The Hodge Theorem

In this section we assume that M is an oriented compact Riemannian manifold without boundary.

Since every hamnonic form is closed (by Proposition 1 (iii)), we obtain a linear map

$$\mathbb{H}^k(M) \to H^k_{dR}(M)$$

by taking the de Rham cohomology.

Lemma. The map

$$\mathbb{H}^k(M) \to H^k_{dR}(M)$$

is an injection.

Proof. It suffices to claim: if a harmonic form ω is exact, then $\omega = 0$. Indeed, if $\omega = d\eta$, then by Proposition 10, we obtain

$$(\omega, \omega) = (d\eta, \omega) = (\eta, \delta\omega) = (\eta, 0) = 0.$$

Hence $\omega = 0$.

- From de Rham's theorem that $H^k_{dR}(M)$ is isomorphic to $H^k(M;\mathbb{R})$; hence $H^k_{dR}(M)$ is finite-dimensional.
- Combining this and Lemma 3, we see that $\mathbb{H}^k(M)$ is also finite-dimensional.
- In fact, we have indeed the following result.

Hodge theorem. An arbitrary de Rham cohomology class of an oriented compact Riemannian manifold can be represented by a unique harmonic form. In other words, the natural map $\mathbb{H}^k(M) \to H^k_{DR}(M)$ is an isomorphism.

The essence of this theorem lies in the assertion on the **existence** of a harmonic form, and existence theorems are in general difficult.

Proof of the Hodge Theorem bases on the Hodge Decomposition.

It suffices to claim: the natural map $\mathbb{H}^k(M) \to H^k_{DR}(M)$ is surjective. Let $\omega \in \mathcal{A}^k(M)$ be any closed form and let

$$\omega = \omega_H + d\eta + \delta\theta$$

be the Hodge decomposition of ω . We have

$$\omega_H = H\omega$$
.

By assumption, we have

$$0 = d\omega = d\delta\theta.$$

$$\therefore 0 = (d\delta\theta, \theta) = (\delta\theta, \delta\theta).$$

$$\therefore \delta\theta = 0.$$

$$\therefore \omega = \omega_H + d\eta.$$

Thus ω is cohomologous to the harmonic form ω_H , as we wanted to show. \square

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}\mathrm{T}_{E}X$

Applications of The Hodge Theorem

(a) The Poincaré duality theorem

Let M be a connected, compact oriented n-dimensional C^{∞} manifold.

— For each k $(0 \le k \le n)$, we define a bilinear map

$$H_{dR}^k(M) \times H_{dR}^{n-k}(M) \to \mathbb{R}$$

by setting

$$([\omega], [\eta]) \mapsto \int_M \omega \wedge \eta,$$

where omega and η are closed k- and (n-k)-forms, and $[\omega]$ and $[\eta]$ the de Rham cohomology classes represented by ω and η , respectively.

- This map is obviously bilinear.
- That the image is independent of the choice of closed forms representing the de Rham cohomology classes follows from Stokes' theorem, namely,

$$\begin{split} \int_{M} (\omega + d\alpha) \wedge (\eta + d\beta) &= \int_{M} \omega \wedge \eta + \int_{M} d(\alpha \wedge \eta + (-1)^{k} \omega \wedge \beta + \alpha \wedge d\beta) \\ &= \int_{M} \omega \wedge \eta. \end{split}$$

Poincaré duality theorem. For a connected, compact oriented n-dimensional C^{∞} manifold, the bilinear map

$$H^k_{dR}(M) \times H^{n-k}_{dR}(M) \to \mathbb{R}$$

defined above is nondegenerate and hence induces an isomorphism

$$H_{dR}^{n-k}(M) \cong H_{dR}^k(M)^*$$
.

Proof. Non-degeneracy of the map means that for any cohomology class $[\omega] \in H^k_{DR}(M)$, there exists a certain $[\eta] \in H^{n-k}_{DR}(M)$ such that $\int_M \omega \wedge \eta \neq 0$.

- In order to prove this, choose a Riemmanian metric.
- By the Hodge theorem we may assume that ω is a harmonic form relative to the metric that is not zero identically.
- If $\eta = *\omega$, then η is also a harmonic form, which is closed.
- Since

$$\int_{M} \omega \wedge \eta = \|\omega\|^2 \neq 0,$$

we conclude the proof. \Box

(b) Manifolds and Euler number.

• Suppose a figure K is triangulated with α_i as the number of i-dimensional simplices. Then the alternate sum

$$\sum_{i} (-1)^{i} \alpha_{i}$$

is an invariant regardless of the way K is triangulated.

- This invariant is equal to the alternate sum of Betti numbers, namely

$$\chi(K) = \sum_{i} (-1)^{i} \beta_{i}, \quad \beta_{i} = \dim H_{i}(K; \mathbb{R}).$$

Here $\chi(K)$ is called the **Euler number** or **Euler characteristic** or **Euler-Poincaré characteistic**.

— For an n-dimensional manifold M, we have

$$\chi(M) = \sum_{i} (-1)^{i} \operatorname{dim} H_{DR}^{i}(M).$$

• The next theorem is a simple application of the Poincaré duality theorem

Theorem. The Euler characteristic of an odd-dimensional closed manifold is 0.

Proof. Although the theorem holds for any topological manifold, we shall prove it for C^{∞} manifold.

- It is clearly suffices to prove it for a **connected** manifold.
- Thus let M be a (2n+1)-dimensional connected closed manifold.
- We may assume that M is **oriented**; indeed, if M is non-orientable, let \widetilde{M} be the set of all pairs (p,σ) , where p is a point on M and σ is an orientation in T_pM , then \widetilde{M} is a connected and orientable C^∞ manifold and the natural projection $\pi:\widetilde{M}\to M$ is a double covering map, from which we find

$$\chi(\widetilde{M})=2\chi(M),$$

using the triangulation of \widetilde{M} induced from that of M.

— In case M is **oriented**, by the Poincaré duality theorem, we have

$$H_{DR}^{2n+1-k}(M) \cong (H_{DR}^k(M))^*, \quad \forall k.$$

$$\therefore \dim H_{DR}^k(M) = \dim (H_{DR}^k(M))^* = \dim H_{DR}^{2n+1-k}(M),$$

$$\therefore \chi(M) = \sum_i (-1)^i \dim H_{DR}^i(M) = 0. \quad \Box$$