
Riemannian Metrics

Symmetric Tensors

Definition. Let V be a linear algebraic setting. A covaiant k-tensor T on V is said
to be symmetric if its value is unchanged by interchanging any pair of arguments:

T (X1, · · · , Xi, · · · , Xj , · · · , Xk) = T (X1, · · · , Xj , · · · , Xi, · · · , Xk),

whenever 1 ≤ i < j ≤ k

Definition. Denote the set of symmetric covariant k-tensors by Sk(V ).

• Sk(V ) is obviously a vector subspace of T k(V ).
• There is a natural projection Sym:T k(V ) → Sk(V ) called symmetrizations,

defined as follows.

Definition. Let Pk denote the symmetric group on k elements, i.e. the group
of permutation of the sets {1, · · · , k}.
Given a k tensor T and a permutation σ ∈ Pk , we define a k-tensor σT by

σT (X1, · · · , Xk) = T (Xσ(1), · · · , Xσ(k)).

Define SymT by

SymT =
1
k!

∑

σ∈Pk

σT.

Lemma 1 (Properties of Symmetrization).
(a) For any covariant tensor T , SymT is symmetric.

(b) T is symmetric iff SymT = T .

Proof. (a) Suppose T ∈ T k(V ). If τ ∈ Sk is any permutation, then

(SymT )(Xτ(1), · · · , Xτ(k)) =
1
k!

∑

η∈Pk

ηT (Xτ(1), · · · , Xτ(k))

=
1
k!

∑

σ∈Pk

στT (X1, · · · , Xk) =
1
k!

∑

η∈Pk

ηT (X1, · · · , Xk) = Sym (X1, · · · , Xk).

(b) If T is symmetric, then σT = T ∀σ ∈ Sk, and it follows that SymT = T .
On the other hand, if SymT = T , then T is symmetric because part (a) shows
that SymT is. �

• If S and T are symmetric tensors on V , then S⊗ T is not symmetric in general.
• However, using the symmetrization operator, it is possible to obtain a new prod-

uct that takes symmetric tensors to symmetric tensore.
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Definitin. If S ∈ Sk(V ) and T ∈ S`(V ), we define the symmetric product to
be the (k + `)-tensor ST given by

ST = Sym (S ⊗ T ).

More explicitly, the action of ST on vectors X1, · · · , Xk+` is given by

ST (X1, · · · , Xk+`) =
1

(k + `)!

∑

σ∈Sk+`

S(Xσ(1), · · · , Xσ(k))T (Xσ(k+1), · · · , Xσ(k+`)).

Lemma 2 (Properties of the Symmetric Product).

(1) The symmetric product is symmetric and bilinear: For all symmetric tensor
R, S, T and a, b ∈ R,

ST =TS

(aR + bS)T =aRT + bST = T (aR+ bS).

(2) If ω and η are covectors, then

ωη =
1
2
(ω ⊗ η + η ⊗ ω).

Definition. A symmetric tensor field on a manifold is simply a covariant tensor
field whose value at any point is a symmetric tensor.
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Riemannian metric

• The most important examples of symmetric tensors on a vector space are inner
products.

• Any inner product allows us to define lengths of vectors and angles between
them, and thus to do Euclidean geometry.

• Transferring these ideas to manifolds, we obtain one of the most important ap-
plications of tensors to differential geometry.

• We now introduce metric structures on differentiable manifolds.
— We shall start from infinitesimal considerations.
— We want to be able to measure the lengths and the angles between tangent

vectors. Then, one may obtain the length of a differentiable curve by integratiion.
— In a vector space such a notion of mesurement is usually given by a scalar prod-

uct.

• A Riemannian metric on an open set U of Rn is a family of positive definite
quadratic forms on Rn, depending smoothly on p ∈ U .

Definition 2.1*. A Riemannian metric on a differentiable mfd M is given by
a scalar product on each tangent space TpM which depends smoothly on the base
point p.
• A Riemannian mfd is a differentiable mfd equipped with a Riemannian metric.

Definition 2.1. A Riemannian metric on a smooth manifold M is a
(
2
0

)
-tensor

field g ∈ T 2(M) that is

(1) symmetric (i.e. g(X,Y ) = g(Y,X), ∀X,Y ∈ TpM , p ∈ M), and
(2) positive definite (i.e. g(X,X) > 0, if X 6= 0).

• A Riemannian metric thus determines an inner product on each tangent space
TpM , which typically written

〈X,Y 〉 = g(X,Y ), ∀X,Y ∈ TpM.

Definition. A Riemannian manifold is a pair (M, g), where M is a smooth
manifold and g is a Riemannian metric on M .

• Note that a Riemannian metric is not the same thing as a metric in the sense of
metric spaces, although the two concepts are closely related.

— Because of this ambiguity, we will usually
(1) use the term “distance function” when considering a metric in the metric

space sense, and
(2) reserve “metric” for a Riemannian metric.
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• In any smooth coordinate coordinates (xi), a Riemannian metric can be written

g =
n∑

i,j=1

gijdx
i ⊗ dxj ,

where gij is a symmetric positive definite matrix of smooth functions
(i.e. gij = gji ∀i, j, and gijξ

iξj > 0, ∀ξ = (ξ1, · · · , ξn) 6= 0),
where the coefficients depend smoothly on x such that

(gij(x))i,j=1,··· ,n = 〈 ∂

∂xi

∣∣∣
x
,
∂

∂xj

∣∣∣
x
〉 = g(

∂

∂xi

∣∣∣
x
,
∂

∂xj

∣∣∣
x
).

• Observe that the symmetry of g allows us to write g also in terms of symmetric
products as follows:

g =
n∑

i,j=1

gijdx
i ⊗ dxj

=
1
2

n∑

i,j=1

(gijdx
i ⊗ dxj + gjidx

i ⊗ dxj) (∵ gij = gji)

=
1
2

n∑

i,j=1

(gijdx
i ⊗ dxj + gijdx

j ⊗ dxi)

=
n∑

i,j=1

gijdx
idxj .

• The product of two tangent vectors u, v ∈ TpM with coordinate representations
(u1, · · · , un) and (v1, · · · , vn), (i.e. u = ui ∂

∂xi , and v = vj ∂
∂xj ) then is

〈u, v〉 = gij(x(p))uivj = gm(u, v).

• The length of v is given by ‖v‖ = 〈v, v〉1/2.

Example. The simplest example of a Riemannian metric is the Euclidean metric
g̃ on Rn, defined in standard coordinates by

g = δijdx
idxj = (dx1)2 + · · · + (dxn)n,

where δij is the Kronecker delta. Applying to vectors v, w ∈ TpRn, this yield

gp(v, w) = δijv
iwj =

n∑

i=1

viwi = v · w.

In other words, g is the 2-tensor field whose value at each point is the Euclidean
product.
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Existence of Riemannian Metrics

Theorem 2.2. Every smooth manifold admits a Riemannian metric.

Proof 1. Begin by covering M by smooth coordinate charts (Uα, ϕα).
— In each coordinate domain, there is a Riemannian metric gα given by the Eu-

clidean metric g = gδijdx
idxj in coordinates; that is,

gα(X,Y ) = g(ϕ∗X,ϕ∗Y ).

— Let {ψα} be a smooth partition of unity subordinate to the cover {Uα}, (cf.
Theorem 3 below), and define

g =
∑

α

ψαgα.

– Because of the local finiteness condition for partitions of unity,
there are only finitely many nonzero terms in a nbhd of any point,
so the expression defines a smooth tensor field.

(i) It is obviously symmetric.
(ii) We only need to check the positivity of g.

If X ∈ TpM is any nonzero vector, then

gp(X,X) =
∑

α

ψα(p)gα

∣∣∣
p
(X,X).

This sum is nonnegative, because each term is nonnegative.
At least one of the function ψα is strictly positive at p (because they sum to 1).
Thus gα

∣∣
p
(X,X) > 0, and hence gp(X,X) > 0. �

Proof 2. The second proof relies on the Whitney embedding theorem (cf. Theorem
4 below). We simply embed M in RN for some N , and then the Euclidean metric
induces a Riemannian metric g

∣∣
M

on M . �

Definition. Let X be a topological apace. A collection U of subsets of X is said
to be locally finite if each point of X has a nbhd that intersects at most finitely
many of the sets in U .

Definition. Let M be a topological space, and let X = {Xα}α∈A be an arbitrary
open cover of M . A partition of unity subordinate to X is a collection of
functions {ψα : M → R}α∈A with the following properties

(i) 0 ≤ ψα(x) ≤ 1 for all α ∈ A and x ∈M .
(ii) suppψα ⊂ Xα.
(iii) The set of supports {suppψα}α∈A is locally finite.
(iv)

∑
α∈A ψα(x) = 1 for all x ∈ M .

• Because of the local finiteness (iii), the sum in (iv) actually has only finitely
many nonzero terms in a nbhd of each point, so there is no issue of convegence.

Theorem 3 (Existence of Partition of unity). Let M be a topological space,
and let X = {Xα}α∈A be an arbitrary open cover of M . Then there exists a smooth
partition of unity subordinate to X .

Theorem 4 (Whitney Embedding Theorem). Every smooth n-manifold ad-
mits a proper embedding into R2n+1.
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• Below are a few geometric constructions that can be defined on a Riemannian
manifold (M, g).
(1) The length or norm of a tangent vector X ∈ TpM is defined to be

|X |q = 〈X,X〉1/2 = gp(X,X)1/2.

(2) The angle between two nonzero tangent vectors X , Y ∈ TpM is the unique
θ ∈ [0, π] satisfying

cos θ =
〈X,Y 〉g
|X |g|Y |g

.

(3) Two tangent vectors X , Y ∈ TpM are said to be orthogonal if 〈X,Y 〉g = 0.

Psudo-Riemannian metric

Definition. A
(
2
0

)
-tensor g on a vector space V is said to be nondegenerate

⇔ g(X,Y ) = 0 for all Y ∈ V iff X = 0;
⇔The only vector orthogonal to every vector is the zero vector.
⇔The matrix (gij) is invertible if g = gijε

iεj in terms of a local coframe {εi}.

• Every nondegenerate symmetric
(
2
0

)
-tensor can be transformed by a change of

basis to one whose matrix is diagonal with all entries equal to ±1; i.e. one can
construct a basis (E1, · · · , En) for TpM in which g has the expression

g = −(ε1)2 − · · · − (εr)2 + (εr+1)2 + · · · + (εn)2

— The integer r, called the index of g, is equal to the maximum dimension of any
subspaace of TpM on which g is negative definite.

— Therefore, the index is independent of the choice of basis.

Definition. The signature of g is the sequence (−1, · · · ,−1, 1, · · · , 1) of diagonal
entries in nonincreasing order.

• The signature is an invariant of g.

Definition. A psudo-Riemannian metric on a manifold M is a smooth sym-
metric

(
2
0

)
-tensor field whose value is nondegenerate at each point.

Definition. Lorentz metrics are Psudo-Riemannian metrics with signature

(−1,+1, · · · ,+1).

Minkowski metric is the Lorentz metric m on Rn+1 that is written in terms of
coordinates (ξ1, · · · , ξn, τ) as

m = (dξ1)2 + · · · + (dξn)2 − (dτ)2.

Remark. Neither of the proofs we gave of the existence of Riemannian metrics
carries over to the pseudo-Riemannian case. In particular,

(1) it is not alwats true that the restriction of a nonnegative 2-tensor to a
subspace is nonndegenerate,

(2) nor is it true that a linear combination of nondegenerate 2-tensor with
positive coefficients is necessarily nondegenerate.

Indeed, it is not true that every manifold admits a Lorentz metric.
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Isometry

Definition. Let (M, g) and (M̃, g̃) be Riemannian manifolds.

• A smooth map F : M → M̃ is called an isometry if it is a diffeomorphism that
satisfies F ∗g̃ = g.

— If there exists an isometry between M and M̃ , we say that M and M̃ are iso-
metric as Riemannian manifolds.

• F is called a local isometry if every point p ∈ M has a nbhd U such that F
∣∣
U

is an isometry of U onto an open subset of M̃ .

• Riemannian geometry is the study of properties of Riemannian manifold that
are invariant under isometries.

Definition. A metric g on M is said to be flat if every point p ∈ M has a nbhd
U ⊂M such that (U, g

∣∣
U
) is isometric to an open subset of Rn with the Euclidean

metric.

Orthonormal frames

• Another extremely useful tool on Riemannian mfds is orthonormal frames.

Definition. Let (M, g) be an n-dimensional Riemannian manifold. An orthonor-
mal frame forM is a local frame (E1, · · · , En) defined on some open subset U ⊂M
such that (E1|p, · · · , En|p) is an orthonormal basis at each point p ∈ U , or equiva-
lently such that 〈Ei, Ej〉g = δij .

Example. The coordinate frame (∂/∂xi) is a global orthonormal frame on Rn.

Proposition 2 (Existence of Orthonormal Frames). Let (M, g) be a Rie-
mannian manifold. ∀p ∈ M , ∃a smooth orthonormal frame on a nbhd of p.

Proof. Let (xi) be any smooth coordinates on a nbhd U of p,
and apply the Gram-Schmidt algorithm to the coordinate frame (∂/∂xi).
This yields a smooth orthonormal frame on U . �

• Observe that Proposition 2 does not show that there are smooth coordinates
near p for which the coordinate frame is orthonormal.

Proposition. The following are equivalent:

(1) Each point of M has a smooth coordinate nbhd in which the coordinate
frame is orthonormal.

(2) g is flat.
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Length and Distances on Riemannian Manifolds

• We are now in a position to introduce two of the most fundamental concepts
from classical the Riemannian geoometry into the Riemannian setting: length
of curves and distances between points.

Length of Curves

Definition. If γ : [a, b] → M is a piecewise smooth curve segment, we define the
length of γ to be

Lg(γ) =
∫ b

a

|γ′(t)|g dt.

• Because |γ′(t)|g is continuous at all but finitely many values of t, and has well-
defined left- and right-handed limits at those points, the length is well-defined.

The Riemannian Distance Function

• Using curve segments as “measuring tapes”, we can define a notion of distance
between points on a Riemannian manifold.

Definition. If (M, g) is a connected Riemannian manifold and p, q ∈ M , the
(Riemannian) distance between p and q, denoted by dq(p, q), is defined to be
the infimum of Lg(γ) over all piecewise smooth curve segments γ from p to q.

• Because any pair of points in a connected smooth manifold can be joined by a
piecewise smooth curve segment, this is well-defined.

Example. On Rn with the Euclidean metric g, one can show that any straight
line segment is the shortest piecewise smooth curve segment between its endpoints.
Therefore, the distance function dg is equal to the usual Euclidean distance:

dg(x, y) = |x− y|.

• We will show below the following.

Theorem. The Riemannian distance function turn M into a metric space whose
topology is the same as the given manifold topology.
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• Transformation Behavior under Coordinate Change:

Let y = f(x) define different local coordinates around m, v and w have repre-
sentations (ṽ1, · · · , ṽd) and (w̃1, · · · , w̃d) with

ṽj = vi ∂f
j

∂xi
, w̃j = wi ∂f

j

∂xi
.

Let the metric in the new coordinates be given by hk`(y). Then

hk`(f(x))ṽkw̃` = 〈v, w〉 = gij(x)viwj ;

hence

hk`(f(x))
∂fk

∂xi

∂f `

∂xj
viwj = gij(x)viwj ,

and since this holds for all tangent vectors v, w,

(1.4.3) hk`
∂fk

∂xi

∂f `

∂xj
= gij(x).


