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S U M M A R Y
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate
mantles. A suitable framework for modelling this heat transport is a system including bottom
heating (from the core) and internal heating, for example, generated by secular cooling or by
the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical
properties of the system. In systems where convection is able to operate, two different regimes
are possible depending on the relative amount of bottom and internal heating. For moderate
internal heating rates, the system is composed of active hot upwellings and cold downwellings.
For large internal heating rates, the bottom heat flux becomes negative and the system is only
composed of active cold downwellings. Here, we build theoretical scaling laws for both
convective regimes following the approach of Vilella & Kaminski (2017), which links the
surface heat flux and the temperature jump across both the top and the bottom thermal
boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate.
Theoretical predictions are then verified against numerical simulations performed in 2-D and 3-
D Cartesiangeometry, and covering a large range of the parameter space. Our theoretical scaling
laws are more successful in predicting the thermal structure of systems with large internal
heating rates than that of systems with no or moderate internal heating. The differences between
moderate and large internal heating rates are interpreted as differences in the mechanisms
generating thermal instabilities. We identified three mechanisms: conductive growth of the
TBL, instability impacting, and TBL erosion, the last two being present only for moderate
internal heating rates, in which hot plumes are generated at the bottom of the system and
are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early
Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles
geochemical observations and magma ocean dynamics.

Key words: Mantle processes; Numerical modelling; Planetary interiors; Dynamics: con-
vection currents, and mantle plumes; Dynamics of lithosphere and mantle; Heat generation
and transport.

1 I N T RO D U C T I O N

Thermal convection controls the evolution of many natural systems
with a large diversity of size and composition. In particular, in
planetary bodies mantle convection governs the thermal evolution
of the whole planets. Early studies considered Earth’s mantle as
a Rayleigh–Bénard convective system (e.g. McKenzie et al. 1973;
Baumgardner 1985), namely a layer of fluid with constant temper-
ature at both its top and bottom. The top temperature is set by the
surface temperature and is lower than the bottom one, which is set
by the temperature of the core. In this configuration, heat is coming
from the bottom of the system, that is, in the case of the Earth,
the core, and is transported by convective currents to the top of
the mantle, where it is evacuated by conduction to the atmosphere

and oceans through the crust. Estimates of the mantle heat budget
(Jaupart et al. 2015) show that bottom heating is small compared
to volumetric (or internally generated) heating. In planetary man-
tles, the sources of volumetric heating are the decay of long-lived
radioactive isotopes (238U, 235U 232Th and 40K) and secular cooling,
which has been shown to be strictly equivalent to volumetric heating
(Krishnamurti 1968; Daly 1980; Weinstein & Olson 1990). Mixed
heating convective systems, that is, a convective system with both
bottom and volumetric heating, therefore stand as a better reference
system than Rayleigh–Bénard system to describe convection in the
Earth’s mantle.

Different approaches have been followed to estimate the thermal
evolution of planetary mantles in the framework of mixed heating
convection. A common approach is to use full numerical simulations
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including several additional complexities, in particular compress-
ibility, phase changes and temperature-dependent viscosity, and to
compare the results of these simulations with observations (Ma-
chetel & Yuen 1989; Ogawa et al. 1991; Christensen & Hofmann
1994; Tackley et al. 1994; Tackley 1996). This method strongly
depends on our knowledge of the system and on our ability to
reproduce its complexity. Many successful applications have been
achieved, including models of Earth’s mantle explaining the current
tomographic structure (e.g. Deschamps et al. 2015), and models of
Moon’s mantle explaining the evolution of surface volcanism (e.g.
Laneuville et al. 2013). Alternatively, when the system is too com-
plex to model, as in the case of plate tectonics on Earth (Jellinek
& Jackson 2015), or poorly constrained, for example, models in-
vestigating the conditions required for habitability of exoplanets
(Kite et al. 2009), the use of scaling laws is more appropriate. This
parametrized convection approach relies on scaling laws linking the
average surface heat flux and average thermal boundary layer (TBL)
properties to the dimensionless numbers of the system (Sharpe &
Peltier 1978; Christensen 1985).

Scaling laws have been established for many convective systems
involving isoviscous fluids (e.g. Malkus 1954; Townsend 1964; Tur-
cotte & Oxburgh 1967; Parmentier et al. 1994; Parmentier & Sotin
2000; Liu & Zhong 2013), fluids with strong variations of viscosity
with temperature (e.g. Davaille & Jaupart 1993; Moresi & Soloma-
tov 1995; Solomatov & Moresi 2000) or compressible fluids (e.g.
Liu & Zhong 2013). For mixed heating convection in isoviscous,
incompressible fluids, scaling laws have been established in Carte-
sian geometry (Sotin & Labrosse 1999; Moore 2008; Choblet &
Parmentier 2009) and spherical geometry (Vangelov & Jarvis 1994;
Jarvis et al. 1995; Shahnas et al. 2008; Deschamps et al. 2010;
Choblet 2012; Weller et al. 2016). These studies provide relation-
ships linking the average surface heat flux and temperature jump
across the top TBL to the properties of the system, and more specifi-
cally its Rayleigh number, dimensionless heating rate and geometry.
Predictions from scaling laws are very successful for characterizing
mixed heating convection at moderate heating rates. At higher heat-
ing rates, the temperature of the convective interior becomes higher
than the temperature at the bottom surface of the system, with the
consequence that the system is cooled, instead of being heated, at
its bottom. This specific convective regime, analogous to a purely
volumetrically heated system, has not yet been studied in detail.

Here, we attempt developing a unifying theoretical framework
for isoviscous fluids leading to scaling laws valid for mixed heat-
ing convection regardless of the values of the control parameters.
Particular emphasis is placed on two peculiar end-member cases
of mixed heating convection: bottom heating, that is, without vol-
umetric heating; and volumetric heating, that is, for systems with
an average bottom heat flux equal to zero. The volumetric heating
case is somewhat similar to a pure volumetric heating system with
an adiabatic bottom surface, that is, a system with a bottom heat
flux equal to zero everywhere. Vilella & Kaminski (2017) devel-
oped a theoretical framework providing theoretical laws for a pure
volumetric heating system with an adiabatic bottom surface. Here,
we adapt this framework to bottom heated systems, and we then
extend these scaling laws to mixed heated convection for both mod-
erate (where the system is heated from below) and high (where the
system is cooled from below) heating rates. This set of theoreti-
cal scaling laws is tested against 2-D and 3-D Cartesian numerical
simulations. Interestingly, the scaling laws we obtain describe the
thermal structure of the convective system dominated by volumet-
ric heating (i.e. systems with large heating rates composed only
of cold downwelling instabilities) better than that of other systems

(e.g. Rayleigh–Bénard system). Based on this result, we discuss the
different possible mechanisms generating thermal instabilities. We
conclude that the phenomenological model used to build our scal-
ing laws, which was proposed by Howard (1966) and assumes that
thermal instabilities are produced by the conductive growth of the
TBL until it reaches a stability threshold, is only valid for convec-
tive systems without instabilities coming from the opposite TBL. In
convective systems with one TBL at the top and one at the bottom,
the two TBLs are coupled: conductive growth of instabilities in each
TBL still occurs, but is perturbed by interactions with instabilities
arriving from the opposite TBL. We finally apply our results to the
evolution of early Earth, and we propose a model that reconciles
geochemical observations and magma ocean dynamics.

2 T H E O R E T I C A L S C A L I N G L AW S AT
I N F I N I T E P R A N D T L N U M B E R

2.1 Rayleigh–Bénard convection

Rayleigh–Bénard convection refers to a layer of fluid with constant
temperature at top and bottom, the top temperature being lower than
the bottom one. When considering an isoviscous and incompressible
fluid, the convective system is controlled by two dimensionless
numbers, the Rayleigh number,

Ra = ρgα�T d3

κη
, (1)

and the Prandtl number,

Pr = η/ρ

κ
, (2)

where ρ is the density, g the acceleration of gravity, α the thermal
expansion coefficient, �T the temperature jump across the fluid
layer, d the layer thickness, η the dynamic viscosity and κ = λ/ρCp

the thermal diffusivity, with λ the thermal conductivity and Cp the
heat capacity. In planetary bodies, the Prandtl number is very large
(Pr > 1020) and can be assumed effectively infinite, implying that the
fluid acceleration has no significant effects on the evolution of the
system and can be neglected. The convective system is, therefore,
only controlled by its Rayleigh number.

The scaling laws and numerical simulations discussed in this
study are based on a Cartesian geometry. By contrast, spherical ge-
ometry is often more appropriate in a planetary framework. Com-
parison between Cartesian and spherical geometry has been carried
out for different convective systems (e.g. Deschamps et al. 2010;
O’Farrell & Lowman 2010; O’Farrell et al. 2013; Weller et al.
2016). These studies have suggested that the scaling laws devel-
oped in Cartesian geometry are also valid in spherical geometry
provided that a geometrical correction is applied. This correction is
a function of the curvature (or equivalently, the ratio Rc/Rp where
Rc and Rp are the radius of the core and the planet, respectively) and
can be treated as a third dimensionless parameter. For the sake of
simplicity, we therefore assume a Cartesian geometry, but note that
similar reasoning may also be followed in spherical geometry.

For Ra lower than a critical value, denoted Racr, the layer of fluid
is in a purely conductive state. The value of Racr can be calculated
analytically for a 2-D infinite horizontal layer (Malkus 1954; Chan-
drasekhar 1961), and has been found to be about 657.5 in Cartesian
system with free slip boundary conditions at top and bottom. For
Ra larger than Racr, convection starts and is characterized by two
TBLs, one at the top and the other at the bottom, where a sharp
change of temperature occurs. The system being symmetric, the
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thermal structure of the two TBLs should be quantitatively simi-
lar. The fluid domain comprised between the two TBLs, hereafter
called the convective interior, is composed of hot upwellings and
cold downwellings transporting heat from the bottom to the top of
the system throughout an otherwise adiabatic medium. For a given
convective system, the size, number and distributions of upwellings
and downwellings depend on the vigour of convection (Zhong 2005;
Galsa & Lenkey 2007). Following the phenomenological model of
Howard (1966), each TBL grows by conduction until it reaches a
critical stage and breaks off to produce an instability, the bottom
TBL producing hot instabilities (upwellings), and the top one, cold
instabilities (downwellings).

Following an approach similar to that of Vilella & Kaminski
(2017), which is itself based on the model of Howard (1966), we
aim to establish theoretical scaling laws governing the convective
system. In particular, we try to express the temperature jump across
the TBL, �TTBL, RB, and its thickness, δTBL, RB, as a function of
Ra, which is the only dimensionless parameter of the system. As
shown by Vilella & Kaminski (2017), due to the fact that a change
in the TBL thickness, δTBL, RB, is compensated by a change in the
temperature jump across this TBL, �TTBL, RB, the Rayleigh num-
ber of each of the two TBLs, RaTBL, RB, is constant and thus does
not depend on Ra. The value of RaTBL, RB can be calculated, for
instance, at the onset of convection, that is, for Ra = Racr, because
at that specific moment the system can still be approximated as
conductive, while, at the same time and by definition, convection is
beginning, thus implying the presence of TBLs. Assuming that at
Ra = Racr the two TBLs extend over half of the fluid layer, implying
�TTBL, RB = 0.5 �T and δTBL, RB = 0.5 d, eq. (1) leads to

RaTBL,RB

= ρgα�TTBL,RBδ3
TBL,RB

κη
=

(
1

2

)4
ρgα�T d3

κη
=

(
1

2

)4

Racr. (3)

For convenience RaTBL, RB may further be written as a function of
the properties (thickness and temperature contrast) of the TBL as
follows:

RaTBL,RB =
(

1

2

)4

Racr

= ρgα�TTBL,RBδ3
TBL,RB

κη
= Ra

(
�TTBL,RB

�T

)(
δTBL,RB

d

)3

. (4)

Furthermore, the surface (or basal) heat flux, φ, which corresponds
to the heat flux transported by the convective system, is determined
by the conduction within the top (or bottom) TBL, and may thus be
written as

φ ∼ λ
�TTBL,RB

δTBL,RB
, (5)

or,

NuRB = φd

λ�T
= Cφ

�TTBL,RB

�T

d

δTBL,RB
, (6)

where NuRB is the Nusselt number, that is, the dimensionless con-
vective heat flux, and Cφ a dimensionless constant. Combining eqs
(4) and (6), we finally obtain that,

�TTBL,RB

�T
= 0.5

(
NuRB

Cφ

)3/4(
Ra

Racr

)−1/4

, (7)

and

δTBL,RB

d
= 0.5

(
NuRB

Cφ

)−1/4(
Ra

Racr

)−1/4

. (8)

Recalling that for Ra = Racr, �TTBL, RB = 0.5 �T, δTBL, RB = 0.5 d
and NuRB = 1, eqs (7) and (8) imply Cφ = 1. Eqs (7) and (8) consti-
tute theoretical scaling laws that can be used to describe Rayleigh–
Bénard convection provided that NuRB, which is a function of Ra,
can be determined.

In order to estimate NuRB, we first note that eq. (7) implies that

Nu3/4
RB Ra−1/4 ∼ �TTBL,RB

�T
. (9)

Furthermore, �TTBL, RB/�T should always be a finite value close to
0.5, while, when taking eq. (9) in the limit of an infinite Ra, this
requires that NuRB scales as Ra1/3, because otherwise �TTBL, RB/�T
would either tend to zero or infinity. The scaling NuRB ∼ Ra1/3 is
a well known result (e.g. Malkus 1954; Silveston 1958) that has
been extensively validated by numerical simulations. There are,
however, different ways to interpret this scaling. Here, we follow
the formulation developed by Moore (2008) and write

(NuRB − 1) ∼ (Ra − Racr)
1/3. (10)

Note that for Ra = Racr the heat flux through the system is con-
ductive, that is, NuRB = 1. A more convenient way to write eq. (10)
is

NuRB = 1 + CN

(
Ra

Racr
− 1

)1/3

, (11)

where CN is not predicted by theoretical arguments, but can be
constrained from numerical simulations (Section 3).

2.2 Mixed heating convection

Mixed heating convection refers to the bottom heating convection
presented above with the addition of homogeneous volumetric heat-
ing. The convective system is controlled by the Rayleigh number,
eq. (1), and the dimensionless heating rate,

H = hd2

λ�T
, (12)

where h is the dimensional internal heating rate per unit volume,
which sets the relative importance of volumetric and bottom heating.

In the conductive state, the dimensionless conductive temperature
profile in a plane layer is given by

T (z)

�T
= Tsurf

�T
− H

2
z2 +

(
H

2
− 1

)
z + 1, (13)

where Tsurf is the surface temperature and z is the dimensionless
height. Interestingly, for H larger than 2, the heat flux at the bottom of
the system is negative, meaning that the fluid cools down from both
the top and the bottom. The change in sign of the basal heat flux also
occurs when the system is animated by convection, but this requires
H > 2. Two different convective regimes may therefore operate,
depending on the value of H. For H lower than a critical threshold,
hereafter denoted Hcrit, the convective system has a positive heat flux
at the bottom, and a TBL is present at both the top and the bottom of
the system. In that case, the convective interior is composed of both
downwelling and upwelling instabilities. The strength of upwelling
instabilities (hot plumes) decreases as the value of H approaches
Hcrit, that is, that the temperature jump across the bottom TBL is
reduced. The hot plumes are then weaker and may not reach the
surface (Travis & Olson 1994; Sotin & Labrosse 1999; Deschamps
et al. 2010). For H equal to or larger than Hcrit, the bottom heat flux
becomes zero or negative, and a conductive, stable, layer forms at
the bottom of the system. The convective interior is then composed
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of downwelling instabilities and a non-buoyant return flow. This
behaviour has also been reported for volumetric heating system with
an adiabatic bottom surface. Note that, because the amount of heat
transported by the system increases with Ra, the value of Hcrit is also
expected to increase with Ra (Sotin & Labrosse 1999; Deschamps
et al. 2010; O’Farrell & Lowman 2010). We now examine these two
cases, H ≤ Hcrit and H ≥ Hcrit, in more detail.

2.2.1 Case H ≤ H crit

In this section, we aim to establish scaling laws for the convective
system when H is lower than Hcrit. We note φ the top heat flux, Nut

its dimensionless value, that is, Nut = φd/λ�T, and we assume that
Nut is the sum of two components,

Nut = f (Ra) + g(H ), (14)

where f and g are two functions describing the fractions of the
surface heat flux due to bottom heating and internal heating, re-
spectively, with f being a function of Ra only, and g a function of
H only. Since the surface heat flux should be directly related to the
amount of heat internally generated, we furthermore consider that
g is a linear function of H, g(H) = CgH, with Cg a dimensionless
constant between zero and one. When H = Hcrit, the bottom heat
flux is equal to zero, the conservation of energy, therefore, requires
that the surface heat flux is equal to the heat internally generated,
that is, Nut(H = Hcrit) = Hcrit. Using eq. (14), we then obtain that at
H = Hcrit.

f (Ra) = (1 − Cg)Hcrit, (15)

where Hcrit is a function of Ra that needs to be determined. Eq. (14)
therefore implies

Nut = (1 − Cg)Hcrit + Cg H. (16)

Another constraint is given by the value of Hcrit at Ra = Racr, which,
according to eq. (13), should be equal to 2. Considering the case
Ra = Racr, implying Nut = 1 for a Cartesian geometry, and H = 0,
we obtain Cg = 1/2, or

Nut = 1

2
(H + Hcrit). (17)

Note that Moore (2008) obtained a similar result. An interesting
implication of eq. (17) is that the dimensionless surface heat flux
in Rayleigh–Bénard convection (H = 0) is equal to 0.5 Hcrit. When
H = 0, Nut = NuRB, and combining eqs (11) and (17) gives

Hcrit = 2 NuRB = 2 + 2 CN

(
Ra

Racr
− 1

)1/3

. (18)

We now aim to establish a scaling law linking the temperature
jump across the top TBL, �TTBL, t, to the dimensionless parameters
of the system, here Ra and H. As a first step, we perform a scaling
analysis similar to that conducted by Vilella & Kaminski (2017)
in the purely internally heated case. First, we note that within the
TBL, heat is transferred by conduction, implying that the surface
heat flux scales as

φ ∼ λ
�TTBL,t

δTBL,t
, (19)

where δTBL, t is the thickness of the top TBL. Following Howard
(1966), we then consider the dynamics of the TBL just before it be-
comes unstable. At that stage, the thickness of the TBL is such that
there is a balance between the buoyancy force, which drives the con-
vective flow, and the viscous drag that prevents the destabilization

of the layer, that is,

ραg�TTBL,t ∼ η
w

δ2
TBL,t

, (20)

where w is a vertical velocity scale that remains to be determined.
To obtain w, we use the equation of conservation of energy in the
convective system,

ρCP
DT

Dt
= λ∇2T + h, (21)

where DT/Dt is the material derivative of the temperature. In the
convective fluid just underneath the base of the TBL, that is, where
T(z = d − δTBL, t) = �TTBL, t, conduction is negligible, and the
vertical advection of heat balances heat production, leading to

ρCP
w�TTBL,t

d
∼ h. (22)

Combining eqs (20) and (22), we obtain

ραg�T 2
TBL,tδ

2
TBL,t ∼ ηhd

ρCP
. (23)

Finally, together with eq. (19) and the definition of the dimension-
less numbers (Ra, H and Nut), eq. (23) provides a scaling for the
temperature jump in the top TBL,

�TTBL,t

�T
∼ H 1/4 Nu1/2

t Ra−1/4. (24)

This scaling as well as eq. (22) is only valid when internal heating is
dominant, since, for H = 0, eq. (24) predicts that the dimensionless
temperature jump across the top TBL, �TTBL, t/�T is equal to zero,
which is incorrect. In order to establish a scaling consistent with
values of H equal or close to zero, we define a more general form
of eq. (24),

�TTBL,t

�T
= ft(Ra) + gt(Ra) H 1/4 Nu1/2

t Ra−1/4, (25)

where ft(Ra) and gt(Ra) are two unknown dimensionless functions.
The first term in the right-hand side of eq. (25) may be obtained by
setting H = 0, which is equivalent to Rayleigh–Bénard convection,
and by using the scaling law [eq. (7)] together with eq. (18), we get

ft (Ra) = 0.5

(
Hcrit

2 Cφ

)3/4(
Ra

Racr

)−1/4

. (26)

To determine gt(Ra), we use the fact that for H = Hcrit the convective
system is equivalent to internally heated convection and should
satisfy the scaling determined in eq. (24). Therefore,

CT H 1/4
crit Nu1/2

t Ra−1/4 = ft(Ra) + gt(Ra) H 1/4
crit Nu1/2

t Ra−1/4, (27)

where CT is a dimensionless constant, and

gt(Ra) = −( ft(Ra) − CT H 1/4
crit Nu1/2

t Ra−1/4) H−1/4
crit Nu−1/2

t Ra1/4.

(28)

Combining eqs (28), (26) and (25), we finally obtain

�TTBL,t

�T
= 0.5

(
Hcrit

2 Cφ

)3/4(
Ra

Racr

)−1/4(
1 −

(
H

Hcrit

)1/4)

+CT H 1/4 Nu1/2
t Ra−1/4. (29)

Moreover, for Ra = Racr and H = 2, the temperature jump in the
top TBL is equal to the total temperature jump across the system,
�TTBL, t/�T = 1, allowing the determination of CT. The temperature
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jump in the top TBL is then fully described by

�TTBL,t

�T
= 0.5

(
Hcrit

2 Cφ

)3/4( Ra

Racr

)−1/4(
1 −

(
H

Hcrit

)1/4)

+
(

H

2

)1/4(
Nut

2

)1/2(
Ra

Racr

)−1/4

, (30)

where, as previously mentioned, Cφ = 1 in Cartesian geometry.
We now follow a similar approach to characterize the bottom

TBL, which has a very different behaviour from the top one. With
increasing H, the internal heating becomes the dominant source
of heating, implying that the dynamics of the top TBL is mostly
controlled by conductive growth of thermal instabilities, as in the
case of purely internally heated convection. By contrast, increasing
the amount of internal heating behaves as a stability factor for the
bottom TBL, and consequently the scaling obtained in eq. (24) is
no longer relevant. Based on the scaling analysis conducted for the
top TBL, we assume that

�TTBL,b

�T
= fb(Ra) + Cb Hβ Nuθ

b Raγ , (31)

where the subscript b means bottom, fb(Ra) is again an unknown
dimensionless function, and Cb, β, θ and γ are dimensionless con-
stants. At H = 0, the system is equivalent to a Rayleigh–Bénard
convective system, for which the temperature scaling has been de-
termined [eq. (7)]. In the case β = 0 and H = 0, using eqs (7), (18)
and (31) we can write

0.5

(
Hcrit

2 Cφ

)3/4( Ra

Racr

)−1/4

= fb(Ra) + Cb Nuθ
b Raγ , (32)

implying

�TTBL,b

�T
= 0.5

(
Hcrit

2 Cφ

)3/4(
Ra

Racr

)−1/4

. (33)

For H = Hcrit, the temperature jump should be zero, which is not
predicted by eq. (33). Therefore, β should not be equal to zero. If
H = 0, and using eqs (7) and (18), eq. (31) requires that,

fb(Ra) = 0.5

(
Hcrit

2 Cφ

)3/4( Ra

Racr

)−1/4

. (34)

Considering the case H = Hcrit, eqs (31) and (34) thus yield

0 = 0.5

(
Hcrit

2 Cφ

)3/4(
Ra

Racr

)−1/4

+ Cb Hβ
crit Nuθ

b Raγ . (35)

Because for H = Hcrit the dimensionless bottom heat flux is, by
definition, equal to zero (Nub = 0), eq. (35) is true only if θ = 0. For
θ = 0 and because Cb is a constant, eq. (35) requires that β = 3/4,
γ = −1/4 and Cb = −0.5 (2 Cφ)−3/4 Ra1/4

cr . Inserting these values
in eq. (31) and using eq. (34), we finally obtain,

�TTBL,b

�T
= 0.5

[(
Hcrit

2 Cφ

)3/4

−
(

H

2 Cφ

)3/4](
Ra

Racr

)−1/4

, (36)

where, again, Cφ = 1 in Cartesian geometry. Eqs (30) and (36)
establish scaling laws linking the temperature across the top and
bottom TBL to the input parameters of the convective system for
the case H < Hcrit.

2.2.2 Case H ≥ H crit

In this regime, a subadiabatic conductive layer of thickness δb is
generated at the bottom of the system, and convection is limited to

the region located above this subadiabatic layer. The heat generated
in this conductive layer escapes at the bottom of the system and
does not participate in convection. This ‘lost’ heat should not be
considered when establishing the thermal structure of the top TBL.
To account for it, we replace the parameter H by Heff = (1 − δb/d)H,
representing the effective amount of heat driving convection for
a Cartesian geometry. Interestingly, in this case there is no heat
coming from the bottom conductive layer, and the top heat flux Nut

is simply equal to Heff. We, therefore, assume that the scaling law
characterizing the top TBL determined for H < Hcrit remains valid
for H > Hcrit, except that H is replaced by Heff (or equivalently, the
top dimensionless heat flux Nut). Thus, following eq. (30) we obtain

�TTBL,t

�T
= 0.5

(
Hcrit

2 Cφ

)3/4( Ra

Racr

)−1/4(
1 −

(
Nut

Hcrit

)1/4)

+
(

Nut

2

)3/4(
Ra

Racr

)−1/4

. (37)

Unfortunately, the same process is unlikely to be valid for the bottom
TBL. At the bottom, the mechanism of heat transfer changes from
convection, at H < Hcrit, to conduction, at H > Hcrit, while the
scaling analysis conducted above is only valid for convection. This
implies that a different approach should be followed. Moreover,
our numerical simulations (Section 3) suggest that the temperature
jump across the conductive bottom is set by the convective interior.
A scaling analysis for this case is thus challenging. Alternatively,
we note that the temperature jump across the conductive bottom
cannot be larger than the temperature jump across the top TBL,
because in convective systems dominated by volumetric heating,
the highest temperature of the system is located just beneath the top
TBL (e.g. Parmentier & Sotin 2000). In addition, the temperature of
the convective interior, that is, the domain comprised between the
top TBL and the conductive bottom, should be almost constant due
to adiabaticity. However, experiments and numerical simulations
show that, for mixed heating systems, temperature slightly decreases
with depth (i.e. subadiabatic), due to the effect of cold downwellings
(Jeanloz & Morris 1987; Sinha & Butler 2007). These observations
suggest that the temperature jump across the conductive bottom
is slightly lower than the temperature jump across the top TBL.
Based on empirical observations, detailed and tested in Section 3,
we assume that the ratio of the temperature jump across the top TBL
over the temperature jump across the conductive bottom depends
only on the Rayleigh number. Thus, this ratio does not depend on
H and may be written at any value of this parameter, for instance,
for H = Hcrit,

�TTBL,t(Ra, H )

�Tb(Ra, H )
= �TTBL,t(Ra, H = Hcrit)

�Tb(Ra, H = Hcrit)
, (38)

where �Tb is the temperature jump across the convective layer,
that is, between the surface and the top of the conductive layer
such that �Tb = �T + �TTBL, b. We further note that �Tb(Ra,
H = Hcrit) = �T, the temperature at the bottom boundary, while
�TTBL, t at (Ra, H) and (Ra, H = Hcrit) are given by eq. (37), so that
the only unknown in eq. (38) is �Tb at (Ra, H), therefore requiring
that

�Tb

�T
= 0.5

C3/4
φ

(
1 −

(
Nut

Hcrit

)1/4)
+

(
Nut

Hcrit

)3/4

. (39)

Interestingly, the conductive bottom follows a conductive tempera-
ture profile [the general form of which is being given in eq. (13) for
a Cartesian geometry], and this profile gives a direct relationship
between the temperature jump across the conductive bottom and the
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bottom heat flux,

�TTBL,b

�T
= δb

d

(
Nub − 0.5 H

δb

d

)
, (40)

with δb the thickness of the conductive bottom. We further assume
that the bottom heat flux is equal to the heat generated within the
conductive bottom, that is, Nub = H δb/d, and obtain

Nub =
(

2
�TTBL,b

�T
H

)1/2

. (41)

Conservation of energy then gives the top heat flux, and therefore
the effective internal heating, Heff,

Nut = Heff = H −
(

2
�TTBL,b

�T
H

)1/2

. (42)

Solving eqs (39) and (42) provides a theoretical prediction for the
surface heat flux.

Table 1 summarizes the theoretical scaling laws we derived for
the surface heat flux and thermal structure of the TBL in the case
of mixed heating convection. Note that the estimation of Hcrit still
relies on the determination of an empirical constant, CN, which is
not related to some theoretical arguments, but may be adjusted by
comparison with numerical experiments. In that sense, our scaling
laws are not strictly theoretical. However, Hcrit is a physical property
of the system that can be measured, and not a dimensionless constant
free to vary. In the next section, we test our scaling laws against
numerical simulations.

3 T E S T I N G T H E O R E T I C A L S C A L I N G
L AW S A G A I N S T N U M E R I C A L
S I M U L AT I O N S

3.1 Numerical model

We performed numerical experiments using the code StagYY (Tack-
ley et al. 1994; Tackley 2008) in both 2-D and 3-D Cartesiange-
ometry. This code uses a finite difference multigrid technique to
solve the conservation equations of mass, momentum and energy
on a staggered grid. We consider a layer of fluid internally heated
with constant temperature at the surface and at the base, and that
is fully characterized by its Rayleigh number, Ra, and its amount
of internal heating, H. The side boundaries are reflecting, while the
top and bottom boundary conditions are free slip. We use a constant
temperature in the whole box with random perturbations as the ini-
tial temperature condition. A statistical steady state is reached when
both the volumetric average temperature and the surface heat flux
are constant (i.e. their fluctuations are zero) when averaged over
several overturn times.

The selected aspect ratio and the space resolution of the grid (Ta-
ble 2) guarantee both the development of well-developed convective
currents, and a good resolution of the TBLs. For some cases, the
results obtained in 2-D Cartesiangeometry indicated an important
wall-effect caused by the geometry (Cross & Hohenberg 1993),
even for large aspect ratio. For those cases, we ran the equivalent
3-D Cartesiangeometry simulation to obtain robust results. We also
conducted a few additional 3-D Cartesiangeometry simulations to
gauge the effect of changing the geometry, that is, from 2-D to 3-D,
on our results. In particular, we have conducted three numerical
simulations at Ra = 107 and H = 0, two in 2-D geometry and one
in 3-D geometry. Some differences can be observed in Table 2 be-
tween the numerical simulations. Part of the differences is due to

the horizontal resolution, as can be seen by the comparison between
the two numerical simulations in 2-D geometry. Another important
factor is the total duration of simulations. Because of the chaotic
nature of thermal convection, the flow pattern experiences temporal
variations with both short-period and long-period. 3-D numerical
simulations with high lateral and vertical resolutions are usually
conducted for shorter durations than 2-D simulations with similar
properties. If too short, 3-D simulations may not, in some cases,
entirely capture long-term temporal variations. By contrast, numer-
ical simulations in 2-D can be conducted over a much longer period
of time and with higher resolutions. Note, however, that the differ-
ences observed between the three cases are less than 10 per cent,
and agree within their temporal fluctuations.

3.2 Comparison between theory and numerical
simulations

The theoretical framework we developed in Section 2 is built upon
critical numbers, Racr and Hcrit, that control the main properties of
the system. Values of Racr have been calculated analytically for a
large diversity of systems. However, at that point, Hcrit cannot be
determined entirely from theoretical arguments, and an empirical
constant needs to be determined by fitting numerical simulations
or laboratory experiments. An estimate of Hcrit has been proposed
by Moore (2008), and here we refine this estimate by combining
previous numerical simulations (Sotin & Labrosse 1999; Moore
2008) with a new set of numerical simulations specifically con-
ducted for the determination of Hcrit (Table 2). The results shown in
Fig. 1(a) exhibit a fairly good agreement between our scaling law
with CN = 1.5 and the numerical results. An interesting output of
our theoretical scalings is that the Nusselt number for Rayleigh–
Bénard convection is equal to 0.5 Hcrit. We verify this property in
Fig. 1(b). One may note that the interior temperature in Rayleigh–
Bénard convection is larger than the surface temperature by 0.5 �T,
implying φ ≈ 0.5 λ�T/δTBL, RB and NuRB ≈ 0.5 d/δTBL, RB, while for
H = Hcrit the interior temperature is larger than the surface tem-
perature by about �T, implying φ ≈ λ�T/δTBL, t and Nut = Hcrit ≈
d/δTBL, t. Assuming that at a given Ra, δTBL, RB ≈ δTBL, t, one gets
NuRB ≈ 0.5 d/δTBL, RB ≈ 0.5 d/δTBL, t ≈ 0.5Nut, which provides a
first order justification for the result NuRB = 0.5 Hcrit.

We first check the validity of the scaling laws proposed in Sec-
tion 2.2.1 for the case H ≤ Hcrit. A comparison with the scaling laws
established by Moore (2008) is further conducted in the Supporting
Information. To quantify the fit between numerical simulations and
our scaling laws, we calculate the coefficient of determination R2

defined as

R2 = 1 −

n∑
i=1

(mi − pi )2

n∑
i=1

(mi − mavg)2

(43)

where n is the number of data points, m1, .., n the measured values,
p1, .., n the predicted values and mavg the average value of m1, .., n.
The measure of the surface heat flux is straightforward and the
results are reported in Fig. 2(a). Despite the large error bars, due
to temporal variations of the surface heat flux in 2-D geometry,
the agreement between predictions and measurements is very good,
with R2 = 0.9904, thus supporting our approach. It should be kept in
mind that this scaling law only relies on the empirical determination
of Hcrit and does not require any additional fitting parameter, making
the agreement even more striking. The empirical determination of
the temperature jump across both TBLs is more difficult. Most
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Table 1. Scaling laws for temperature jump across the top and bottom thermal boundary layer, surface heat flux and critical heating rate, Hcrit, that is, the
heating rate for which the bottom heat flux goes to zero. Note that �Tb = �T + �TTBL, b is the temperature jump across the convective layer, that is, between
the surface and the top of the conductive layer. CN is a dimensionless constant introduced in eq. (11) and assumed to be equal to 1.5 based on its empirical
determination in Fig. 1(a), while Cφ is a dimensionless constant introduced in eq. (7) and found theoretically to be equal to 1 in Cartesian geometry.

Parameter Scaling Equation

Critical heating rate Hcrit = 2 + 2 CN ( Ra
Racr

− 1)1/3 (18)
Top temperature jump

H ≤ Hcrit
�TTBL,t

�T = 0.5 ( Hcrit
2 Cφ

)3/4( Ra
Racr

)−1/4(1 − ( H
Hcrit

)1/4) (30)

+( H
2 )1/4( Nut

2 )1/2( Ra
Racr

)−1/4

H ≥ Hcrit
�TTBL,t

�T = 0.5 ( Hcrit
2 Cφ

)3/4( Ra
Racr

)−1/4(1 − ( Nut
Hcrit

)1/4) (37)

+( Nut
2 )3/4( Ra

Racr
)−1/4

Bottom temperature jump

H ≤ Hcrit
�TTBL,b

�T = 0.5 [( Hcrit
2 Cφ

)3/4 − ( H
2 Cφ

)3/4]( Ra
Racr

)−1/4 (36)

H ≥ Hcrit
�Tb
�T = 0.5

C3/4
φ

(1 − ( Nut
Hcrit

)1/4) + ( Nut
Hcrit

)3/4 (39)

Surface heat flux
H ≤ Hcrit Nut = 1

2 (H + Hcrit) (17)

H ≥ Hcrit Nut = H − (2
�TTBL,b

�T H )1/2 (42)

previous studies used the horizontally averaged temperature profile
to visualize the top TBL. Recently, Vilella & Kaminski (2017) used
the hot temperature profile, defined as the profile of the maximum
temperature at each depth, arguing that this temperature profile is
more appropriate for visualizing the critical TBL. Using this hot
profile, the base of the TBL can be defined using various methods
leading to slightly different results. However, for establishing eq.
(22), we explicitly defined the base of the TBL as the location where
conduction becomes negligible, corresponding to the depth at which
the first derivative of the temperature with respect to depth becomes
negligible. The method we select must, therefore, be consistent with
this previous definition. For consistency, we here fix the base of the
TBL at the closest point to the boundary where the first derivative
of temperature (T

′
), that is, heat conduction, reaches 1 per cent of

its minimum or maximum value. For instance, for the top TBL, this
corresponds to the largest value of the dimensionless height z for
which T

′
(z) > 0.01 min (T

′
).

Fig. 2(b) compares the numerical results against the theoretical
predictions for �TTBL, t, and shows that the predicted temperatures
are systematically higher than the observed ones, except for the
cases conducted with H ≈ 0. The disagreement is rather small, but
large enough to be significant. Defining the base of the TBL differ-
ently may improve the results, but the disagreement is large enough
to persist. For �TTBL, b, the discrepancies between predicted and
observed values are even worse, and predictions are decorrelated
from observations. Our theoretical framework, thus, globally fails
in predicting the thermal structure of the system for H ≤ Hcrit. These
discrepancies might be related to the fact that the scaling law we
obtained does not account for the interactions between the instabil-
ities growing in the TBL and the plumes coming from the opposite
TBL (Section 4).

For mixed heating convection with H ≥ Hcrit, the convective
regime is radically different and the scaling law for �TTBL, b is ob-
tained assuming that the ratio of the temperature jump across the top
TBL over the temperature jump across the conductive bottom de-
pends only on the Rayleigh number. To verify that this assumption is
correct we compared the temperature profiles obtained at Ra = 104

and Ra = 107 with various values of H (Fig. 3). In Fig. 3, we ob-
serve slight variations of the temperature ratio in the convective
interior that may be related to 2-D geometry effects. 3-D numerical

simulations would give better results but are extremely time con-
suming and challenging for such high values of H. Nevertheless,
Fig. 3 indicates that our assumption is appropriate. Fig. 3 also shows
that identifying the bottom conductive layer is a difficult issue. We
first note that the horizontally averaged temperature profile is more
appropriate than the hot temperature profile to identify the upper
limit of the bottom conductive layer. The hot temperature profile is
used to select precisely the TBL at its critical stage just before its
destabilization, while the horizontally averaged profile averages out
the TBL at different stages of its evolution. However, the bottom
conductive layer does not evolve with time but is occasionally dis-
turbed by cold downwellings that push hot materials to the bottom
of the system. In that case, it is therefore more appropriate to use
the horizontally averaged profile. To identify the upper limit of the
bottom conductive layer, we then simply make use of the conduc-
tive nature of this layer. More specifically, we proceed in two steps.
First, we best-fit the bottom conductive layer with a conductive
profile [the general form of which is being given in eq. (13)]. We
then search for the closest point to the bottom boundary where the
actual temperature profile differs from the fitted conductive profile
by more than 1 per cent. This difference indicates that the fluid is
diverging from the purely conductive state, and therefore denotes
the upper limit of the bottom conductive layer. This method has the
advantage to be fully coherent with the framework used to establish
our theoretical predictions (eq. 39). Note that the method used for
determining the base of the top TBL remains the same as the one
used for H ≤ Hcrit. Fig. 4, comparing measurements and predictions,
indicates that our scaling laws are in very good agreement with nu-
merical simulations, with R2 very close to 1. These scaling laws are
even valid for extreme values of H, yielding values of the internal
temperature up to 16 times the imposed temperature jump between
the surface and the base of the box. Although truncated in Fig. 4(a)
for graphical reasons, the surface heat flux is correctly predicted
for dimensionless values up to 2800. The scaling laws presented in
this work, therefore, successfully predict the surface heat flux and
thermal structure of mixed heating convection for H ≥ Hcrit. To our
knowledge, no previous scaling was able to achieve this.

A curious characteristic of our theoretical framework is that the
scaling laws for H ≤ Hcrit failed to predict correctly the thermal
structure of the system, while in the meantime they are also used to
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Table 2. Input parameters and output observables of the numerical simulations performed in this study. Note that for H ≥ Hcrit we report the value of
�Tb = �T + �TTBL, b instead of the value of �TTBL, b.

Ra H Resolution Aspect ratio �TTBL, t �TTBL, b or �Tb Nut

104 0 1024 × 1024 × 64 32:32 0.946 0.947 4.369
104 0.5 512 × 64 16 0.802 0.747 5.171
104 1 512 × 64 16 0.821 0.717 5.419
104 5 512 × 512 × 64 16:16 1.194 0.859 6.702
104 6 512 × 512 × 64 16:16 1.283 0.820 7.215
104 8 512 × 512 × 64 16:16 1.425 0.715 8.161
104 8.5 512 × 512 × 64 16:16 1.497 0.718 8.469
104 9 512 × 512 × 64 16:16 1.507 0.748 8.787
104 9.5 512 × 512 × 64 16:16 1.525 1.007 9.111
104 10 512 × 64 16 1.625 1.033 8.991
104 25 1024 × 128 16 2.651 1.653 18.684
104 50 768 × 192 8 4.187 2.654 35.619
104 100 768 × 192 8 7.090 4.407 70.841
104 200 768 × 192 8 11.87 7.436 143.56
104 200 768 × 768 × 192 8:8 11.42 6.623 149.21
104 300 768 × 192 8 16.04 10.75 218.17
2 × 104 8 512 × 512 × 64 16:16 1.311 0.797 9.185
3 × 104 5 512 × 512 × 64 16:16 1.044 0.854 8.387
105 1 1024 × 128 16 0.921 0.849 8.935
105 1 1024 × 1024 × 128 8:8 0.969 0.899 9.624
105 10 1024 × 128 16 1.105 0.633 12.932
105 18 1024 × 128 16 1.489 1.026 17.082
105 19 3072 × 192 32 1.483 1.037 17.719
105 20 1024 × 128 16 1.540 1.056 18.559
105 50 3072 × 192 32 2.580 1.727 40.427
106 0 1024 × 1024 × 512 6:6 0.967 0.949 19.714
106 10 512 × 128 8 0.877 0.741 21.992
106 20 512 × 512 × 128 8:8 1.029 0.742 28.655
106 30 512 × 128 8 1.183 0.273 32.327
106 35 512 × 128 8 1.253 0.267 35.523
106 36 1536 × 384 8 1.277 0.352 36.153
106 37 512 × 128 8 1.290 0.996 36.824
106 100 1536 × 384 8 2.406 1.744 86.076
107 0 1024 × 1024 × 512 8:8 0.954 0.939 41.537
107 0 1028 × 512 8 0.839 0.802 37.229
107 0 2048 × 512 8 0.890 0.811 36.077
107 1 2048 × 512 8 0.852 0.742 36.246
107 5 2048 × 512 8 0.840 0.846 37.324
107 10 2048 × 512 8 0.839 0.558 39.280
107 20 2048 × 512 8 0.865 0.629 42.902
107 30 2048 × 512 8 0.887 0.566 48.445
107 40 768 × 768 × 192 8:8 1.015 0.813 57.965
107 70 768 × 192 8 1.238 0.557 72.436
107 75 768 × 192 8 1.283 0.293 75.657
107 77 2048 × 512 8 1.201 0.987 76.363
107 80 2048 × 512 8 1.243 1.001 78.988
107 100 768 × 192 8 1.580 1.104 94.772
107 200 1024 × 512 2 2.284 1.725 181.83
107 400 2048 × 512 4 3.830 2.962 356.98
107 500 1024 × 512 2 4.479 3.454 448.15
107 1000 1024 × 512 2 7.592 5.861 893.07
107 1500 1024 × 512 2 10.21 8.028 1349.6
107 2000 1024 × 512 2 12.69 9.999 1801.2
107 3000 1024 × 512 2 17.67 13.53 2713.6
108 5 1024 × 256 8 0.803 0.466 73.075
108 20 1024 × 512 4 0.811 0.653 79.221
108 120 1152 × 384 6 1.099 0.523 132.73
108 150 1152 × 384 6 1.229 0.439 153.65
108 165 1152 × 384 6 1.258 1.000 165.86
108 170 1152 × 384 6 1.322 1.009 169.75

build scaling laws for H ≥ Hcrit that successfully describe convec-
tion for this case. This may indicate that the two convective regimes

are driven by different physical processes, and that our theoreti-
cal framework only accounts for the physical processes governing
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Figure 1. (a) Determination of Hcrit as a function of Ra, blue points and
red points correspond to numerical simulations with a positive and negative
bottom heat flux, respectively. The black solid curve shows eq. (18) with
CN = 1.5. (b) Nusselt number (NuRB) as a function of the Rayleigh number
(Ra) for Rayleigh–Bénard convection and free slip boundary conditions.
The black solid line is the predicted scaling law (Table 1) for CN = 1.5,
provided that NuRB = 0.5 Hcrit and following eq. (11). Circle symbols are
from Sotin & Labrosse (1999), square symbols from Moore (2008) and
diamond symbols show our new numerical simulations (Table 2).

mixed heating convection for H ≥ Hcrit. In the next section, we dis-
cuss the possible physical processes that may be involved in each
system.

4 M E C H A N I S M S O F I N S TA B I L I T Y

The theoretical framework developed in Section 2 is based on
Howard’s theory, in which thermal instabilities grow in the TBL
by conductive cooling (or heating) only. In other words, the TBL
is free to evolve without constraints from the convective interior.
Following this theory, instabilities detach from the TBL and sink
(or rise) when the Rayleigh number of the TBL (RaTBL) reaches
a threshold value characterizing its own stability. The conductive
growth of the TBL, therefore, defines the maximum temperature at
its base. The threshold value of RaTBL does not depend on Ra, and
is equal to its value for Ra = Racr, that is, RaTBL = Racr/16 ≈ 41
for a bottom-heated system (eq. 3) and RaTBL = Racr ≈ 657 when
volumetric heating is dominant. The incapacity of our scaling laws
to explain observations for H ≤ Hcrit may indicate that instabilities
are generated by a different mechanism than conductive growth,
or that the conductive growth of instabilities is perturbed by an
additional mechanism. For mixed heated systems with H ≤ Hcrit,
an obvious mechanism that may alter conductive growth of insta-
bilities is the interaction with upwellings or downwellings arriving
from the opposite TBL. A simple way to identify whether additional
or different mechanisms exist is to measure the thermal boundary

Figure 2. Comparison between predictions and measurements for (a) the
dimensionless surface heat flux (Nut), (b) the dimensionless temperature
jump across the top thermal boundary layer (�TTBL, t/�T), and (c) the
dimensionless temperature jump across the bottom thermal boundary layer
(�TTBL, b/�T) for the cases with H ≤ Hcrit. The scaling laws used for
predictions are listed in Table 1, and are given by eqs (17), (30), (36) for
(a), (b), (c), respectively. The solid lines correspond to a perfect agreement
between predictions and measurements, while the R2 (eq. 43) values of the
fits are indicated in each panel. Errors bars in (a) represent the temporal
fluctuations of the measured Nut, which in turn induce error bars, according
to eq. (30), in the prediction of �TTBL, t. The symbol colours represent the
corresponding value for H/Hcrit.

layer Rayleigh number, RaTBL, for comparison with the theoretical
values given above.

4.1 Rayleigh number of the thermal boundary layer

As a first step, we focus on the cases where volumetric heating is the
dominant source of heating, that is, H ≥ Hcrit, for two representative
cases, Ra = 104 and Ra = 107. The expression of RaTBL given in
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Figure 3. Horizontally averaged temperature profile for Ra = 104 and Ra = 107 considering different values of H. Temperature profiles are rescaled in a way
that the maximum temperature along the profile is equal to one. This enables verifying eq. (38), which states that the ratio of the temperature at the base of
the top thermal boundary layer (indicated by the black arrows) over the temperature at the top of the conductive layer (indicated by the red arrows) does not
change with H.

eq. (3) can be written as

RaTBL = Ra
�TTBL

�T

(
δTBL

d

)3

. (44)

Measurements of RaTBL rely on the determination of the thickness
and the temperature jump across the top TBL. Different methods for
determining the base of the TBL lead to similar results in terms of
temperature, but may induce dramatic change in terms of thickness.
Preliminary results (described in more detail in Appendix) indicate
that the definition of the TBL used in the previous section, that is,
the closest point to the top surface where the first spatial derivative
is smaller than 1 per cent of the minimum value along the profile,
is appropriate for results at Ra = 104, but is not ideal at Ra = 107.
We, therefore, adapted the method determining the base of the TBL
to the value of Ra. For Ra = 104, we keep the previous definition,
while, for Ra = 107, we follow a criterion based on the second spatial
derivative of temperature rather than its first spatial derivative. For
each numerical simulation, the value of RaTBL is averaged over
time until it oscillates around a stable value, thus reducing the
uncertainties. Note that the two different methods used to determine
the base of the TBLs give a temperature jump across the TBL that
typically differ by less than 1 per cent, which shows the robustness
of the results derived in the previous section. Results are plotted in
Fig. 5(a) for Ra = 104 and Ra = 107, and show small fluctuations
induced by uncertainties on the measurements. When averaged over
all the numerical simulations available, we find that RaTBL = 540
and RaTBL = 580 for Ra = 104 and Ra = 107, respectively. These
values are in close agreement with the critical Rayleigh number
(Racr = 657.5), which strongly support the validity of our theory.

As a second step, we use the same method for the cases with H
≤ Hcrit. For cases where 0 < H ≤ Hcrit, the determination of RaTBL

at Ra = Racr is non-trivial. We therefore focus our reasoning on
Rayleigh–Bénard convection (H = 0) where a theoretical prediction
for RaTBL has been proposed, and assume that the conclusions can
be extended to mixed heating convection with H ≤ Hcrit. Fig. 5(b)
shows that RaTBL decreases sharply with decreasing H and reaches
a very low value for Rayleigh–Bénard convection. In that case,
numerical simulations in 3-D Cartesiangeometry indicate RaTBL

≈ 90 and RaTBL ≈ 20 for Ra = 104 and Ra = 107, respectively.
These values are in clear disagreement with the theoretical value
for the purely bottom-heated system, that is, Racr/16 ≈ 41 (eq. 3).
Furthermore, Sotin & Labrosse (1999) have previously conducted
a similar analysis and found values for RaTBL much lower than
the theoretical value, in agreement with our result at Ra = 107.
This shows the complexity of the convective system when H = 0.
As an example, we consider the case where RaTBL is much lower
than its theoretical value. This suggests that either the thickness
of the TBL and/or the temperature jump across it is (are) lower
than the predicted value(s). Fig. 2(b) shows that in some cases
the temperature jump is actually lower than the predicted value;
differences are however not enough to explain the values of RaTBL

previously reported. A reduction of the thickness of the TBL must,
therefore, be invoked to explain the low values of RaTBL. Following
a similar reasoning, one can conclude that values of RaTBL much
larger than the theoretical prediction indicate an increase of the
thickness of the TBL. For both cases, other mechanisms than the
simple conductive growth may thus be involved in the generation of
instabilities, altering this growth, and providing better explanation
to the observed values of RaTBL.

4.2 Mechanisms generating instabilities

We now search for suitable mechanisms explaining the variability of
RaTBL (Fig. 5b), �TTBL, t (Fig. 2b) and �TTBL, b (Fig. 2c) compared
to their theoretical values when H ≤ Hcrit. The main difference
between convective regimes with H ≥ Hcrit and H ≤ Hcrit is that
in the first case only one TBL is present (at the top of the sys-
tem), while in the second case a second TBL (at the bottom of the
system) is also present. Therefore, for H ≤ Hcrit, the likely mech-
anisms influencing the growth of instabilities from the TBL may
involve mechanical interactions between this TBL and hot (cold)
instabilities arriving from the opposite bottom (top) TBL. Before
investigating alternative mechanisms for generating instabilities, we
give a brief presentation of the conductive growth with a particular
emphasis on the interpretations of RaTBL values.
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Figure 4. Comparison between predictions and measurements for (a) the
dimensionless surface heat flux (Nut), (b) the dimensionless temperature
jump across the top thermal boundary layer (�TTBL, t/�T), and (c) the
temperature jump across the convective layer (�Tb/�T), that is, between the
surface and the top of the conductive layer, for the cases where H ≥ Hcrit.
The scaling laws used for predictions are listed in Table 1. The solid lines
correspond to a perfect agreement between predictions and measurements,
while the R2 (eq. 43) values of the fits are indicated in each panel. Errors
bars in (a) represent the temporal fluctuations of the measured Nut, which in
turn induce error bars, according to eq. (30), in the prediction of �TTBL, t.

As previously mentioned, the conductive growth of instabilities
was first suggested by Howard (1966). He considered a purely
bottom-heated layer of fluid with a constant temperature. In this sys-
tem, the two TBLs thicken by conduction until they reach a critical
threshold and break-off to generate thermal instabilities. As a re-
sult, TBLs are stable as long as RaTBL is lower than its critical value.
This observation has been used to describe the stability of a convec-
tive system, with lower RaTBL indicating a more stable layer, where
instabilities are less likely to be generated. However, the observa-
tion of Howard (1966) relies on a system without a well-developed
convection. By contrast, when well-developed convection operates

each instability attracts material from its neighbourhood. The extent
of the region affected by one particular instability defines a ‘sphere
of influence’, in which the fluid is moving towards the instability.
Within this sphere of influence, the TBL is therefore unstable and
its RaTBL is larger than its critical value. Locally, however, the pres-
ence of a well-developed instability prevents the development of
new ones. New instabilities are generated in the gaps between the
different spheres of influence. In those gaps, RaTBL may be locally
lower than its critical value, which would trigger the conductive
growth of the TBL. The thermal structure of the TBL, in particular
its temperature jump and thickness, then evolves following a specific
conductive profile until RaTBL reaches its critical threshold, at which
time an instability is generated. Several conclusions can be drawn
from this description. First, instabilities for well-developed convec-
tion are more likely to be generated where RaTBL is low, which is
somewhat different from the conclusion of Howard (1966). Second,
the conductive growth of the TBL imposes a maximum temperature
jump across this TBL corresponding to a specific thickness. Note
that all the instabilities may not be generated by the conductive
growth of the TBL, but, provided that the system has a large enough
horizontal extent, the hot temperature profile would depict the lo-
cation where the thermal structure of the TBL is imposed by this
conductive growth. This explains the observation that RaTBL in a
purely volumetrically heated system (Vilella & Kaminski 2017) or
in a mixed heating system dominated by internal heating (Fig. 5a)
is equal to Racr.

The reasoning above assumes that the TBL is not influenced by
the convective interior, which is incorrect when H ≤ Hcrit because
of the presence of instabilities coming from the opposite TBL. In-
teractions between the two TBLs have been proposed in the past
(Labrosse 2002; Moore 2008), but were not clearly characterized.
In order to better visualize and identify the mechanisms triggering
instabilities, we conducted an additional numerical simulation of
Rayleigh–Bénard convection, that is, H= 0, in 2-D Cartesiange-
ometry for Ra = 106. Fig. 6 shows an example of a hot upwelling
reaching the top TBL. When the hot upwelling reaches the top TBL,
it induces a dramatic thinning of the TBL as well as an increase of
the temperature contrast. This causes a clear decrease of RaTBL,
which drops to ∼10, far below the theoretical prediction Racr/16 ≈
41 (eq. 3). The TBL then grows by conduction until it reaches its
critical threshold, Racr/16 ≈ 41, generating a cold downwelling at
the exact location where the hot upwelling impacted the top TBL
(right panel in Fig. 6). Therefore, while the physical processes at
the origin of the thermal instability are the same as those described
in our theoretical framework, the thermal structure evolution of
the TBL is, however, totally different. For H ≤ Hcrit, an impacting
mechanism, as that illustrated in Fig 6, may play a key role in this
evolution. Furthermore, in this ‘instability impacting’ mechanism,
the hot temperature profile depicts the TBL at the location where the
hot instability impacted the top TBL, whereas this thermal structure
of the TBL is very different from the one obtained by conductive
growth. In that case, the hot temperature profile provides informa-
tion on the instabilities coming from the opposite TBL rather than
on the TBL itself. Larger temperature jump across the TBL and
smaller RaTBL are expected when the instability impacting mecha-
nism is operating. However, because hot instabilities become weaker
with increasing H, the instability impacting mechanism should only
influence the result for moderate values of H. Interestingly, we mea-
sured larger �TTBL, t than predicted in few cases (Fig. 2b); all of
these were for H close to zero. We also measured larger �TTBL, b

than predicted in almost all the numerical simulations with H ≤ Hcrit

(Fig. 2c). In particular, the misfit becomes larger with increasing
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Figure 5. (a) Rayleigh number of the top thermal boundary layer (RaTBL) as a function of the ratio between the prescribed and critical heating rates (H and
Hcrit). (b) Same as panel (a), but only the values for H/Hcrit ≤ 1 are shown. Two values of the Rayleigh number are considered, Ra = 104 (red squares) and
Ra = 107 (blue squares). In all cases, the thermal boundary layer is determined using the hot temperature profile, and its base is set as the closest point to
the top surface where either the first (for Ra = 104) or the second (for Ra = 107) spatial derivative is smaller than 1 per cent of the minimum value along the
profile. The horizontal dashed line corresponds to Racr = 657.5, while the vertical solid line corresponds to Hcrit.

Figure 6. Details of the dimensionless temperature field (bottom panels) of a 2-D Cartesiannumerical simulation conducted for Ra = 106 and free slip top and
bottom boundary conditions (for full models, see Supporting Information Fig. S2). The top panels plot the corresponding Rayleigh number of the top thermal
boundary layer (RaTBL) along the horizontal direction, where the vertical axis stops either at 100 (left panel) or 1000 (right panel). On the left panel, a hot
upwelling reaches the top thermal boundary layer (black arrow) reducing the thickness of the TBL and inducing a very low value of RaTBL. On the right panel,
corresponding to the same location a short time after, a cold downwelling (black arrow) is generated where the hot upwelling has reached the top thermal
boundary layer. The entrainment of hot (cold) instabilities by cold (hot) instabilities are shown by the white arrows.

values of H/Hcrit, while the influence of the instability impacting
mechanism is also increasing because cold downwellings become
stronger. We, therefore, conclude that for all the cases in Figs 2(b)
and (c), where the measured temperature jump is larger than the pre-
dicted value, instability impacting mechanism is present and alters
the thermal structure of the TBL inferred from the hot temperature
profile. This means that some instabilities may be generated by the
conductive growth of the TBL without leaving visible features on
the hot temperature profile.

Fig. 2(b) further shows results where the measured �TTBL, t is
lower than the predicted value. This cannot be explained with the
instability impacting mechanism and another mechanism should
be invoked. An interesting observation of this convective system
is the important interior mixing when H ≤ Hcrit. As illustrated in
Fig. 6, for H = 0 lateral variations in temperature are small and
are mostly restricted to hot and cold instabilities. Materials located
close to the top (bottom) TBL coming from hot (cold) instabilities
are entrained back to the bottom (top) by cold (hot) instabilities
(white arrows in Fig. 6), such that an efficient mixing occurs. This
process, although weaker, can still be observed for Ra = 107 and
H = 30 (Fig. 7a). It, however, disappears for H ≥ Hcrit. For in-
stance, for H = 2000 (Fig. 7b) cold instabilities sink to the bottom

without being entrained back to the top, because of the absence of
hot upwellings. We therefore suggest that for H ≤ Hcrit the efficient
interior mixing produces important lateral flow at the base of the
TBL, which induces an erosion that prevents the full development
of the conductive growth of the TBL, and reduces the tempera-
ture jump. This erosion mechanism explains the observed values
of �TTBL, t larger than their respective predicted value. We however
expect the TBL erosion mechanism to become less important with
increasing heating rates, since the mixing efficiency is reduced, as
indicated by the decrease of the RMS velocity of the system (Weller
et al. 2016). In Fig. 8, we plotted the misfit between the predicted
and observed temperature jumps across the top TBL. Interestingly,
this misfit strongly decreases with increasing H, reaching less than
5 per cent for H = Hcrit. Considering the uncertainties inherent to
the numerical simulations, for example, related to 2-D-geometry,
predictions can be viewed as successful for H close to Hcrit. More-
over, the large scattering of the misfit for values of H close to zero
indicates that the three suggested mechanisms are competing with
each other, such that their relative importance varies depending on
the numerical simulation.

The two additional mechanisms presented in this section, that is,
instability impacting and TBL erosion mechanisms, may provide
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Figure 7. Details of the dimensionless temperature field of 2-D Cartesian-
numerical simulations conducted for Ra = 107 with H = 30 (top panel) or
H = 2000 (bottom panel). The boundary conditions are free slip at both the
top and the bottom. The temperature field in the top panel is truncated to a
domain aspect ratio 2, instead of 8 for the full model, in order to show the
same domain aspect ratio that for the bottom panel (for the full model, see
Supporting Information Fig. S3).

Figure 8. Misfit between the measured temperature jump across the top
thermal boundary layer (TBL) and the temperature predicted by eq. (30)—
as illustrated in Fig. 2b—as a function of the ratio of the heating rate (H) over
the critical heating rate (Hcrit). H/Hcrit close to zero corresponds to the case
where internal heating is negligible, while H/Hcrit close to one corresponds
to the case where bottom heating is negligible.

an explanation for the differences observed in Fig. 2. It is, however,
important to keep in mind that our reasoning is only based on ob-
servations of the convective system and is, thus, mostly empirical.
Theoretical modelling and quantitative studies should be conducted
to describe these mechanisms in more detail and to assess their abil-
ity to characterize the convective system. This, however, is beyond
the scope of this study.

5 A P P L I C AT I O N T O E A R LY E A RT H

During the first tens of millions years of Earth’s existence, our planet
underwent several dramatic events. In particular, a combination of
heat sources, mainly provided by planetary accretion, core forma-
tion and heat released by the decay of short-lived radionuclides 26Al
and 60Fe, is believed to have induced a total or partial melting of
the Earth’s mantle (Tonks & Melosh 1993; Elkins-Tanton 2012).
This event, usually referred to as the magma ocean period, sets the
initial condition for the thermal evolution of the Earth’s mantle, so
that its good description is important for a better understanding of
its subsequent evolution and current properties. For instance, the
initial compositional structure is crucial for explaining the presence
of hidden reservoirs of primitive undegassed material in today’s
deep mantle, as suggested by the high 142Nd/144Nd ratios (Hofmann
1997; Boyet & Carlson 2006), by the dispersion of the helium iso-
topic ratio, 3He/4He, in ocean island basalts (Lupton & Craig 1975;
Farley et al. 1992) or by the anomalies in 182W compared to mantle
standard (Touboul et al. 2012; Puchtel et al. 2013; Rizo et al. 2016).
Elkins-Tanton (2008) proposed that, at the end of the magma ocean
solidification, the density profile leads to an unstable situation. This
requires a subsequent complete mantle overturn to produce a sta-
ble density structure. Alternatively, Maurice et al. (2017) found
that convection in the solidified mantle may have started before the
complete solidification of the magma ocean. In that case, the solidi-
fied mantle would have mixed progressively during its solidification
and a complete overturn would, therefore, not be required. A key
issue, however, is to explain the presence of distinct primitive reser-
voir within the contemporary mantle. Here, we propose that during
the solidification of the magma ocean, the heating of the solidified
mantle was dominated by volumetric heating, because of the heat
released by 26Al and 60Fe. In that case, and as illustrated by Fig. 3,
the maximum temperature of the mantle would not be found at the
base of the mantle but within the solidified mantle, inducing an
important quantity of melt in this region. Afterwards, as the man-
tle cooled down, this melt should have solidified forming material
enriched in iron, and therefore denser than the ambient mantle. If
this material was dense enough, that is, the melt was sufficiently
enriched in iron, it may have produced distinct undegassed reser-
voirs at the base of the mantle that have remained unmixed until
today (e.g. Li et al. 2014). This hypothesis is somewhat similar to
the model proposed by Labrosse et al. (2007), except that in our
case the primitive reservoir has been melted twice.

To assess the relevance of our proposition, we estimated the value
of both Hcrit and the volumetric heating rate of the solidified mantle,
Hm, as a function of the vertical extent of the solidified mantle, dm. A
schematic illustration of our model is shown in Fig. 9(a). The calcu-
lation of Hcrit relies on the determination of the Rayleigh number of
the solidified mantle (eq. 18), which is itself a function of the prop-
erties of the solidified mantle (assumed values are listed in Table 3),
dm (input parameter of the model), and the temperature jump across
the solidified mantle, �Tm = TCMB − Tint, with TCMB and Tint being
the temperatures at the core–mantle boundary and at the interface
between the solidified mantle and the magma ocean, respectively.
To quantify �Tm, we further assume that both Tint and TCMB are
given by the mantle solidus temperature. Solidus as a function of
depth (pressure) depends on the exact composition. For the sake of
simplicity, we use a solidus profile compiled from different experi-
mental studies of peridotites (Zhang & Herzberg 1994; Hirschmann
2000; Andrault et al. 2011). We further assumed that Hm is related
to the heat released by the decay of 26Al and 60Fe and is calculated
using the parameters given by S̆rámek et al. (2012). The value of
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(a) (b)

Figure 9. (a) Schematic illustration of our magma ocean cooling model at a time t = tf, where tf is the time elapsed after the solar system formation. The
solidified mantle extends over a distance dm and is characterized by a temperature jump �Tm = TCMB − Tint, TCMB and Tint being the temperature at the
core–mantle boundary (CMB) and at the interface between the magma ocean and the solidified mantle, respectively. (b) Black solid lines correspond to the
heating rate of the solidified mantle (Hm) as a function of dm calculated for different values of tf. Red solid line corresponds to the critical value of Hm as a
function of dm.

Table 3. Parameters used to model the solidified mantle during the magma ocean cooling.

Symbol Unit Description Value

ρ kg m−3 Density 4400
α K−1 Thermal expansion coefficient 10−5

λ W m−1 K−1 Thermal conductivity 5
κ m2 s−1 Thermal diffusivity 10−6

g m s−2 Acceleration of gravity 10
η Pa s Viscosity 1020

Hm depends on both dm and the time elapsed after the solar sys-
tem formation (i.e. after the crystallization of calcium–aluminium
inclusions), tf. Models of magma ocean evolution (Lebrun et al.
2013; Salvador et al. 2017) indicate a cooling time of the order
of 1 Myr. However, because the cooling time of the magma ocean
and the timing of this event remain poorly constrained, we consid-
ered three representative values for tf, tf = 1 Myr, tf = 3 Myr and
tf = 10 Myr. Fig. 9(b) plots Hcrit and Hm as a function of dm. We
found that, for a given value of dm, Hm decreases with tf. More inter-
estingly, Hm remains larger than Hcrit even for tf = 10 Myr. In other
words, during the magma ocean cooling process the heating rate in
the solidified mantle may be such that the maximum temperature
is reached within the solid mantle, which in turn may indicate the
generation of a significant amount of melting within the solidified
mantle.

One should, however, keep in mind that these results rely on
several important assumptions. First, they are valid for steady-state
convection, while properties of the solidified mantle, especially
its thickness, are changing with time. The typical amount of time
with which these properties are varying scales approximately as the
cooling time of the magma ocean. If this time is large compared
to the typical time for convection, the convective system can be
considered in steady state, and our scaling laws may be applied. In
the opposite case, the convective system remains in a transitional
regime, and our scaling laws may not be applied. Unfortunately,
there is, to date, no constraint that would allow discriminating be-
tween these two possibilities. In addition, the behaviour of scaling
laws during transitional regimes remains to be investigated. Sec-
ond, we assumed that the abundances of radioactive isotopes in the
solidified mantle were the same as those in the bulk mantle, that
is, the combination of the magma ocean and the solidified mantle.
Radioactive isotopes, however, may have been partitioned between

the liquid and solid phases. The exact partitioning depends on the
mechanism for magma ocean cooling (Elkins-Tanton 2012) and
is difficult to estimate. Moreover, the abundances of radioactive
isotopes also depends on the time elapsed after the solar system for-
mation, which is not well constrained (e.g. Touboul et al. 2012). If
the magma ocean period occurred much later than 10 Myr, then the
short-lived radioactive isotopes would already be extinct impacting
our conclusions importantly. Third, Hcrit has been determined here
for a Cartesian geometry, whereas the Earth’s mantle is spherical.
Spherical geometry would increase the value of Hcrit (O’Farrell &
Lowman 2010) and therefore makes the occurrence of melting more
difficult. Finally, the method used here, based on scaling laws, ne-
glects many complexities such as the effect of the variation of fluid
properties, in particular variations of viscosity with temperature and
grain size. Variations of temperature are relatively modest for low
values of dm but becomes important at the end of the magma ocean
stage. In that case, convection in the solidified mantle may operate
in a so-called ‘stagnant-lid regime’ (e.g. Davaille & Jaupart 1993;
Moresi & Solomatov 1995), in which large variations of viscosity
with temperature lead to the formation of a top conductive layer
where vertical and horizontal flows are inhibited. In addition, vis-
cosity varies importantly with the grain size (e.g. Karato & Wu
1993), which itself may change with space and time. In particular,
it has been suggested that the cooling process of the magma ocean
evolves with time (Elkins-Tanton 2012; Ballmer et al. 2017), and
this evolution may, in turn, lead to variations in grain size. Although
the variations of viscosity with temperature and grain size remain
a matter of debate, these variations, together with the complexities
we discussed above, must certainly have had a strong influence that
impacted, importantly, the thermal convection in early Earth. How-
ever, all these complexities will probably not change the value of
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Hcrit by several orders of magnitude such that the maximum tem-
perature may still be expected to occur within the solidified mantle.
Furthermore, compressibility effects imply a progressive increase
of temperature with depth. This, together with the typical tempera-
ture profile shown in Fig. 3, indicates that the maximum temperature
may be localized close to the bottom, inducing a local generation
of melting.

Complex numerical simulations of diphasic flow, similar to those
performed by Ulvrová et al. (2012), are further required to inves-
tigate our scenario in detail. In particular, it is important to further
quantify the amount and localization of the melting, since in our
approach melting is only inferred from the value of the heating rate.
Again, it is also important to keep in mind that the exact value of tf

is largely unknown, while impacting our conclusions importantly.
Stronger constraints on the different events occurring during the
early Earth are crucial to establish a robust scenario of this pe-
riod. Despite these limitations, the model we propose here has the
advantage to reconcile current understanding of magma ocean dy-
namics and geochemical observations pointing to the presence of a
primitive undegassed reservoir in today’s Earth mantle.

6 C O N C LU S I O N

We have developed theoretical scaling laws for the temperature
jump across the TBL(s) and the surface heat flux of convecting
systems with mixed heating. The scaling laws for Rayleigh–Bénard
convection and for mixed heating convection for H lower than a
threshold value Hcrit, defined as the amount of internal heating for
which the bottom heat flux changes sign, from positive (H ≤ Hcrit) to
negative (H ≥ Hcrit), failed to predict the temperature jump across
the TBL. We argued that this failure is caused by different com-
peting ways to generate and grow instabilities. More precisely, the
conductive growth of instabilities, which operates in purely inter-
nally heated systems, also occurs in mixed heated systems with H ≤
Hcrit, but is altered by interactions with instabilities (upwellings or
downwellings) coming from the opposite TBL. Conductive growth
is cut short, and instabilities are more easily generated. The scal-
ing laws in mixed heating convection for H larger than Hcrit are,
however, in excellent agreement with measurements, validating, in
this case, a pure conductive growth as the only mechanism driv-
ing the development of instabilities. These results clearly show that
different mechanisms of destabilization are operating in TBLs, and
that the classical theory of Howard (1966) is only valid when H ≥
Hcrit. Application of our results to the cooling of the early Earth
magma ocean may suggest that convection in the solidified part of
the mantle was dominated by volumetric heating. In that case, large
quantities of melt would have been produced close to the interface
with the core, leading to the formation of distinct reservoirs of prim-
itive undegassed material in today’s Earth mantle, as that advocated
by several geochemical observations. This scenario may stand as a
coherent model for explaining the evolution of the early Earth.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.
Figure S1. Comparison between predictions and measurements for
(a and b) the dimensionless surface heat flux (Nut), (c and d) the
dimensionless temperature jump across the top thermal boundary
layer (�TTBL,t/�T) and (e and f) the temperature jump across the
bottom thermal boundary layer (�TTBL,b/�T), for the cases where
H ≤ Hcrit and H ≥ Hcrit, respectively. The scaling laws used for
predictions are from Moore (2008). The solid lines correspond to
a perfect agreement between predictions and measurements, while
the R2 values of the fits are indicated in each panel. The symbol
colours in the left panels represent the corresponding value for Ra.
Figure S2. Dimensionless temperature fields of a 2-D Cartesiannu-
merical simulation conducted for Ra = 106 and free slip top and
bottom boundary conditions. The two temperature fields are sepa-
rated by a short time, the top panel being earlier than the bottom
one, and are used in Fig. 6.
Figure S3. Dimensionless temperature fields of a 2-D Cartesiannu-
merical simulation conducted for Ra = 107, H = 30 and free slip
top and bottom boundary conditions. This temperature field is used
in Fig. 7.
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : D E F I N I T I O N O F T H E R M A L
B O U N DA RY L AY E R S

Because the TBL does not have any precise definition, different
methods have been used to define its base. In this study, we define
the base of the TBL as the point where conduction becomes negligi-
ble. Here, we numerically identify this depth with the closest point
to the top surface where the first spatial derivative (T

′
) is smaller

than 1 per cent of the minimum value along the profile. For instance,
for the top TBL, this corresponds to the largest value of the dimen-
sionless height z for which T

′
(z) > 0.01 min(T

′
). This definition has

the advantage to be fully coherent with the scaling analysis we have
developed in this study. Fig. A1 shows the measured RaTBL as a
function of the heating rate using this method. A striking result is
the large scattering for H/Hcrit ≈ 1, that is, for systems analogue to
a purely volumetrically heated system. Vilella & Kaminski (2017)
previously noted the difficulty to estimate the thickness of the TBL
in the purely volumetrically heated case. To overcome this issue,
they used the second spatial derivative of temperature rather than its
first spatial derivative, arguing that, for this case, it provides a more
accurate estimate of the TBL. We, therefore, follow this definition
and we found a smaller scattering in Fig. 5. Note that the conclu-
sions are equivalent using both definition, that is, RaTBL increases
sharply with the heating rate for H ≤ Hcrit, while it remains almost
stable for H ≥ Hcrit. A notable difference, however, is that the aver-
age value of RaTBL for H ≥ Hcrit is around 400 with the first method
(Fig. A1), and 580 with the second method (Fig. 5). Interestingly,
this latter value is very close to that of the critical Rayleigh number,
Racr = 657.5.

Figure A1. (a) Rayleigh number of the top thermal boundary layer (RaTBL) as a function of the ratio between the prescribed and critical heating rates (H
and Hcrit) for numerical simulations conducted with Ra = 107. (b) Same as panel (a), but only the values for H/Hcrit ≤ 1 are shown. In all cases, the thermal
boundary layer is determined using the hot temperature profile, and its base is set as the closest point to the top surface where the first spatial derivative is
smaller than 1 per cent of the minimum value along the profile. The horizontal dashed line corresponds to Racr = 657.5, while the vertical solid line corresponds
to Hcrit.
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