuring Ra = 3.2 x 10°. (In the Yao et al. (2014) study,
stagnant-lid cases were not found for small-core systems [e.g., f < 0.4].)
The diamonds correspond to three cases of SLC in 3-D spherical shells fea-
turing the same parameters as spherical annulus cases presented earlier
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Figure 9. Two-dimensional and 3-D nondimensional temperature field
snapshots comparing stagnant-lid convection in small-core spherical
geometries. Panels show (a) f = 0.4, (b) f = 0.3, and (c) f = 0.2 spherical

in this paper. Observed lowest temperature cases for f = 0.5 (green) and
f = 0.7 (magenta) are much colder for the coldest 2-D case when com-
pared with the 3-D cases and correspond to the lowest viscosity contrast
investigated in this study. The anomalous temperatures occur because the
2-D calculations do not feature stagnant lids for the specified parameters.
Thus, the onset of SLC occurs for smaller Ax; values in 3-D. However, we
find that when SLC occurs in a spherical annulus geometry it generally
results in hotter solutions when compared to convection in spherical shells
and that the disagreement increases as f decreases. In addition, we find
that when f < 0.3 our 3-D spherical shell calculation does not agree as
well with the trend found by Yao et al. (2014). Given that only spherical
shells with f > 0.5 were used to obtain the equation for predicted tem-
peratures in the study by Yao et al. (2014), it is not inconsistent to find that
small-core cases are less well fit by this equation. Moreover, the parame-
terizations given by Yao et al. (2014) assumed that the convection below
the stagnant lid is essentially isoviscous. Our findings (Figure 2) show that
this assumption breaks down when f < 0.4.
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Figure 9 shows details in the difference between 2-D spherical annulus and
3-D spherical shell convection for cases where f = 0.4 with Ap; = 1055,
f = 0.3 with Ay; = 107, and f = 0.2 with Ay, = 108. In each panel, the
spherical annulus case is on the right. In their study, Yao et al. (2014) only
found weak convection with single plume flow and thick thermal bound-
ary layers in small-core geometries. Figure 5 clarifies that this is because
effective Ra is lowered by increasing y with T* — T, = 0.5AT and that Yao
etal. (2014) would have needed to examine much larger Ra and Ay cases
in order to obtain stagnant lids with f < 0.4. Flow patterns in the spher-

systems. Model parameters are identical in each panel, only the ical shell calculations are characterized by multiple plumes and a robust
dimensionality differs. For (a) and (b) the left-hand column shows stagnant lid. The stagnant lid is depicted as a blue layer in the equatorial
(T = Tsuef)/ AT = 0.7 and 0.6 isosurfaces, respectively, corresponding to hot  slice, and the convective interior appears to be an almost uniform temper-

upwellings. For (c) the left-hand column shows the (T — T,s)/AT = 0.6
isosurface superimposed on a vertical slice through the spherical shell. For
all panels the center column shows the same isosurfaces but from a viewing

ature. In contrast to SLC in a Cartesian geometry system, these examples
of SLC with relatively small cores feature thermal boundary layers at the

angle rotated by 90° in the equatorial plane, relative to the viewing angle in ~ €Ore mantle boundary and hot plumes relative to the ambient mantle.
the left column. The isosurfaces are superimposed on a vertical slice The spherical annulus case is hotter in each small-core geometry, but the
through the spherical shell. The right-hand column shows a spherical temperature field snapshots indicate similar separation distances between

annulus centered at the equator. The grid dimensions in the 3-D cases are
2% (128 x 384 x 64) and in the 2-D case 1,024 x 64 (for f = 0.3 and f = 0.2)

and 1,280 x 64 (for f = 0.4).

the active upwellings in each geometry. Temperature differences are likely
explained by the topological difference between flows in a spherical shell
and spherical annulus. Upwellings obtained in spherical annulus geome-
tries model sectoral sheets that terminate at the poles of the sphere (normal to the plane in which the field is
calculated). A 3-D spherical shell calculation features columnar plumes. This difference is especially illustrated
in the f = 0.2 case where hot upwelling regions fill over 50% of the interior at all latitudes in a 2-D model.
In contrast, the two hot plumes in the 3-D case can occupy a smaller volume of the shell. In Figure 9c a slice
perpendicular to the plane featuring the two plumes is very low in temperature. No such slice exists through
the annulus topology. It appears that the impact of this difference on temperature, corresponding to a plan-
form difference, becomes amplified as f decreases. Previously, for isoviscous convection, Shahnas et al. (2008)
noted that planform variations affect mean temperature so that convection with plumes and sheets do not
follow the same parameterizations.

5. Discussion

5.1. Implications for Modeling

The thermal parameterization for SLC derived by Yao et al. (2014) for 3-D calculations implies that SLC fea-
tures a conductive thermal upper boundary layer atop an almost isoviscous convecting layer (i.e., the thermal
viscosity Ane, < 0(10)). Making this assumption for larger values of f (> 0.5), it follows that

Tm _Tsurf _ B

GUERRERO ET AL.

1874



At

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Planets

10.1029/2017JE005497

a) b)
1 50[ /
0.95[ 45 "
0.9 R /’ 40 - ]
n
| 0.85 o8 35
F [ ?, 3
IS Ll =2
|4 os A &S 30
[\g // T y
2L 075 ‘/{ % 25 ¥
B ¥ ] LI 24
3 o7 S/ g 20 o
3 X4
S 0.65- g 15 e
0.6 / . 10 ;:’ ¢
n 2
0.55- // H 4 2D-2D Comparison 5 / ¢ 2D-2D Comparison
® 2D-3D Comparison [/ m 2D-3D Comparison
0.5
0.5 0.6 0.7 0.8 0.9 1 % 10 20 30 40 50
T — Tours Observed [}
Y bot
Observed ( AT ) ho

Figure 10. Observed (a) middepth temperature and (b) basal heat flux for stagnant-lid convection in basally heated
calculations, plotted against parameterized values. Solid squares plot 2-D observations against values predicted by an
equation based on 3-D findings derived by Yao et al. (2014). Solid diamonds plot the 2-D observations from this study
against the middepth temperature equation (10) and basal heat flux equation (11) obtained using the 2-D results. Color
corresponds to curvature as in Figure 8.

Yao et al. (2014) fit their results to find that 6 = 1.23 +0.15and g = 1.5+ 0.22. Using the results of our 2-D cal-
culations, we solved equation (10) for best fit keeping the coefficient 6 fixed at 1.23 and found g = 1.09+0.01.
Note that the parameter § is fixed so that the power-law dependence of our 2-D results can be compared
specifically with the exponential dependence derived by Yao et al. (2014) for fully 3-D results and so that the
equations converge for plane-layer geometries. For a viscosity contrast determined by y, in 2-D, the drop in
nondimensional temperature across the lower thermal boundary layer (left side of (10) is reduced compared
to the finding based on 3-D geometry calculations due to the reduced value of g. That is, annuli interiors are
always hotter than their 3-D counterparts in the SLC regime.

With the temperature jJump across the lower thermal boundary layer given by the right side of 10, basal heat
flux is given by
Foor = aRa’ /(yf9). an

Yao et al. (2014) found a = 2.01 + 0.26, b = 0.30 + 0.01, ¢ = 1.50 £ 0.01,and d = 1.91 £ 0.03. Using results
from the 2-D calculations and keeping a and b fixed, we obtain ¢ = 1.61 = 0.02 and d = 1.70 = 0.05 in
equation (11). Again, we choose to fix a and b to isolate the power-law dependence of basal heat flux on the
effect of viscosity contrast and curvature in 2-D annulus versus 3-D systems (Yao et al., 2014).

The left panel in Figure 10 plots the observed middepth temperature from the spherical annulus calcula-
tions against the temperature drop determined with equation (10) for values of g obtained using both 2-D
and 3-D calculations. The right panel of Figure 10 plots the basal heat flux against the heat flux predicted
with equation (11) where ¢ and d determined from both the 2-D and 3-D studies are utilized. As curvature is
increased, observed values for (T, — T,,s)/AT and F,, in annuli differ greatly from those calculated using Yao
et al.s (2014) equation with exponents based on fitting results from 3-D spherical shells. Consistent with the
trend of the temperature drops exhibited in panel a, the basal heat fluxes observed are lower in the annuli
calculations and the disagreement between 2-D and 3-D systems increases as f decreases. Although the 2-D
parameterization is successful, we find that the parameterization of the 2-D results is poorest for thin shells.

In Figure 11a we plot predicted temperature drop across the basal boundary layer as a function of f using
equation (10) with g determined from both 2-D and 3-D calculations. Open diamonds plot the observed tem-
perature drop as a function of f and show that the 2-D parameterization works well in general but is less
successful forthe f = 0.9 case. The solid diamond corresponds to a 3-D calculation presented here with f = 0.3
and is reasonably well fit by the equation given by Yao et al. (2014) despite the fact that those authors did not
include data for stagnant-lid cases with f < 0.5 in their parameterization.

In Figure 11b we plot contours of constant middepth Rayleigh number, Ra, in F,,, — f space. Perfect agree-
ment between the parameterization for F,,, and observations would result in the diamonds falling on top
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Figure 11. (a) Temperature drop across the bottom thermal boundary layer as determined from equation (10) plotted as
a function of f. The solid black curve indicates temperature contrast with the value of g derived by Yao et al. (2014) for
3-D spherical shell results. The dashed black curve is the temperature drop, 6Ty, derived from 2-D spherical annulus
results. (b) Basal heat flux plotted as a function of f. Each curve correspond to a constant value of the middepth Rayleigh
number, as indicated in the key. The solid blue curve is determined from the basal heat flux equation derived for 3-D
spherical shell results and the dashed colored curves are derived from the heat flux equation corresponding to 2-D
spherical annulus results. Plotted diamonds indicate observations of F,,; for cases with corresponding f and a middepth
Rayleigh number defined by color. Ra = 3.2 x 10° for all plotted data points and Ay; = 107 for both the observations

and the calculation of the constant Ra curves. The colors of the open diamonds correspond to the same f values plotted
in Figure 2 and the solid diamond represents the 3-D spherical shell case shown in Figure 9.

of the curves of corresponding color. The position of each contour is determined by the value of y. Here we
present the results for Ay = 107 in order to incorporate the 3-D result. Generally, the parameterization of
the results for the annuli geometry is successful but the observed heat flux in the 3-D case tested is much
higher than expected for the corresponding Ra,,. This could be explained by the fact that a robust lower ther-

mal boundary layer exists in this 3-D calculation making it distinct from the cases used to determine the 3-D
parameterization.

5.2. Relatively Small Cores

Figure 12 plots snapshots of the profile of the second invariant of the stress tensor, z, (at the base of the stag-
nant lid) for f = 0.3 and 0.5 spherical annuli cases and a 10 X 1 plane layer case, where each system features
a viscosity contrast of Ax; = 107. The horizontal coordinates in the figure are determined by the nondimen-
sional circumference 2z /(1 — f) and position along the x axis is plotted in units of mantle depth. As curvature
is increased (f decreased) the stress oscillates on a much longer wavelength in comparison to stress in the
relatively large core and plane layer cases (in agreement with the finding that we observe fewer convection
cells in cases with smaller cores). In addition, stress magnitude increases with increasing curvature and the
f = 0.3 spherical annulus has a mean stress about an order of magnitude larger than the plane-layer case. The
higher stresses observed at the base of the stagnant lid when f is smaller are a result of higher viscosity, due
to cooler temperatures, and the presence of (relatively hot) active upwellings driving relatively longer con-
vection cells. Together these phenomena resist the formation of a stagnant lid, providing an explanation for
the observation that larger viscosity contrasts are needed to induce a stagnant lid as the curvature increases.

In Figure 13 we plot the nondimensional basal heat flux as a function of nondimensional time from annuli
calculations. In addition to the mean nondimensional basal heat flux increase with decreasing f it can be seen
that the variability in the heat flux increases with decreasing f. Because an increasingly robust basal thermal
boundary layer is established with smaller f values, we suggest this finding is consistent with greater temporal
variability in the thermal boundary layer thickness resulting from plume mobility and thermal detachment.
However, in contrast to the variable time series shown in Figure 13, we find that the 3-D systems shown in
Figure 9 become decreasingly time dependent as f is decreased, to the point where nearly steady planforms
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Second Invariant of the nondimensional Stress Tensor at dlid(f) for Anr= 107
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Figure 12. Example snapshots of the second invariant of the stress tensor, 7, at the base of the stagnant lid,

as a function of position. Colors correspond to f = 0.3 (blue) and 0.5 (green) spherical annuli cases and a 10 X 1 plane
layer case (black). All cases are characterized by a viscosity contrast of An; = 107. Dot-dashed lines denote the mean of
the curves with values given in the inset at the upper left.

are established when f < 0.3. A steadier flow therefore accompanies the cooler 3-D cases (e.g., see Figure 8)
in accord with their lower effective Ra.

5.3. Modeling Thin Shells

In Figure 8, it was observed that 2-D models lag 3-D models in reaching the onset of SLC (for example, compare
solid triangles with corresponding open square data points). In Figure 4, when Ar; = 10° we found that both
f = 1.0 and 0.9 cases occupy the transitional regime. However, the onset of SLC was observed for a small
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Figure 13. Time series for basal heat flux for 2-D annuli cases with variable core sizes. The time series shown correspond
to the cases that yield the data points included in Figure 11 (where Ay = 107). Color corresponds to associated f value
as previously. The solid horizontal lines indicate the mean value of the heat flux over the time interval plotted where the
means (with associated standard deviations) and mobilities, M, are (blue) Fy,o; = 21.5 + 1.5, M = 0.0046 + 0.0006; (cyan)
Foot = 19.7 £ 0.6, M = 0.0009 + 0.0001; (green) Fo; = 17.9 + 0.6, M = 0.0004 + 0.0003; (magenta) Fo; = 13.1+0.3,

M =0.0010 + 0.0008; (red) F-bot =9.5+0.1, M =0.0022 + 0.0001; (black) Fbot = 8.6 + 0.3, M = 0.00003 + 0.00001.
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Figure 14. Temperature field snapshots in 3-D geometries. On the left the interior of a 4 X 4 x 1 plane layer is shown
with upwellings in red ([T — Ty,s]/AT = 0.95) and downwellings in blue ([T — Ty,s]/AT = 0.85; the isosurface colors do
not correspond to the color bar). On the right the temperature in a f = 0.9 shell is shown at a radius of 9.5d (R.ye = 9d,
Router = 10d) from diametrically opposed viewing angles. A Rayleigh number Ra = 3.2 x 10° and a viscosity contrast of
Anr = 10° are used for both models. The resolution of the plane layer is 128 x 512 x 512. The resolution of the
thin-shelled sphere is 2 x (192 X 1152 X 96). See supporting information Table S5 for input and output parameters.

increase in Any when f = 1.0. In Figure 14 we plot temperature fields from two 3-D calculations that are in
agreement with the findings indicated in Figures 4 and 8. The f = 1.0 case is in the stagnant-lid regime, the
f = 0.9is not. In the f = 1.0 case the presence of a stagnant lid could be due to either the larger aspect ratio
or simply the dimensionality effect. The plane-layer 3-D case is similar to cases presented in previous studies
(e.g., Deschamps & Lin, 2014) and features cylindrical plumes and downwellings, in contrast to the sheets in
our 2-D plane-layer model. In particular, it differs dramatically from the spherical thin shell (f = 0.9) case that
features a hemispherical dichotomy characterized by a large “ring-like” downwelling in one hemisphere. The
persistence of robust downwellings in the f = 0.9 case was observed in f = 0.9 annuli in Figure 1. In 3-D
downwelling flow is maintained and forms a robust planform separating diametrically opposed regions of
upwelling with differing volumes.

6. Conclusions

Our calculations demonstrate that core geometry strongly affects estimates of the thermal viscosity contrast
required to obtain SLC. For example, in the Cartesian geometry case modeled, with the Rayleigh number
specified (e.g., Figure 4), the onset of SLC occurs with a viscosity contrast more than 2 orders of magnitude less
thaninthef = 0.2 case. Core geometry also strongly affects the effective Rayleigh number for a given viscosity
contrast (Figure 5) and viscosity structure in the convecting region below the stagnant-lid also changes as
f is varied. For example, plots of the azimuthally averaged temperature (Figure 2) show that the isoviscous
approximation for the convective layer underlying the stagnant lid is justifiable for f > 0.5 but breaks down
forf <0.4.

A comparison of SLC in two- and three-dimensional spherical geometries finds that for systems characterized
by identical parameters, when f < 0.5, mean temperature in statistically steady systems with different dimen-
sionalities may disagree by more than 25% and basal heat flux by more than 50%. Disagreement depends on
f and the viscosity contrast modeled. With a fixed Rayleigh number, Ra, we find that for SLC in two dimensions
when f < 0.5 the viscosity contrast established across the upper thermal boundary layer increases relative to
three-dimensional convection. Similarly, the viscosity contrast across the thermal boundary layer enveloping
the core is decreased by 2-D modeling (e.g., Figure 9).

In small-f systems, vigorous active upwellings persist below sluggish lids and impart surface stresses that
resist the onset of SLC. Our findings may therefore help explain observations of disrupted surfaces that have
been inferred to be the result of early convection in ice shells in moons with small rocky cores (Hammond
& Barr, 2014). Specifically, although we have not modeled surface yielding, the higher stresses we observe
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in the stagnant lids of small-core systems imply that deformation could result more readily than previously
understood due to the focused plumes that characterize such systems (see Figure 12).

The results presented in this work are obtained with just one value for the reference Rayleigh number (with
the exception of the cases compared to the results from Yao et al., 2014, in Figure 8). Previously, Yao et al.
(2014) and Yanagisawa et al. (2016) discussed that convective regime (i.e., stagnant lid vs. mobile lid) is highly
dependent on the reference Rayleigh number as well as the viscosity contrast modeled. (Studies featuring
yield stresses have also noted that a higher reference Rayleigh number promotes surface mobility (e.g., Stein
et al,, 2004, 2014).) Consequently, our findings do not imply that a smaller body with a smaller core, like the
Moon, is necessarily less likely to be characterized by a stagnant lid than the Earth, with its higher mantle
Rayleigh number. Moreover, smaller cores will be depleted of their heat more quickly when secular cooling is
modeled. This effect, in particular, should be the subject of further studies of the impact of core size on the
convective regime of an overlying mantle of rock or ice.

In annuli, as viscosity contrast is increased to produce a stagnant lid, robust thermal boundary layers con-
tinue to envelop the relatively small cores of the systems allowing for strong time dependence of the heat
flux from the core. However, in cooler interior 3-D systems, hot, core-enveloping boundary layers are less time
dependent due to lower effective Ra for the systems. An increase in plume vigor with small f and the fact that
planform differs substantially in 2-D and 3-D models may contribute to the divergence of 2-D and 3-D findings
when f is small. Studies of isoviscous convection have previously reported breakdowns in the parameteriza-
tion of mean temperature when systems featuring downwelling sheets are compared with systems featuring
cylindrical downwellings (Jarvis, 1993; Shahnas et al., 2008). Our findings indicate that core heat flux time
series from small-core 2-D models amplify the degree of time dependence expected in 3-D systems.

Very long wavelength flow was commonly observed in thin shelled systems so that downwellings sourc-
ing material from a sluggish upper thermal boundary layer remain especially persistent as viscosity contrast
is increased. As a result, we found that Cartesian systems can poorly emulate thin shelled cases when the
aspect ratio of the former does not match the circumference of the latter. In particular, we find that the onset
of transitional and SLC in a relatively smaller aspect ratio occurs at a lower viscosity contrast. For example,
the circumference of an f = 0.9 annulus exceeds the rectangular geometry aspect ratio 10 case by more
than a factor of 6 so that parameters yielding SLC in the latter geometry resulted in mobile convection in
the former case. In three dimensions we observe similar behavior and thin shell solutions characterized by a
hemispherical dichotomy.

Taken collectively, the findings presented here indicate that caution should be applied when extrapolating
the findings from 2-D spherical calculations to 3-D systems or when extrapolating plane-layer geometry solu-
tions to the behavior in thin spherical shells. In contrast, Earth’s geometry (f = 0.55) places it in the range
of curvature where the results of 2-D and 3-D experiments agree more closely (at least in the stagnant-lid
regime). Unfortunately, in order to explore planetary evolution, our results indicate that the most computa-
tionally demanding stagnant-lid systems are specifically the cases that should be modeled in 3-D or at least
full spherical annuli. Specifically, small-core cases (which require the modeling of greater viscosity contrast in
order to obtain stagnant lids) and thin shell cases (which are poorly emulated by systems with smaller aspect
ratios) exhibit behavior that is highly dependent on both their curvature and dimensionality.
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