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Temperature and heat flux scaling laws for
isoviscous, infinite Prandtl number mixed

heating convection.
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Comparison with previous scaling laws

Several previous studies have established empirical scaling laws for mixed heating
convection in a Cartesian geometry (Sotin & Labrosse 1999; Moore 2008; Choblet &
Parmentier 2009) or in a spherical geometry (Jarvis 1993; Shahnas et al. 2008; Deschamps
et al. 2010; Choblet 2012; Weller et al. 2016). Although based on the same convective
system, these empirical scaling laws are different from the theoretical ones developed
in this study. The differences may be caused by the numerical model, e.g., 2D vs 3D
geometry, the explored parameter space, i.e., the ranges of values for the heating rate
(H) and Rayleigh number (Ra) considered, or by different methods used to measure the
properties, in particular different definitions of the thermal boundary layer (TBL). In this
later case, previous studies used the horizontally averaged temperature profile to define
the TBL, this approach relying on a balance between heat transport mechanisms. By
contrast, our approach is based on the hot temperature profile and relies on a balance
between forces. These frameworks are fundamentally different and lead to significant
differences (Vilella & Kaminski 2017). Here, we only compared our results with the scaling

laws proposed by Moore (2008), since this study is in Cartesian geometry and provides
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scaling laws for the top and bottom TBLs. Moreover, we plot our dataset against the
scaling laws of Moore (2008) because we cannot test his dataset against our scaling laws,
since this would require full distributions of temperature. Note that the study of Moore
(2008) also involves 2D-Cartesian geometry, i.e., discrepancies between both studies may
not be used to evaluate geometrical effects. However, the scaling laws inferred by Moore
(2008) have been confirmed in 3D spherical geometry (Weller et al. 2016), and Choblet &
Parmentier (2009) have shown that there is no systematic differences between numerical
simulations conducted in 2D- and 3D-Cartesian geometry.

Previous scaling laws were all determined for heating rates lower than its critical thresh-
old (Hrit), i.e., heat is supplied from the bottom. We therefore begin by considering only
cases where H < H..;+. Figure 1a shows the predicted value for the dimensionless surface
heat flux (Nu:) by Moore (2008) as a function of the measured values in our numerical
results. Our results are in excellent agreement with this scaling law (R? = 0.9957). This
result is not surprising, because both the scaling law proposed by Moore (2008) and ours
are based on the same theoretical arguments. The measurements of the temperature
jump across the top (Alrpr.:) and bottom (Alrpr,) TBL are more challenging. To
be consistent with Moore (2008), we follow the definition used in his study (see details
therein). Surprisingly, the fit for Alrpr ¢ (R? = 0.8197) is close to the one obtained
with our scaling law (fig. 1b, R? = 0.7880). More importantly this fit is much poorer
than that obtained by Moore (2008) with his own dataset. For Al'rpr, (R? = 0.9700),
our data fit the scaling law proposed by Moore (2008) much better than our theoretical
prediction (fig. 2c, R = —0.9971), but it is again poorer than the fit obtained with his
own dataset. A careful examination of the results in fig. 1 indicates that the poor fit
to our dataset is essentially due to the cases with Ra < 10° and H ~ H.,.;. Excluding

these cases improves the fit for Al'rpy, + from R? = 0.8197 to R? = 0.9815. Furthermore,
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these cases are almost absent in the set of numerical simulations performed by Moore
(2008). Discrepancies between our scaling laws and that obtained by Moore (2008) may
thus be explained by differences in the explored dataset. The failure of the scaling laws
to reproduce the results for low Ra when internal heating is dominant was already noted
in the purely volumetrically heating case (Deschamps et al. 2012; Vilella & Kaminski
2017). Furthermore, Vilella & Kaminski (2017) showed that scaling laws based on the
hot temperature profile, similar to the theoretical scaling laws developed in this work,
are more successful in predicting thermal structure of the TBL at low Rayleigh number.
They further argued that scaling laws based on the horizontally averaged temperature
profile do not capture the physics correctly, because this profile averages the TBL during
different stages of its evolution.

Figure 1b,d,f plot the theoretical predictions from Moore (2008) against our measure-
ments for cases where H > H,..;;. The predictions are in clear disagreement with the
measurements, and in that case our scaling laws are much more successful (fig. 4). This
is not surprising, since the scaling laws of Moore (2008) was not established for cases
where H > H_..;+. It however provides an additional evidence that the convective regime
for H > H_.,;; is different from the one for H < H.p.

The results presented here confirm the differences found by Vilella & Kaminski (2017)
between scaling laws obtained using the hot and horizontally averaged temperature pro-
files. In particular, it is important to emphasize that the precise understanding of the
convective system is required to establish scaling laws. For instance, our theoretical frame-
work neglects important processes of the convective system for H < H,,;; and is therefore
not accurate in predicting the thermal structure of the two TBLs. However, previous scal-
ing laws based on the horizontally averaged temperature profile also neglects part of the

physics of the system. In particular, this temperature profile averaged the TBL at differ-
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ent stage of its evolution, and lead to inconsistent results for some values of Ra and H.
When one excludes these specific cases, however, our numerical results agree well with the
scaling laws proposed by Moore (2008), further supporting the validity and consistency

of our numerical results.
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FIGURE 1. Comparison between predictions and measurements for (a), (b) the dimensionless
surface heat flux (Nu:) (c¢), (d) the dimensionless temperature jump across the top thermal
boundary layer (Al'rpr,+/AT), and (e), (f) the temperature jump across the bottom thermal
boundary layer (Al'rpr,/AT), for the cases where H < Hepir and H > Hepit, respectively. The
scaling laws used for predictions are from Moore (2008). The solid lines correspond to a perfect
agreement between predictions and measurements, while the R? values of the fits are indicated
in each panel. The symbol colors in the left panels represents the corresponding value for Ra.
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FIGURE 2. Dimensionless temperature fields of a 2D-Cartesian numerical simulation conducted
for Ra = 10° and free slip top and bottom boundary conditions. The two temperature fields
are separated by a short time, the top panel being earlier than the bottom one, and are used in
figure 6.
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FIGURE 3. Dimensionless temperature fields of a 2D-Cartesian numerical simulation conducted
for Ra = 107, H = 30 and free slip top and bottom boundary conditions. This temperature field
is used in figure 7.



