
Lie Brackets

• In this section we introduce an important way of combining two smooth vector
fields to obtain another veactor field.

• Let V and W be smooth vector fields on a smooth manifolds.
Given a smooth function f : M → R, we can apply V to f and obtain another
smooth function V f .
In turn, we can apply W to this function and obtain another smooth function
WV f = W (V f).

— The operator f 7→ WV f , however, does not in general satisfy the product rule
and thus cannot be a vector field.

Example. Let V = ∂/∂x and W = ∂/∂y on R2. Let f(x, y) = x, g(x, y) = y.
Then direct computation shows that V W (fg) = 1, while fV Wg + gV Wf = 0, so
V W is not a derivation of C∞(R2).

• We can also apply the same two vector fields in the opposite order, obtaining a
function WV f .

Definition. Applying both of these operators to f and subtracting, we obtain an
operator [V, W ] : C∞(M) → C∞(M), called the Lie bracket of V and W , defined
by

[V, W ]f = V Wf − WV f.

• The key fact is that the operation is a vector field.

Lemma 1. The Lie bracket of any pair of smooth vector fields is a smooth vector
field.

Proof. It suffices to show that [V, W ] is a derivation of C∞(M). For arbitrary f ,
g ∈ C∞(M), we compute

[V, W ](fg) =V (W (fg)) − W (V (fg))

=V (fWg + gWf) − W (fV g + gV f)
=V fWg + fV Wg + V gWf + gV Wf

− WfV g − fWV g − WgV f − gWV f

=fV Wg + gV Wf − fWV g − gWV f

=f [V, W ]g + g[V, W ]f. �

Lemma 2. Let V , W be smooth vector fields on a smooth manifold M , and let
V = V i ∂

∂xi and W = W j ∂
∂xj be the coordinate expressions for V and W in terms of

some smooth local coordinates (xi) for M . Then [V, W ] has the following coordinate
expressions:

[V, W ] =
(

V i ∂W j

∂xi
− W i ∂V j

∂xi
)

∂

∂xj

or more precisely,

[V, W ] = (V W j − WV j)
∂

∂xj
.
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Proof. Because we know already that [V, W ] is a smooth vector field, its values are
determined locally: ([V, W ])|U = [V, W ](f |U ).

Thus it suffices to compute in a single smooth chart, where we have

[V, W ]f =V i ∂

∂xi

(
W j ∂f

∂xj

)
− W j ∂

∂xj

(
V i ∂f

∂xi

)

=V i ∂W j

∂xi

∂f

∂xj
+ V iW j ∂2f

∂xi∂xj
− W j ∂V i

∂xj

∂f

∂xi
− W jV i ∂2f

∂xj∂xi

=V i ∂W j

∂xi

∂f

∂xj
− W j ∂V i

∂xj

∂f

∂xi
. �

Corollary 3. For the coordinate vector fields ∂
∂xi in any smooth chart, we have

[
∂

∂xi
,

∂

∂xj

]
= 0, ∀i, j.

Example 4. Define a smooth vector field V , W ∈ T (R3) by

V =
∂

∂z
+

∂

∂y
+ x(y + 1)

∂

∂z
,

W =
∂

∂x
+ y

∂

∂z
.

Then formula (4.6) yields

[V, W ] =V (1)
∂

∂x
+ V (y)

∂

∂z
− W (x)

∂

∂x
− W (1)

∂

∂y
− W (x(y + 1))

∂

∂z

=0
∂

∂x
+ 1

∂

∂z
− 1

∂

∂x
− 0

∂

∂y
− (y + 1)

∂

∂z

= − ∂

∂x
− y

∂

∂z
.

Lemma 5 (Properties of the Lie Bracket). The Lie bracket satisfies the fol-
lowing identities for all V , W , X ∈ T (M):

(a) Bilinearity: ∀a, b ∈ R,

[aV + bW, X ] =a[V, X ] + b[W, X ]

[X, aV = bW ] =a[X, V ] + b[X, W ].

(b) Antisymmetry: [V, W ] = −[W, V ].
(c) Jacobi identity:

[V, [W, X ]] + [W, [X, V ]] + [X, [V, W ]] = 0.

(d) For f , g ∈ C∞(M),

[fV, gW ] = fg[V, W ] + (fV g)W − (gWf)V.

Proof. The proof of the Jacobi identity is just a computation:

[V, [W, X ]]f + [W, [X, V ]]f + [X, [V, W ]]f

=V [W, X ]f − [W, X ]V f + W [X, V ]f − [X, V ]Wf + X [V, W ]f − [V, W ]Xf

=V WXf − V XWf − WXV f + XWV f + WXV f − WV Xf

− XV Wf + V XWf + XV Wf − XWV f − V WXf + WV Xf = 0. �
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Proposition 6 (Naturality of the Lie Bracket). Let F : M → N be a smooth
map, and let V1, V2 ∈ T (M) and W1, W2 ∈ T (N) be vector fields such that Vi is
F -related to Wi, for i = 1, 2. Then [V1, V2] is F -related to [W1, W2].

Proof. Using the fact that Vi and Wi are F -related,

V1V2(f ◦ F ) = V1((W2f) ◦ F ) = (W1W2f) ◦ F.

Similarly,
V2V1(f ◦ F ) = (W2W1f) ◦ F.

Therefore

[V1, V2](f ◦ F ) =V1V2(f ◦ F ) − V2V1(f ◦ F )

=(W1W2f) ◦ F − (W2W1f) ◦ F

=([W1, W2]f) ◦ F. �

Corollary 7. Suppose F : M → N is a diffeomorphism and V1, V2 ∈ T (M). Then
F∗[V1, V2] = [F∗V1, F∗V2].

Proof. This is just the special case of Proposition 6 in which F is a diffeomorphism
and Wi = F∗Vi. �


