Homogeneous Spaces

• One of the most interesting kinds of group action is that in which a group acts transitively.

Definition. A smooth manifold endowed with a transitive smooth action by a Lie group G is called a **homogeneous** G-space.

- In most examples of homogeneous spaces, the group action preserves some property of the manifold (such as distances in some metric, or a class of curves such as straight lines in the plane); then the fact that the action is **transitive** means that the manifold "looks the same" everywhere from the point of view of this property.
- Often, homogeneous spaces are models for various kinds of geometric structures, and as such they play a central role in many area of differential geometry.

Examples (Homogeneous Spaces).

- (a) The natural action of O(n) on \mathbb{S}^{n-1} is transitive.
- So is the natural action of SO(n) on \mathbb{S}^{n-1} when $n \geq 2$.
- Thus, for $n \ge 2$, \mathbb{S}^{n-1} is a homogeneous space of either O(n) or SO(n).
- (b) Let E(n) denote the subgroup of $GL(n+1,\mathbb{R})$ consisting of matrices of the form

$$\bigg\{ \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} : A \in O(n), b \in \mathbb{R}^n \bigg\},$$

where b is considered as an $n \times 1$ column matrix.

- It is straightforward to check that E(n) is an embedded Lie subgroup.
- If $S \subset \mathbb{R}^{n+1}$ denotes the affine subspace defined by $x^{n+1} = 1$, then a simple computation shows that E(n) takes S to itself.
- If we identify S with \mathbb{R}^n , in which the matrix $\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$ sends x to Ax + b.
- It is not hard to prove that these are precisely the diffeomorphisms of \mathbb{R}^n that preserves the Euclidean distance function.
- For this reason, E(n) is called the **Euclidean group**.
- Because any point in \mathbb{R}^n can be taken to any other by a translation, E(n) acts transitively on \mathbb{R}^n , so E(n) acts transitively on \mathbb{R}^n , so \mathbb{R}^n is a homogeneous E(n)-space.
- (c) The group $SL(2,\mathbb{R})$ acts smoothly and transitively on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ by the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.$$

The resulting complex-analytic transformation of $\mathbb H$ are called **Mobiüs trnsformations**.

(d) The natural action of $GL(n,\mathbb{C})$ on \mathbb{C}^n restricts to natural actions of both U(n) and SU(n) on \mathbb{S}^{2n-1} , thought of as the set of unit vectors in \mathbb{C}^n . The natural actions of U(n) and SU(n) on \mathbb{S}^{n-1} are smooth and transitive.

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX

• Next we describe a very general construction that can be used to generate homogeneous spaces as quotients of Lie groups by closed Lie subgroups.

Definition. Let G be a Lie group and $H \subset G$ be a Lie subgroup. For each $g \in G$, the **left coset** of g modulo H is the set

$$gH = \{gh : h \in H\}.$$

The set of left costs modulo H is denoted by G/H;

with the quotient topology determined by the natural map $\pi: G \to G/H$ sending each element $g \in G$ to its coset, it is called the **left coset space of** G **modulo** H.

• Two elements $g_1, g_2 \in G$ are in the same coset modulo H iff $g_2^{-1}g_2 \in H$; in this case we write $g_1 \equiv g_2 \pmod{H}$.

Theorem 1 (Homogeneous Space Construction Theorem). Let G be a Lie group and H be a closed Lie subgroup of G. The left coset space G/H has a unique smooth manifold structure such that the quotient map

$$\pi: G \to G/H$$

is a smooth submersion. The left action of G on G/H given by

(1)
$$g_1 \cdot (g_2 H) = (g_1 g_2) H$$

turns G/H into a homogeneous G-space.

Proof. If we let H act on G by right translation, then

 $g_1, g_2 \in G$ are in the same H-orbit $\Leftrightarrow g_1 h = g_2$ for some $h \in H$,

 $\Leftrightarrow g_1$ and g_2 are in the same coset modulo H.

- In other words, the orbit space determined by the **right** action of H on G is precisely the **left** coset space G/H.
- \odot H acts smoothly and freely on G.
- \odot To see that the action is **proper**, suppose $\{g_i\}$ is a convergent sequence in G and $\{h_i\}$ is a sequence in H such that $\{g_ih_i\}$ converges.
- By **continuity**, $h_i = g_i^{-1}(g_i h_i)$ converges to a point in G, and since H is closed in G it follows that $\{h_i\}$ converges in H.
- \odot The **quotient manifold theorem** now implies that G/H has a unique smooth manifold structure such that the quotient map $\pi: G \to G/H$ is a submersion.
- ⊙ Since a product of submersions is a submersion, it follows that

$$\mathrm{Id}_G \times \pi : G \times G \to G \times G/H$$

is also a submersion. Consider the following diagram:

$$\begin{array}{ccc} G \times G & \stackrel{m}{\longrightarrow} & G \\ \operatorname{Id}_{G} \times \pi \Big\downarrow & & \downarrow \pi \\ G \times G/H & \stackrel{\theta}{\longrightarrow} & G/H, \end{array}$$

where m is a group multiplication and θ is the action of G on G/H given by (1).

- It is straightforward to check that $\pi \circ m$ is constant on the fibers of $\mathrm{Id}_G \times \pi$, and therefore θ is **well-defined** and **smooth**.
- ⊙ Finally, given any two points g_1H , $g_2H \in G/H$, the element $g_2g_1^{-1} \in G$ satisfies $(g_2g_1^{-1}) \cdot g_1H = g_2H$, so the action is **transitive**. □

- The homogeneous spaces constructed in this theorem turn out to be of central importance because, as the next theorem shows, every homogeneous space is equivalent to one of this type.
- First we note that the isotropy group of any smooth Lie group action is a closed Lie subgroup.

Lemma 2. If M is a smooth G-space, then for each $p \in M$, the isotropy group G_p is a closed, embedded Lie subgroup of G.

Proof. For each $p \in M$, $G_p = (\theta^{(p)})^{-1}(p)$, where $\theta^{(p)}: G \to M$ is the orbit map

$$\theta^{(p)}(g) = g \cdot p.$$

 \odot Claim: $\theta^{(p)}$ has constant rank. Indeed, since

$$\theta^{(p)}(g'g) = g' \cdot \theta^{(p)}(g),$$

the following diagram commutes:

Because the vertical linear maps in the second diagram are isomorphisms, the horizontal lines have the same rank. In other words, the rank of $(\theta^{(p)})_*$ at an arbitrary point p is the same as its rank at $g \cdot p$, so $\theta^{(p)}$ has constant rank.

— Hence $G_p = (\theta^{(p)})^{-1}(p)$ is an embedded submanifold of G, and therefore is a closed Lie subgroup. \square

Theorem 3 (Homogeneors Space Characterization Theorem). Let M be a homogeneous G-space, and let p be any point of M. Then the map

$$F: G/G_n \to M$$

defined by $F(gG_p) = g \cdot p$ is a diffeomorphism.

Proof. To see that F is well-defined, assume that $g_1G_p = g_2G_p$, which means that $g_2^{-1}g_1 \in G_p$. Writing $g_2^{-1}g_1 = h$, we see that

$$F(g_2G_p) = g_2 \cdot p = g_1h \cdot p = g_1 \cdot p = F(g_1G_p).$$

- It is **smooth** because it is obtained from the orbit map $\theta^{(p)}: G \to M$ by passing to the quotient.
- Next we show that F is **bijective**.
 - (1) Given any point $q \in M$ there is a group element $g \in G$ such that $F(gG_p) = g \cdot p = q$ by transitivity.
 - (2) On the other hand, if $F(g_1G_p) = F(g_2G_p) \Rightarrow g_1 \cdot p = g_2 \cdot p$. $\Rightarrow g_1^{-1}g_2 \cdot p = p. \Rightarrow g_1^{-1}g_2 \in G_p. \Rightarrow g_1G_p = g_2G_p.$

• Also, F has constant rank, since the relation

$$F(g'gG_p) = (g'g) \cdot p = g' \cdot F(gG_p)$$

yields that following diagrams commute:

$$G/G_{p} \xrightarrow{F} M \qquad T_{g}G \xrightarrow{F_{*}} T_{\theta^{(p)}(g)}M$$

$$\downarrow_{g'} \downarrow \qquad \downarrow_{\theta^{(p)}(g')} \qquad (L_{g'})_{*} \downarrow \qquad \downarrow_{(\theta^{(p)}(g'))_{*}}$$

$$G/G_{p} \xrightarrow{F} M \qquad T_{g'g}G \xrightarrow{F_{*}} T_{\theta^{p}(g'g)}M,$$

Because the vertical linear maps in the second diagram are isomorphisms, the horizontal lines have the same rank. In other words, the rank of F_* at an arbitrary point gG_p is the same as its rank at $gg'G_p$, so F has constant rank.

• Because F has constant rank and is bijective, it is a diffeomorphism. \square

Examples (Homogeneous Spaces).

- (a) Consider again the natural action of O(n) on \mathbb{S}^{n-1} . If we choose our base point in \mathbb{S}^{n-1} to be the "north pole" $N=(0,\cdots,0,1)$, then the isotropy group is O(n-1), thought of an orthogonal transformations of \mathbb{R}^n that fix the last variable. Thus \mathbb{S}^{n-1} is diffeomorphic to the quotient manifold O(n)/O(n-1).
- ⊙ For the action of SO(n) on \mathbb{S}^{n-1} , the isotropy group is SO(n-1), so \mathbb{S}^{n-1} is also diffeomorphic to SO(n)/SO(n-1).
- (b) The Euclidean group E(n) acts smoothly and transitively on \mathbb{R}^n , and the isotropy group of the origin is the subgroup $O(n) \subset E(n)$ (identified with the $(n+1) \times (n+1)$ matrices of the form $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ with $A \in O(n)$). Hence \mathbb{R}^n is diffeomorphic to E(n)/O(n).
- (c) Consider the transitive action of $SL(2,\mathbb{R})$ on \mathbb{H} by Möbius transformations. Direct computation shows that the isotropy group of the point $i \in \mathbb{H}$ consists of matrices of the form $\begin{pmatrix} -a & b \\ -b & a \end{pmatrix}$ with $a^2 + b^2 = 1$. This subgroup is exactly $SO(2) \subset SL(2,\mathbb{R})$, so the characteristic theorem gives rise to a diffeomorphism $H \approx SL(2,\mathbb{R})/SO(2)$.
- (d) $\mathbb{S}^{n-1} \approx U(n)/U(n-1) \approx SU(n)/SU(n-1)$.