Science Advances

Supplementary Materials for

A thermally conductive Martian core and implications for its dynamo cessation

Wen-Pin Hsieh et al.

Corresponding author: Wen-Pin Hsieh, wphsieh@earth.sinica.edu.tw; Frédéric Deschamps, frederic@earth.sinica.edu.tw

Sci. Adv. **10**, eadk1087 (2024) DOI: 10.1126/sciadv.adk1087

This PDF file includes:

Figs. S1 and S2 Table S1

Fig. S1. Example TDTR spectrum (open circles) along with thermal model calculations (color solid curves) for Fe₃S at 40.5 GPa. Using the input parameters listed in Table S1, $\Lambda_{\text{Fe3S}}=25 \text{ W m}^{-1} \text{ K}^{-1}$ (red curve) enables a best-fit to the TDTR data. The spectrum ratio $-V_{in}/V_{out}$ is most sensitive to the sample's thermal conductivity at delay times of few hundred picoseconds (ps), see Ref (57, 58) for details. A test variation of 10% in Λ_{Fe3S} , i.e., green and blue curves, results in a clear deviation from the data. Such high sensitivity indicates our thermal model fitting and the derived Λ_{Fe3S} are precise and reliable based on the high-quality data.

Fig. S2. Sensitivity tests of the thermal model to input parameters for Fe₃S at 40.5 GPa. Thermal conductivity of Fe₃S, Λ_{Fe3S} , is fixed at 25 W m⁻¹ K⁻¹, as shown in Fig. S1. (A) and (B) Changes in the thicknesses of silicone oil ($h_{\text{Si oil}}$) and Fe₃S (h_{Fe3S}) by 33% and 50%, respectively, have

essentially no influence on the model calculations, i.e., the derived Λ_{Fe3S} is not affected by the uncertainties in the $h_{\text{Si oil}}$ and h_{Fe3S} . (C) Large uncertainty in the high thermal conductivity of Al film has very minor effect on the Λ_{Fe3S} . (D) If the thermal effusivity of the pressure medium silicone oil, $e=(\Lambda_{\text{Si}}C_{\text{Si}})^{1/2}$, has 10% uncertainty, it requires the Λ_{Fe3S} to decrease to 24.5 W m⁻¹ K⁻¹ to re-fit the data, i.e., producing 2% uncertainty. (E) If the volumetric heat capacity of Fe₃S, C_{Fe3S} , is 5%, a $\Lambda_{\text{Fe3S}}=24.3$ W m⁻¹ K⁻¹ can re-fit the data, i.e., propagating 3% uncertainty. (F) In our analysis, the major uncertainty is from the uncertainty in the heat capacity of Al film per unit area, i.e., product of volumetric heat capacity and thickness, $C_{\text{Al}}h_{\text{Al}}$. This is because the ratio $-V_{in}$ $/V_{out}$ at few hundred picosecond delay time scales inversely with the $C_{\text{Al}}h_{\text{Al}}(58)$. If there is a 10% uncertainty, it requires ~16% change in the Λ_{Fe3S} to fit the data. (G) Changing the laser spot size by 15% does not influence the model calculation, i.e., its uncertainty has essentially no effect on the Λ_{Fe3S} . (H) 10% variation in the thermal conductance of Al/Fe₃S and Al/silicone oil interfaces, *G*, lead to a very minor change in the model calculation, propagating only ~4% uncertainty in the Λ_{Fe3S} .

Table S1. Input parameters in the thermal model for Fe_3S at 40.5 GPa and 300 K in TDTRmeasurements

P (GPa)	$C_{\rm Fe3S}$	$C_{ m Al}$	$h_{ m Al}$	$e=(\Lambda_{\rm Si}C_{\rm Si})^{1/2}$	r	$h_{ m Fe3S/Si}$ oil	$\Lambda_{ m Al}$	G
	(J cm ⁻³ K ⁻¹)	(J cm ⁻³ K ⁻¹)	(nm)*	(J m ⁻² K ⁻¹ s ^{-1/2})	(µm)	(µm)	(W m ⁻¹ K ⁻¹)	(MW m ⁻² K ⁻¹)
40.5	3.16	2.68	79.0	2260	7.6	10/15	200	250

*In this experimental run, the Al thickness at ambient pressure is 90 nm.

 C_{Fe3S} : Fe₃S heat capacity, C_{Al} : Al heat capacity, h_{Al} : Al thickness, e: silicone oil thermal effusivity, r: laser spot size, h_{Fe3S} : Fe₃S thickness, $h_{\text{Si oil}}$: silicone oil thickness, Λ_{Al} : Al thermal conductivity, G: thermal conductance of Al/Fe₃S and Al/silicone oil interfaces.