Supporting Information for "Effects of the compositional viscosity ratio on the long-term evolution of lower mantle's thermo-chemical piles: insights from 2-D spherical annulus simulations"

Yang Li^{1,2,3}, Frédéric Deschamps⁴, Jianfeng Yang^{2,3}, Lin Chen^{2,3}, Liang

Zhao^{2,3}, Paul J. Tackley⁵

Contents of this file

¹Key Laboratory of Earth and Planetary
 Physics, Institute of Geology and
 Geophysics, Chinese Academy of Sciences,
 Beijing, China
 ²State Key Laboratory of Lithospheric
 Evolution, Institute of Geology and
 Geophysics, Chinese Academy of Sciences,
 Beijing, China
 ³Institutions of Earth Sciences, Chinese
 Academy of Sciences, Beijing, China
 ⁴Institute of Earth Sciences, Academia
 Sinica, Taipei, Taiwan

- 1. Table S1
- 2. Figures S1 to S3 $\,$

⁵Institute of Geophysics, Department of

Earth Sciences, ETH Zurich, Zurich,

Switzerland

August 7, 2019, 2:09pm

:

Introduction

This supporting information file provides the parameters of the numerical models (Table S1) and supporting figures (Figure S1 to S3).

:

Parameter	Symbol	Value
Acceleration of gravity	g	9.81 m s^{-2}
Mantle thickness	\overline{D}	2891 km
Super-adiabatic temperature difference	ΔT_S	2500 K
Reference adiabatic temperature	T_{as}	1600 K
Surface density	$ ho_S$	3300 kg m^{-3}
CMB density	ρ_b	5500 kg m^{-3}
Surface thermal expansion	α_S	$5.0 \times 10^{-5} \ {\rm K}^{-1}$
CMB thermal expansion	α_b	$1.0 \times 10^{-5} {\rm K}^{-1}$
Surface thermal diffusivity	κ_S	$6.24 \times 10^{-7} \text{ m}^2 \text{s}^{-1}$
CMB thermal diffusivity	κ_b	$8.74 \times 10^{-7} \text{ m}^2 \text{s}^{-1}$
Clapeyron slope at z=660km	Γ_{660}	-2.5 MPa K^{-1}
Reference thermal viscosity	η_0	1.6×10^{21} Pa s
Viscosity ratio at $z=660$ km	η_{660}	30
Reference internal heating rate	Rh_{ref}	$4.0 \times 10^{-12} \mathrm{W \ kg^{-1}}$
Surface yield stress	σ_0	200 MPa
Pressure gradient of the yield stress	σ_i	$2.5 \times 10^{-3} Pa/Pa$

:

:

Figure S1. Snapshots of composition (left) and temperature (right) fields of B=0.32 at t=4.5 Gyrs, the lateral and vertical resolutions from top to bottom are: 512×64 , 768×96 , and 1024×128 , respectively.

Figure S2. Initial conditions of superadiabatic temperature (left) and composition (right) fields

:

Figure S3. V_{RMS} as a function time for all the 8 calculations in this study.