

Lie Brackets

- In this section we introduce an important way of combining two smooth vector fields to obtain another vector field.
- Let V and W be smooth vector fields on a smooth manifold. Given a smooth function $f : M \rightarrow \mathbb{R}$, we can apply V to f and obtain another smooth function Vf . In turn, we can apply W to this function and obtain another smooth function $WVf = W(Vf)$.
- The operator $f \mapsto WVf$, however, does not in general satisfy the **product rule** and thus cannot be a vector field.

Example. Let $V = \partial/\partial x$ and $W = \partial/\partial y$ on \mathbb{R}^2 . Let $f(x, y) = x$, $g(x, y) = y$. Then direct computation shows that $VW(fg) = 1$, while $fVWg + gVWf = 0$, so VW is not a derivation of $C^\infty(\mathbb{R}^2)$.

- We can also apply the same two vector fields in the opposite order, obtaining a function WVf .

Definition. Applying both of these operators to f and subtracting, we obtain an operator $[V, W] : C^\infty(M) \rightarrow C^\infty(M)$, called the **Lie bracket** of V and W , defined by

$$[V, W]f = VWf - WVf.$$

- The key fact is that the operation is a vector field.

Lemma 1. The Lie bracket of any pair of smooth vector fields is a smooth vector field.

Proof. It suffices to show that $[V, W]$ is a derivation of $C^\infty(M)$. For arbitrary $f, g \in C^\infty(M)$, we compute

$$\begin{aligned} [V, W](fg) &= V(W(fg)) - W(V(fg)) \\ &= V(fWg + gWf) - W(fVg + gVf) \\ &= VfWg + fVWg + VgWf + gVWf \\ &\quad - WfVg - fWVg - WgVf - gWVf \\ &= fVWg + gVWf - fWVg - gWVf \\ &= f[V, W]g + g[V, W]f. \quad \square \end{aligned}$$

Lemma 2. Let V, W be smooth vector fields on a smooth manifold M , and let $V = V^i \frac{\partial}{\partial x^i}$ and $W = W^j \frac{\partial}{\partial x^j}$ be the coordinate expressions for V and W in terms of some smooth local coordinates (x^i) for M . Then $[V, W]$ has the following coordinate expressions:

$$[V, W] = \left(V^i \frac{\partial W^j}{\partial x^i} - W^i \frac{\partial V^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}$$

or more precisely,

$$[V, W] = (VW^j - WV^j) \frac{\partial}{\partial x^j}.$$

Proof. Because we know already that $[V, W]$ is a smooth vector field, its values are determined locally: $([V, W])|_U = [V, W](f|_U)$.

Thus it suffices to compute in a single smooth chart, where we have

$$\begin{aligned} [V, W]f &= V^i \frac{\partial}{\partial x^i} \left(W^j \frac{\partial f}{\partial x^j} \right) - W^j \frac{\partial}{\partial x^j} \left(V^i \frac{\partial f}{\partial x^i} \right) \\ &= V^i \frac{\partial W^j}{\partial x^i} \frac{\partial f}{\partial x^j} + V^i W^j \frac{\partial^2 f}{\partial x^i \partial x^j} - W^j \frac{\partial V^i}{\partial x^j} \frac{\partial f}{\partial x^i} - W^j V^i \frac{\partial^2 f}{\partial x^j \partial x^i} \\ &= V^i \frac{\partial W^j}{\partial x^i} \frac{\partial f}{\partial x^j} - W^j \frac{\partial V^i}{\partial x^j} \frac{\partial f}{\partial x^i}. \quad \square \end{aligned}$$

Corollary 3. For the coordinate vector fields $\frac{\partial}{\partial x^i}$ in any smooth chart, we have

$$\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = 0, \quad \forall i, j.$$

Example 4. Define a smooth vector field $V, W \in \mathcal{T}(\mathbb{R}^3)$ by

$$\begin{aligned} V &= \frac{\partial}{\partial z} + \frac{\partial}{\partial y} + x(y+1) \frac{\partial}{\partial z}, \\ W &= \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}. \end{aligned}$$

Then formula (4.6) yields

$$\begin{aligned} [V, W] &= V(1) \frac{\partial}{\partial x} + V(y) \frac{\partial}{\partial z} - W(x) \frac{\partial}{\partial x} - W(1) \frac{\partial}{\partial y} - W(x(y+1)) \frac{\partial}{\partial z} \\ &= 0 \frac{\partial}{\partial x} + 1 \frac{\partial}{\partial z} - 1 \frac{\partial}{\partial x} - 0 \frac{\partial}{\partial y} - (y+1) \frac{\partial}{\partial z} \\ &= - \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}. \end{aligned}$$

Lemma 5 (Properties of the Lie Bracket). The Lie bracket satisfies the following identities for all $V, W, X \in \mathcal{T}(M)$:

(a) **Bilinearity:** $\forall a, b \in \mathbb{R}$,

$$[aV + bW, X] = a[V, X] + b[W, X]$$

$$[X, aV + bW] = a[X, V] + b[X, W].$$

(b) **Antisymmetry:** $[V, W] = -[W, V]$.

(c) **Jacobi identity:**

$$[V, [W, X]] + [W, [X, V]] + [X, [V, W]] = 0.$$

(d) For $f, g \in C^\infty(M)$,

$$[fV, gW] = fg[V, W] + (fVg)W - (gWf)V.$$

Proof. The proof of the Jacobi identity is just a computation:

$$\begin{aligned} &[V, [W, X]]f + [W, [X, V]]f + [X, [V, W]]f \\ &= V[W, X]f - [W, X]Vf + W[X, V]f - [X, V]Wf + X[V, W]f - [V, W]Xf \\ &= VWXf - VVWf - WXVf + XWVf + WXVf - WVXf \\ &\quad - XWVf + VVWf + XWVf - XWVf - VWXf + WVXf = 0. \quad \square \end{aligned}$$

Proposition 6 (Naturality of the Lie Bracket). *Let $F : M \rightarrow N$ be a smooth map, and let $V_1, V_2 \in \mathcal{T}(M)$ and $W_1, W_2 \in \mathcal{T}(N)$ be vector fields such that V_i is F -related to W_i , for $i = 1, 2$. Then $[V_1, V_2]$ is F -related to $[W_1, W_2]$.*

Proof. Using the fact that V_i and W_i are F -related,

$$V_1 V_2(f \circ F) = V_1((W_2 f) \circ F) = (W_1 W_2 f) \circ F.$$

Similarly,

$$V_2 V_1(f \circ F) = (W_2 W_1 f) \circ F.$$

Therefore

$$\begin{aligned} [V_1, V_2](f \circ F) &= V_1 V_2(f \circ F) - V_2 V_1(f \circ F) \\ &= (W_1 W_2 f) \circ F - (W_2 W_1 f) \circ F \\ &= ([W_1, W_2] f) \circ F. \quad \square \end{aligned}$$

Corollary 7. *Suppose $F : M \rightarrow N$ is a diffeomorphism and $V_1, V_2 \in \mathcal{T}(M)$. Then $F_*[V_1, V_2] = [F_*V_1, F_*V_2]$.*

Proof. This is just the special case of Proposition 6 in which F is a diffeomorphism and $W_i = F_*V_i$. \square