

Submersions, Immersions, and Embeddings

- Because the **pushforward** of a smooth map represents the “best approximation” to a map near a given point, we can learn a great deal about the map itself by studying linear-algebraic properties of its pushforward at each point.
- The most important such property is its **rank** (the dimension of its image).
- The maps for which **pushforwards** give good local models turn out to be the ones whose pushforwards have **constant ranks**.
- Three special categories of such maps will play particularly important roles:
 - submersions(smooth maps whose pushforwards are surjective)
 - immersions(smooth maps whose pushforwards are injective)
 - embeddings(injective immersions that are homeomorphisms onto images.)
- Under appropriate hypotheses on its rank, a **smooth map behaves locally like its pushforward**.

- In linear algebra the **rank** of $m \times n$ matrix A is defined in three equivalent ways:
 - (1) the dimension of the subspace of \mathbb{V}^n spanned by the rows,
 - (2) the dimension of the subspace of \mathbb{V}^m spanned by the columns,
 - (3) the maximum order of any nonvanishing minor of determinant.

Definition. The **rank** of a linear transformation is defined to be the dimension of the image, and this is the rank of any matrix which represents the transformation.

Definition. When $F : U \rightarrow \mathbb{R}^m$ is a C^1 mapping of an open set $U \subset \mathbb{R}^n$, we refer to the rank of $DF(x)$ as the rank of F at x .

Example. $F(x^1, x^2) = ((x^1)^2 + (x^2)^2, 2x^1 x^2)$ has Jacobian

$$DF(x_1, x_2) = \begin{pmatrix} 2x^1 & 2x^2 \\ 2x^2 & 2x^1 \end{pmatrix}$$

whose rank is 2 on all of \mathbb{R}^2 except the lines $x_2 = \pm x^1$. The rank is 1 on these lines except at $(0, 0)$ where it is zero.

Rank Theorem. Suppose $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ are open sets and $F : U \rightarrow V$ is a smooth map with constant rank k . For any $p \in U$, there exist smooth coordinate charts (U_0, φ) for (U_0, φ) for \mathbb{R}^m centered at p and (V_0, ψ) for \mathbb{R}^n , with $U_0 \subset U$ and $F(U_0) \subset V_0 \subset V$, such that

$$\psi \circ F \circ \varphi^{-1}(x_1, \dots, x^k, x^{k+1}, \dots, x^m) = (x^1, \dots, x^k, 0, \dots, 0).$$

Definition 1.15. A smooth map $g : \mathbb{R}^n \rightarrow \mathbb{R}^p$ is a **submersion** (resp. an **immersion**, resp. a **local diffeomorphism**) at $x \in \mathbb{R}^n$ if its differential map $D_x g$ at x is surjective (resp. injective, resp. bijective) from \mathbb{R}^n to \mathbb{R}^p .

Proposition 1.17 (canonical form for immersions and submersions). Let $p \leq n$ be two integers.

- (1) Let $f : \mathbb{R}^n \rightarrow \mathbb{R}^p$ with $f(0) = 0$ be a submersion at 0. Then there exists a local diffeomorphism ϕ around 0 in \mathbb{R}^n , with $\phi(0) = 0$ and such that

$$f \circ \phi(x_1, \dots, x_n) = (x_1, \dots, x_p).$$

- (2) Let $f : \mathbb{R}^p \rightarrow \mathbb{R}^n$ with $f(0) = 0$ be a immersion at 0. Then there exists a local diffeomorphism ψ around 0 in \mathbb{R}^p , with $\psi(0) = 0$ and such that

$$\psi \circ f(x_1, \dots, x_p) = (x_1, \dots, x_p, 0, \dots, 0).$$

Inverse Function Theorem. Suppose U and V are open subsets of \mathbb{R}^n , and $F : U \rightarrow V$ is a smooth map.

If $DF(p)$ is nonsingular at some point $p \in U$, then there exist connected nbhds $U_0 \subset U$ at p and $V_0 \subset V$ of $F(p)$ such that $F|_{U_0} : U_0 \rightarrow V_0$ is a diffeomorphism.

Implicit Function Theorem. Let $U \subset \mathbb{R}^n \times \mathbb{R}^k$ be an open set, and let $(x, y) = (x^1, \dots, x^n, y^1, \dots, y^k)$ denote the standard coordinates on U .

Suppose $\Phi : U \rightarrow \mathbb{R}^k$ is a smooth map, $(a, b) \in U$ and $c = \Phi(a, b)$.

If the $k \times k$ matrix

$$\left(\frac{\partial \Phi^i}{\partial y^j}(a, b) \right)$$

is nonsingular, then there exist nbhds $V_0 \subset \mathbb{R}^n$ of a and $W_0 \subset \mathbb{R}^k$ of b and a smooth map

$$F : V_0 \rightarrow W_0$$

such that $\Phi^{-1}(c) \cap (V_0 \times W_0)$ is the graph of F ; i.e.

$$\Phi(x, y) = c \text{ for } (x, y) \in V_0 \times W_0 \Leftrightarrow y = F(x).$$

Rank Theorem. Suppose $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ are open sets and $F : U \rightarrow V$ is a smooth map with constant rank k . For any $p \in U$, there exist smooth coordinate charts (U_0, φ) for (U_0, φ) for \mathbb{R}^m centered at p and (V_0, ψ) for \mathbb{R}^n , with $U_0 \subset U$ and $F(U_0) \subset V_0 \subset V$, such that

$$\psi \circ F \circ \varphi^{-1}(x_1, \dots, x^k, x^{k+1}, \dots, x^m) = (x^1, \dots, x^k, 0, \dots, 0).$$

Proof 1. The fact that $DF(p)$ has rank k implies that its matrix has some $k \times k$ minor with nonzero determinant. By ordering the coordinates, we may assume that it is the upper left minor, $(\partial F^i / \partial x^j)$ for $i, j = 1, \dots, k$.

- Let us relabel the standard coordinates as

$$(x, y) = (x^1, \dots, x^k, y^1, \dots, y^{m-k}) \text{ in } \mathbb{R}^m,$$

and

$$(v, w) = (v^1, \dots, v^k, w^1, \dots, w^{n-k}) \text{ in } \mathbb{R}^n.$$

— By an initial translation of the coordinates, we may assume w.l.o.g. that

$$p = (0, 0) \text{ and } F(p) = (0, 0).$$

- ⊕ If we write

$$F(x, y) = (Q(x, y), R(x, y))$$

for some smooth maps $Q : U \rightarrow \mathbb{R}^k$ and $R : U \rightarrow \mathbb{R}^{n-k}$, then our hypothesis is that $(\partial Q^i / \partial x^j)$ is nonsingular at $(0, 0)$.

— Define $\varphi : U \rightarrow \mathbb{R}^m$ by

$$\varphi(x, y) = (Q(x, y), y).$$

Its total derivative at $(0, 0)$ is

$$D\varphi(0, 0) = \begin{pmatrix} \frac{\partial Q^i}{\partial x^j}(0, 0) & \frac{\partial Q^i}{\partial y^j}(0, 0) \\ 0 & I_{m-k} \end{pmatrix},$$

which is nonsingular because its columns are independent.

- Therefore, by **the inverse function theorem**, there are connected nbhds U_0 of $(0, 0)$ and \tilde{U}_0 of $\varphi(0, 0) = (0, 0)$ such that $\varphi : U_0 \rightarrow \tilde{U}_0$ is a diffeomorphism.
- Writing the inverse map as

$$\varphi^{-1}(x, y) = (A(x, y), B(x, y))$$

for some smooth function $A : \tilde{U}_0 \rightarrow \mathbb{R}^k$ and $B : \tilde{U}_0 \rightarrow \mathbb{R}^{m-k}$, we compute

$$(7.8) \quad (x, y) = \varphi(A(x, y), B(x, y)) = (Q(A(x, y), B(x, y)), B(x, y)).$$

Comparing y components, it follows that $B(x, y) = y$, and therefore φ^{-1} has the form

$$\varphi^{-1}(x, y) = (A(x, y), y).$$

- ⊕ Observe that $\varphi \circ \varphi^{-1} = \text{Id}$ implies $Q(A(x, y), y) = x$, and therefore $F \circ \varphi^{-1}$ has the form

$$F \circ \varphi^{-1}(x, y) = (x, \tilde{R}(x, y)),$$

where $\tilde{R} : \tilde{U}_0 \rightarrow \mathbb{R}^k$ is defined by $\tilde{R}(x, y) = R(A(x, y), y)$.

- The Jacobian matrix of the map at an arbitrary point $(x, y) \in \tilde{U}_0$ is

$$D(F \circ \varphi^{-1})(x, y) = \begin{pmatrix} I_k & 0 \\ \frac{\partial \tilde{R}^i}{\partial x^j} & \frac{\partial \tilde{R}^i}{\partial y^j} \end{pmatrix}.$$

- Since composing with a diffeomorphism does not change the rank of a map, the matrix has rank equal to k everywhere in \tilde{U}_0 .
- Since the first k columns are obviously independent, the rank can be k only if the partial derivatives $\frac{\partial \tilde{R}^i}{\partial y^j}$ vanishes identically on \tilde{U}_0 , which implies that \tilde{R} is **actually independent of** (y^1, \dots, y^{m-k}) .
- Thus if we set $S(x) = \tilde{R}(x, 0)$, we have

$$(7.9) \quad F \circ \varphi^{-1}(x, y) = (x, S(x)).$$

- ⊕ To complete the proof, we need to **define a smooth chart for \mathbb{R}^n near $(0, 0)$** .
- Let $V_0 \subset V$ be the open set

$$V_0 = \{(v, w) \in V : (v, 0) \in \tilde{U}_0\},$$

which is a nbhd of $(0, 0)$ because $(0, 0) \in \tilde{U}_0$, and define

$$\psi : V_0 \rightarrow \mathbb{R}^n$$

by

$$\psi(v, w) = (v, w - S(v)).$$

This is a **diffeomorphism** onto its image, because its inverse is given explicitly by

$$\psi^{-1}(s, t) = (s, t + S(s));$$

thus (V_0, ψ) is a **smooth chart**.

— It follows from (7.9) that

$$\psi \circ F \circ \varphi^{-1}(x, y) = \psi(x, S(x)) = (x, S(x) - S(x)) = (x, 0),$$

which was to be proved. \square

Proof 2 (k=m). This follows from the implicit function theorem.

— In local coordinates (z^1, \dots, z^n) on \mathbb{R}^n , (x^1, \dots, x^m) on \mathbb{R}^m , let, w.l.o.g. (since $df(x)$ is injective)

$$\left(\frac{\partial z^\alpha(F(x))}{\partial x^i} \right)_{i,\alpha=1,\dots,m}$$

be nonsingular.

— We consider

$$\tilde{F}(x, z) = (z^1 - F^1(x), \dots, z^n - F^n(x)),$$

which has maximal rank in $x^1, \dots, x^m, z^{m+1}, \dots, z^n$.

— By the implicit function theorem, there locally exists a map

$$(z^1, \dots, z^m) \mapsto (\varphi^1(z^1, \dots, z^m), \dots, \varphi^n(z^1, \dots, z^m))$$

with

$$\begin{aligned} \tilde{F}(x, z) = 0 \iff & x^1 = \varphi^1(z^1, \dots, z^m), \dots, x^m = \varphi^m(z^1, \dots, z^m), \\ & z^{m+1} = \varphi^{m+1}(z^1, \dots, z^m), \dots, z^n = \varphi^n(z^1, \dots, z^m), \end{aligned}$$

for which $(\frac{\partial \varphi^i}{\partial z^\alpha})_{i,\alpha=1,\dots,m}$ has maximal rank.

— As new coordinates, we now choose

$$\begin{aligned} (y^1, \dots, y^n) = & (\varphi^1(z^1, \dots, z^m), \dots, \varphi^m(z^1, \dots, z^m), \\ & z^{m+1} - \varphi^{m+1}(z^1, \dots, z^m), \dots, z^n - \varphi^n(z^1, \dots, z^m)) \end{aligned}$$

Then

$$\begin{aligned} z = f(x) \iff & \tilde{F}(x, z) = 0 \\ \iff & (y^1, \dots, y^n) = (x^1, \dots, x^m, 0, \dots, 0), \end{aligned}$$

and the claim follows. \square

Constant-Rank Maps Between Manifolds

- Let M and N be a C^p manifolds. Let $F : M \rightarrow N$ be C^k for $k \leq p$. If (U, φ) and (V, ψ) are charts for M and N around p and $F(p)$ respectively, with $F(U) \subset V$, then let

$$\hat{F} = \psi \circ F \circ \varphi^{-1} : \varphi(U) \rightarrow \psi(V)$$

Definition. The **rank** of F at $p \in M$ is defined to be the rank of $\hat{F} = \psi \circ F \circ \varphi^{-1}$ at $\varphi(p)$, which is the rank at $\varphi(p)$ of the Jacobian matrix of the mapping $\hat{F}(x^1, \dots, x^n) = (f^1(x^1, \dots, x^n), \dots, f^m(x^1, \dots, x^n))$

- If F has the same rank k at every point, we say that it has **constant rank**, and write $\text{rank } F = k$.
- The rank of $F : M \rightarrow N$ at $p \in M$ is the rank of the linear map $F_* : T_p M \rightarrow T_{F(p)} N$, which is the dimension of $\text{Im } F_* \subset T_{F(p)} N$.

Definition 1.16. Let M and N be smooth manifolds. A smooth map $f : M \rightarrow N$ is an **immersion** at $m \in M$ if for a chart (U, ϕ) for M around m and a chart (V, ψ) around $f(m)$, the map $\psi \circ f \circ \phi^{-1}$ is itself an immersion.

- This definition does not depend on the chart.

Definition 1.18. A map $f : M \rightarrow N$ is a **submersion** (resp. an **immersion**, resp. a **local diffeomorphism**) if it has this property at any point of M .

- The map f is a **diffeomorphism** if it is bijective, and if f and f^{-1} are smooth.
- The map f is an **embedding** if it is an immersion and if it is a homeomorphism on its image.

Definition. If $F : M \rightarrow N$ is a smooth map, we define the **rank** of F at $p \in M$ to be the rank of the linear map

$$F_* : T_p M \rightarrow T_{F(p)} N;$$

it is the rank of the matrix of partial derivatives of F in any smooth chart, or the dimension of $\text{Im } F_* \subset T_{F(p)} N$.

- If F has the same rank k at every point, we say that it has **constant rank**, and write $\text{rank } F = k$.

Definition. A smooth map $F : M \rightarrow N$ of constant rank is called a **submersion** if F_* is surjective at each point (or equivalently, if $\text{rank } F = \dim N$).

- It is called an **immersion** if F_* is injective at each point (or equivalently, if $\text{rank } F = \dim M$).
- A **smooth embedding** is an immersion $F : M \rightarrow N$ that is also a topological embedding, i.e. a homeomorphism onto its image $F(M) \subset N$ in the subspace topology.
- Notice that although submersions and immersions are smooth maps by definition, there are two types of embeddings, topological and smooth.
- A smooth embedding is a map that is both a topological embedding and an immersion, not just a topological embedding that happens to be smooth.

Rank Theorem for Manifolds. Suppose M and N are smooth manifolds of dimension m and n , respectively, and $F : M \rightarrow N$ is a smooth map with constant rank k . For each $p \in M$, there exist smooth coordinates $(x^1, \dots, x^k, x^{k+1}, \dots, x^m)$ centered at p and (v^1, \dots, v^n) centered at $F(p)$ in which F has the coordinate representations

$$(1) \quad F(x^1, \dots, x^k, x^{k+1}, \dots, x^m) = (x^1, \dots, x^k, 0, \dots, 0).$$

Proof. Replacing M and N by smooth coordinate domains $U \subset M$ near p and $V \subset N$ near $F(p)$ and replacing F by its coordinate representation, the theorem is reduced to the rank theorem in Euclidean space. \square

Inverse Function Theorem for Manifolds. Suppose M and N are smooth manifolds, $p \in M$, and $F : M \rightarrow N$ is a smooth map such that $F_* : T_p M \rightarrow T_{F(p)} N$ is bijective. Then there exist connected nbhds U_0 of p and V_0 of $F(p)$ such that $F|_{U_0} : U_0 \rightarrow V_0$ is a diffeomorphism.

Proof. The fact that F_* is bijective implies that M and N have the same dimension, and then the result follows from the Euclidean inverse function theorem applied to the coordinate representation of F . \square

Corollary 11. Suppose M and N are smooth manifold of the same dimension, and $F : M \rightarrow N$ is an immersion or submersion. Then F is a local diffeomorphism. If F is bijective, it is a diffeomorphism.

Emebdded Submanifolds

- Smooth submanifolds are modeled locally on the standard embeddings of \mathbb{R}^k into \mathbb{R}^n , identifying \mathbb{R}^k with the subspace

$$\{(x^1, \dots, x^k, x^{k+1}, \dots, x^n) : x^{k+1} = \dots = x^n = 0\}$$

of \mathbb{R}^n . Somewhat more generally, if U is an open subset of \mathbb{R}^n , a **k -slice** of U is any subset of the form

$$S = \{(x^1, \dots, x^k, x^{k+1}, \dots, x^n) \in U : x^{k+1} = c^{k+1}, \dots, x^n = c^n\}$$

for some constants c^{k+1}, \dots, c^n . Clearly, any k -slice is homeomorphic to an open subset of \mathbb{R}^k .

Definition. Let M be a smooth n -manifold, and (U, φ) be a smooth chart on M .

- If S is a subset of U such that $\varphi(S)$ is a k -slice of $\varphi(U)$, then we say simply that S is a **k -slice** of U .
- A subset $S \subset M$ is called an **embedded submanifold of dimension k** (or **embedded k -submanifold** for short) if $\forall p \in S, \exists$ a smooth chart (U, φ) for M such that $p \in U$ and $U \cap S$ is a k -slice of U .
- In this situation we call the chart (U, φ) a **slice chart** for S in M , and the corresponding coordinates (x_1, \dots, x_n) are called **slice coordinates**.

Definition. If S is an embedded submanifold of M , the difference $\dim M - \dim S$ is called the **codimension of S in M** .

- An **embedded hypersurface** is an embedded submanifold of codimension 1.

Definition 1.1. A subset $M \subset \mathbb{R}^{n+k}$ is an **n -dimensional submanifold of class C^p** of \mathbb{R}^{n+k} if, $\forall x \in M, \exists$ a nbhd U of x in \mathbb{R}^{n+k} and a C^p submersion $f : U \rightarrow \mathbb{R}^k$ such that $U \cap M = f^{-1}(0)$.

Definition 1.9. Let M be a smooth manifold of dimension d . A subset $N \subset M$ is a **submanifold** of M if for any $p \in N$, there exists a chart (U, ϕ) of M around p such that $\phi(U \cap N)$ is a submanifold of the open set $\phi(U) \cap \mathbb{R}^d$.

Examples of Embedded Submanifolds

Lemma 6 (Graphs as Submanifolds). If $U \subset \mathbb{R}^n$ is open and $F : U \rightarrow \mathbb{R}^k$ is smooth, then the graph of F is an embedded n -dimensional submfd of \mathbb{R}^{n+k} .

Proof. Define a map $\varphi : U \times \mathbb{R}^k \rightarrow U \times \mathbb{R}^k$ by

$$\varphi(x, y) = (x - F(x), y).$$

It is clearly smooth, and in fact it is a diffeomorphism because its inverse can be written explicitly:

$$\varphi^{-1}(u, v) = (u, v + F(u)).$$

Because $\varphi(\Gamma(F))$ is the slice $\{(u, v) : v = 0\}$ of $U \times \mathbb{R}^k$, this shows that $\Gamma(F)$ is an embedded submanifold. \square

Example 7 (Spheres). $\forall n \geq 0, \mathbb{S}^n$ is an embedded submfd of \mathbb{R}^{n+1} , because it is locally the graph of a smooth function.

Proposition 1.3. *The following are equivalent:*

- (1) M is a C^p submanifold of dimension n of \mathbb{R}^{n+k} .
- (2) $\forall x \in M, \exists$ a nbhd U of x in \mathbb{R}^{n+k} and a C^p submersion $f : U \rightarrow \mathbb{R}^k$ such that $U \cap M = f^{-1}(0)$.
- (3) $\forall x \in M, \exists$ open nbhds U and V of x and 0 in \mathbb{R}^{n+k} respectively, and a C^p diffeomorphism $f : U \rightarrow V$ such that

$$f(U \cap M) = V \cap (\mathbb{R}^n \times \{0\}).$$

- (4) $\forall x \in M, \exists$ nbhd U of x in \mathbb{R}^{n+k} , a nbhd Ω of 0 in \mathbb{R}^n , and a C^p map $g : \Omega \rightarrow \mathbb{R}^{n+k}$ such that (Ω, g) is a local parametrization of $M \cap U$ around x (that is g is an homeomorphism from Ω onto $M \cap U$ and $g'(0)$ is injective.)

- The implicit function theorem implies the following.

Lemma 1.3.2. *Let $f : M \rightarrow N$ be a differentiable map, $\dim M = m$, $\dim N = n$, $m \geq n$, $p \in N$. Let $df(x)$ have rank n for all $x \in M$ with $f(x) = p$. Then $f^{-1}(p)$ is a smooth submanifold of M of dimension $m - n$.*

Proof. Again representation the situation in local coordinates around $x \in M$ and $p = f(x) \in N$. In these coordinates $df(x)$ still has rank n .

— By the implicit function theorem, there exist an open nbhd U of x and a differentiable map

$$g(x^{n+1}, \dots, x^m) : U_2 \subset \mathbb{R}^{m-n} \rightarrow U_1 \subset \mathbb{R}^n$$

with

$$U = U_1 \times U_2$$

and

$$f(x) = p \iff (x^1, \dots, x^n) = g(x^{n+1}, \dots, x^m).$$

— With

$$\begin{aligned} (y^1, \dots, y^n) &= (x^1, \dots, x^n) - g(x^{n+1}, \dots, x^m) \\ (y^{n+1}, \dots, y^m) &= (x^{n+1}, \dots, x^m). \end{aligned}$$

We then obtain coordinates for which

$$f(x) = p \iff y^\alpha = 0, \quad \text{for } \alpha = 1, \dots, n.$$

(y^{n+1}, \dots, y^m) thus yield local coordinates for $\{f(x) = p\}$ and this implies that $\{f(x) = p\}$ is a submanifold of dimension $m - n$. \square

Level Sets

Definition. If $\Phi : M \rightarrow N$ is any map and c is any point of N , the set $\Phi^{-1}(c)$ is called a **level set** of Φ .

Example. The n -sphere $S^n \subset \mathbb{R}^{n+1}$ is the level set $\Phi^{-1}(1)$, where $\Phi : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is the function $\Phi(x) = |x|^2$.

Example. Consider the two maps $\Phi, \Psi : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by

$$\Phi(x, y) = x^3 - y^2, \quad \text{and} \quad \Psi(x, y) = x^2 - y^2.$$

- The zero set of Φ is a curve that has a “cusp”, or “kink” at the origin, while the zero set of Ψ is the union of the lines $x = y$ and $x = -y$.
- Neither of these sets is an embedded submanifolds of \mathbb{R}^2 .
- To give some general criteria for level sets to be submanifolds, consider first a linear version of the problem.
- Any k -dimensional linear subspace $S \subset \mathbb{R}^n$ is the kernel of some linear map. (Such a linear map is easily constructed by choosing a basis for S and extending it to a basis for \mathbb{R}^n .)
- By the rank-nullity law, if $S = \ker L$, then $\text{Im } L$ must have dimension $n - k$.
- Therefore, a natural way to specify a k -dimensional subspace $S \subset \mathbb{R}^n$ is to give a surjective linear map $L : \mathbb{R}^n \rightarrow \mathbb{R}^{n-k}$ whose kernel is S .
- The vector equation $Lx = 0$ is equivalent to $n - k$ independent scalar equation, each of which can be thought of as cutting down one of the degrees of freedom in \mathbb{R}^n , leaving a subspace S of dimension k .
- In the context of smooth manifolds, the analogue of a surjective linear map is a submersion.
- Thus we might expect that a **level set of a submersion from an n -manifold to an $(n - k)$ -manifold** should be an embedded k -dimensional submanifold.

Constant-Rank Level Set Theorem. Let M and N be smooth manifolds, and let $\Phi : M \rightarrow N$ be a smooth map with constant rank to k . Each level set of Φ is a closed embedded submanifold of codimension k in M .

Proof. Let $c \in N$ be arbitrary, and let S denote the level set $\Phi^{-1}(c) \subset M$.

Clearly, S is closed in M by continuity.

- To show that S is an embedded submanifold, we need to show that $\forall p \in S$, there is a slice chart for S in M near p .
- From the rank theorem, there are smooth charts (U, φ) centered at p and (V, ψ) centered at $c = \Phi(p)$ in which Φ has a coordinate representation of the form

$$\Phi(x^1, \dots, x^k, x^{k+1}, \dots, x^m) = (x^1, \dots, x^k, 0, \dots, 0),$$

and therefore $S \cap U$ is the slice $\{(x^1, \dots, x^m) \in U : x^1 = \dots = x^k = 0\}$. \square

Submersion Level Set Theorem. If $\Phi : M \rightarrow N$ is a submersion, then each level set of Φ is a closed embedded submanifold whose codimension is equal to the dimension of N .

Proof. A submersion has constant rank equal to the dimension of N . \square

Definition. If $\Phi : M \rightarrow N$ is a smooth map, a point $p \in M$ is said to be a **regular point** of Φ if $\Phi_* : T_p M \rightarrow T_{\Phi(p)} N$ is surjective; it is a **critical point** otherwise.

- A point $c \in N$ is said to be a **regular value** of Φ if every point of the level set $\Phi^{-1}(c)$ is a regular point, and a **critical value** otherwise.
- A level set $\Phi^{-1}(c)$ is called a **regular level set** if c is a regular value; in other words, a **regular level set** is a level set consisting entirely of regular points.

Regular Level Set Theorem. Every regular level set of a smooth map is a closed embedded submanifold whose codimension is equal to the dimension of the range.

Proof. Let $\Phi : M \rightarrow N$ be a smooth map and let $c \in N$ be a regular value such that $\Phi^{-1}(c) \neq \emptyset$.

- The fact that c is a regular value means that Φ_* has rank equal to the dimension of N at every point of $\Phi^{-1}(c)$.
- It suffices to show that the set U of points where $\text{rank } \Phi_* = \dim N$ is **open** in M , for then $\Phi|_U : U \rightarrow N$ is a submersion, and we can apply the preceding corollary with M replaced by U , noting that an embedded submfd of U is also an embedded submfd of M .
- **To see that U is open**, let $m = \dim M$, $n = \dim N$, and suppose $p \in U$.
- In terms of smooth coordinates near p and $\Phi(p)$, the assumption that $\text{rank } \Phi_* = n$ at p means that the $n \times m$ matrix representing Φ_* in coordinates has an $n \times n$ minor whose determinant is nonzero.
- By continuity, the determinant will be nonzero in some nbhd of p , which means that Φ has rank n in this whole nbhd. \square

Example (Spheres). Now we can give a much easier proof that \mathbb{S}^n is an embedded n -dimensional submfd of \mathbb{R}^{n+1} .

- The sphere is easily seen to be a regular level set of the function $f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ given by $f(x) = |x|^2$, since $df = 2 \sum_i x^i dx^i$ vanishes only at the origin.

Proposition 12. Let S be a subset of a smooth n -manifold M . Then S is an embedded k -submfd of M iff every point $p \in S$ has a nbhd U in M such that $U \cap S$ is a level set of a submersion $\Phi : U \rightarrow \mathbb{R}^{n-k}$.

Proof. (\Rightarrow) Suppose S is an embedded k -submfd.

- If (x^1, \dots, x^n) are slice coordinates for S on an open set $U \subset M$, the map $\Phi : U \rightarrow \mathbb{R}^{n-k}$ given the coordinates by $\Phi(x) = (x^{k+1}, \dots, x^n)$ is easily seen to be a submersion one of whose level sets is $S \cap U$.
- (\Leftarrow) Suppose that around every point $p \in S$ there is a nbhd U and a submersion $\Phi : U \rightarrow \mathbb{R}^{n-k}$ such that $S \cap U = \Phi^{-1}(c)$ for some $c \in \mathbb{R}^{n-k}$.
- By the submersion level set theorem, $S \cap U$ is an embedded submfd of U .
- Hence, S is itself an embedded submfd. \square

The Tangent Space to an Embedded Submanifold

- If S is an embedded submanifold of \mathbb{R}^n , we intuitively think of the tangent space $T_p S$ at a point of S as a subspace of the tangent space $T_p \mathbb{R}^n$.
- Similarly, the tangent space to a submanifold of an abstract manifold can be viewed as a subspace of the tangent space to the ambient manifold, once we make appropriate identifications.
- Let M be a smooth manifold and $S \subset M$ be an embedded submanifold.
- Since the inclusion map $\iota : S \hookrightarrow M$ is a smooth embedding, at each point $p \in S$ we have an injective linear map

$$\iota_* : T_p S \rightarrow T_p M.$$

In terms of derivations, this injection works in the following way:

For any vector $X \in T_p S$, the image vector $\tilde{X} = \iota_* X \in T_p M$ acts on smooth functions on M by

$$\tilde{X}f = (\iota_* X)f = X(f \circ \iota) = X(f|_S).$$

We will adopt the convention of **identifying** $T_p S$ with its image under this map, thereby thinking of $T_p S$ as a certain linear subspace of $T_p M$.

Lemma 1.3.3. *In the situation of Lemma 1.3.2, we have for the submanifold $S = f^{-1}(p)$ and $q \in X$*

$$T_q S = \ker df(q) \subset T_q M.$$

Proof. Let $v \in T_\varphi X$, (U, φ) a chart on S with $q \in U$. Let γ be any smooth curve in $\varphi(U)$ with

$$\gamma(0) = \varphi(q), \quad \gamma'(0) = \frac{d}{dt} \gamma(t)|_{t=0} = \varphi_* v,$$

for example, $\gamma(t) = \varphi(q) + t\varphi_* v$.

- Then $c = \varphi^{-1}(\gamma)$ is a curve in S with $c'(0) = v$.
- Because $S = f^{-1}(p)$, $f \circ c(t) = p$, $\forall t$, hence

$$df(q) \circ c'(0) = 0,$$

and therefore $v = c'(0) \in \ker df(q)$.

- Since also $\dim T_q S = m - n = \dim \ker df(q)$, the claim follows. \square

Example. For our example \mathbb{S}^n , we may choose

$$f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \quad f(x) = |x|^2.$$

Then

$$T_x \mathbb{S}^n = \ker df(x) = \{v \in \mathbb{R}^{n+1} : x \cdot v = 0\}$$

Proposition 5. Suppose $S \subset M$ is an embedded submanifold and $p \in S$. As a subspace of $T_p M$, the tangent space $T_p S$ is given by

$$T_p S = \{X \in T_p M : Xf = 0 \text{ whenever } f \in C^\infty(M) \text{ and } f|_S \equiv 0\}.$$

Proof. (I) First suppose $X \in T_p S \subset T_p M$. This means, more precisely, that

$$X = \iota_* Y$$

for some $Y \in T_p S$. If f is any smooth real-valued function on M that vanishes on S , then $f \circ \iota \equiv 0$, so

$$Xf = (\iota_* Y)f = Y(f \circ \iota) \equiv 0.$$

(II) Conversely, if $X \in T_p M$ satisfies $Xf = 0$ whenever f vanishes on S , we need to show that there is a vector $Y \in T_p S$ such that $X = \iota_* Y$.

- (i) Let (x^i) be slice coordinates for S in some nbhd U of p , so that $U \cap S$ is the subset of U where $x^{k+1} = \dots = x^n = 0$, and (x^1, \dots, x^k) are coordinates for $U \cap S$.

— Because the inclusion map $\iota : U \cap S \hookrightarrow M$ has the coordinate representation

$$\iota(x^1, \dots, x^k) = (x^1, \dots, x^k, 0, \dots, 0)$$

in these coordinates, it follows that $T_p S$ (that is, $\iota_* T_p S$) is exactly the subspace of $T_p M$ spanned by $\frac{\partial}{\partial x^1}|_p, \dots, \frac{\partial}{\partial x^k}|_p$.

- Writing the coordinate representation of X as

$$X = \sum_{i=1}^n X^i \frac{\partial}{\partial x^i}|_p,$$

we see that $X \in T_p S$ iff $X^i = 0$ for $i > k$.

- Let φ be smooth bump function supported in U that is equal to 1 in a nbhd of p . Choose an index $j > k$, and consider the function $f(x) = \varphi(x)x^j$, extended to be zero on $M \setminus U$. Then f vanishes identically on S , so

$$0 = Xf = \sum_{i=1}^n X^i \frac{\partial(\varphi(x)x^j)}{\partial x^i}(p) = X^j.$$

Thus $X \in T_p S$, as desired. \square