Length and Distances on Riemannian Manifolds

• We are now in a position to introduce two of the most fundamental concepts from classical the Riemannian geoometry into the Riemannian setting: **length of curves** and **distances between points**.

Length of Curves

Definition. *If* γ : [a, b] \rightarrow *M is a piecewise smooth curve segment, we define the* **length of** γ *to be*

$$
L_g(\gamma) = \int_a^b |\gamma'(t)|_g dt.
$$

- Because $|\gamma'(t)|_g$ is continuous at all but finitely many values of t, and has welldefined left- and right-handed limits at those points, the length is well-defined.
- The key feature of the length of a curve is that it is **independent of the parametrization**.

Definition. *A* **reparametrization** *of a piecewise smooth segment* $\gamma : [a, b] \rightarrow M$ *is a curve segment of the form* $\tilde{\gamma} = \gamma \circ \varphi$ *, where* $\varphi : [c, d] \to [a, b]$ *is a diffeomorphism.*

Proposition 1 (Parameter Independence of Length). *Let* (M,g) *be a Riemannian manifold, and let* γ : [a, b] \rightarrow M be a piecewise smooth curve segment. If $\widetilde{\gamma}$ is any reparametrization of γ , then $L_q(\widetilde{\gamma}) = L_q(\gamma)$.

Proof. (I) First suppose that γ is smooth. Let $\varphi : [c, d] \to [a, b]$ be a diffeomorphism such that $\tilde{\gamma} = \gamma \circ \varphi$. The fact that φ is a diffeomorphism implies that either $\varphi' > 0$ or $\varphi' < 0$.

(i) Let us assume first that $\varphi' > 0$. We have

$$
L_g(\widetilde{\gamma}) = \int_c^d |\widetilde{\gamma}'(t)|_g dt = \int_c^d |\frac{d}{dt}(\gamma \circ \varphi)(t)|_g dt
$$

=
$$
\int_c^d |\varphi'(t)\gamma'(\varphi(t))|_g dt = \int_c^d |\gamma'(\varphi(t))|_g \varphi'(t) dt
$$

=
$$
\int_a^b |\gamma'(s)|_g ds = L_g(\gamma).
$$

- (ii) In case $\varphi' < 0$, we need to interduce two sign changes into the above calculations.
	- (1) The sign changes once when $\varphi'(t)$ is moved outside the absolute value signs, because $|\varphi'(t)| = -\varphi'(t)$.
	- (2) Then it changes again when we change varable, because φ reverses the direction of the integral.
- (II) If γ is only piecewise smooth, we apply the same argument on each subinterval on which it is smooth. \square

Typeset by $A_{\mathcal{M}}S$ -T_EX

The Riemannian Distance Function

• Using curve segments as "measuring tapes", we can define a notion of distance between points on a Riemannian manifold.

Definition. If (M, q) is a connected Riemannian manifold and p, $q \in M$, the **(Riemannian) distance** *between* p and q, denoted by $d_q(p,q)$, is defined to be *the infimum of* $L_q(\gamma)$ *over all piecewise smooth curve segments* γ *from p to q.*

• Because any pair of points in a connected smooth manifold can be joined by a piecewise smooth curve segment, this is well-defined.

Example. On \mathbb{R}^n with the Euclidean metric \overline{q} , one can show that any straight line segment is the shortest piecewise smooth curve segment between its endpoints. Therefore, the distance function $d_{\overline{q}}$ is equal to the usual Euclidean distance:

$$
d_{\overline{g}}(x,y) = |x - y|.
$$

- We will show below that the Riemannian distance function turn M into a metric space whose topology is the same as the given manifold topology.
- The key is the following technical lemma, which shows that any Riemannian metric is locally comparable to the Euclidean metric in coordinates.

Lemma 2. Let (M, g) be any Riemannian manifold of dimension n. Let \overline{g} be the *Euclidean metric on* \mathbb{R}^n *. For any coordinate chart* (U, φ) *around* $p \in M$ *and any compact set* $K \subset U$ *, there exist positive constants c, C such that* $\forall x \in K$ *and* $\forall v \in T_xM,$

(1)
$$
c|v|_g \le |\varphi_* v|_{\overline{g}} \le C|v|_g
$$
, where $|v|_g = (g(v,v))^{1/2}$ and $|v|_{\overline{g}} = (\overline{g}(v,v))^{1/2}$.

Proof. For any compact set $K \subset U$, let $L \subset TM$ be the set

$$
L = \{(x, v) \in TM : x \in K, \ |v|_g = 1\}.
$$

L is a compact subset of TM.

Since the norm $|\varphi_* v|_{\overline{q}}$ is **continuous** and strictly positive, ∃positive constants c, C such that

$$
c \le |\varphi_* v|_{\overline{g}} \le C \quad \text{whenever} \ (x, v) \in L.
$$

(a) If $s \in K$ and v is any nonzero vector in T_xM , let $\lambda = |v|_q$. (i)Then $(x, \lambda^{-1}v) \in L$, so by homogeneity of the norm,

$$
|\varphi_* v|_{\overline{g}} = \lambda |\lambda^{-1} v|_{\overline{g}} \leq \lambda C = C|v|_g.
$$

(ii)A similar computation shows that $|\varphi_* v|_{\overline{g}} \geq c |v|_g$.

(b) The same inequalities are trivially true when $v = 0$. \Box

Lemma 3. Let (M, g) be any Riemannian manifold of dimension n. Let \overline{g} be the *Euclidean metric on* \mathbb{R}^n *. For any coordinate chart* (U, φ) *around* $p \in M$ *, let* $\rho > 0$ *be so small that* $B_\rho(\varphi(p)) \subset \varphi(U)$ *, and* $\varphi^{-1}(B_\varepsilon(\varphi(p))) \subset U$ *. Then there exist positive constants c*, C *such that* $\forall q \in \varphi^{-1}(B_\rho(\varphi(p)))$,

(2)
$$
cd(p,q) \leq d'(\varphi(p),\varphi(q)) \leq Cd(p,q),
$$

where $d'(\varphi(p), \varphi(q))$ *is the Euclidean distance from* $\varphi(p)$ *to* $\varphi(q)$ *.*

Proof. Let $V = \varphi^{-1}(B_{\rho}(\varphi(p)))$. Since \overline{V} is a compact subset of U, Lemma 2 shows that \exists positve constants c, C such that

$$
(*) \t\t c|X|_g \le |\varphi_* X|_{\overline{g}} \le C|X|_g, \text{ whenever } x \in \overline{V} \text{ and } X \in T_xM.
$$

Then for any piecewise smooth curve segment γ lying in \overline{V} , it follows that

$$
cL_g(\gamma) \le L_{\overline{g}}(\gamma \circ \varphi) \le CL_g(\gamma).
$$

Fix $q \in V$.

(I) Suppose $\gamma : [a, b] \to M$ is an arbitrary curve with $\gamma(a) = p$ and $\gamma(b) = q$. (i) If $\gamma([a, b]) \subset \overline{V}$, then

$$
d'(\varphi(p), \varphi(q)) \le L_{\overline{g}}(\varphi \circ \gamma) \le CL(\gamma).
$$

(ii) If $\gamma([a, b])$ does not lie entirely in \overline{V} , define

$$
t = \max\{s : \gamma(\lambda) \subset \overline{V}, \ \forall \lambda \le s\}.
$$

Then $t < b$. Also

$$
d'(\varphi(p) - \varphi(\gamma(t))) = \rho
$$

and

$$
d'(\varphi(p), \varphi(q)) \le \rho = L_{\overline{g}}((\varphi \circ \gamma)\Big|_{[a,t]}) \le CL_g(\gamma)\Big|_{[a,t]} \le CL_g(\gamma).
$$

So in either case, $d'(\varphi(p), \varphi(q)) \leq CL(\gamma)$. Taking the infimum over all such γ , we find that

$$
d'(\varphi(p), \varphi(q)) \leq C d(p, q).
$$

(II) On the other hand, let $\varphi(\gamma)$ be the straight-line segment from $\varphi(p)$ and $\varphi(q)$; i.e.

$$
\gamma(t) = \varphi^{-1}(\varphi(p) + t(\varphi(q) - \varphi(p))).
$$

Then $\gamma(t)$ has image in V and so has length $L_g(\gamma)$ satisfying

$$
cd(p,q) \le cL_g(\gamma) \le L_{\overline{g}}(\varphi \circ \gamma) = d'(\varphi(p), \varphi(q)). \square
$$

Proposition 2.91 (Riemannian Manifolds as Metric Spaces). *Let* (M,g) *be a connected Riemannian manifold. With the Riemannian distance function,* M *is a metric space whose metric topology is the same as the original manifold topology.*

Proof. (I) Claim: (M, d_q) is a metric space.

- (a) It is immediate from the definition that $d_q(p,q) \geq 0$ for all $p, q \in M$.
- (b) Because any constant curve segment has length zero, it follows that $d_q(p, p) = 0$.
- (c) $d_q(p,q) = d_q(q,p)$, since any curve segment from p to q can be reparametrized to go from q to p .
- (d) Suppose γ_1 and γ_2 are piecewise smooth curve segments from p to q and q to r, respectively. Let γ be a piecewise smooth curve segment that first follow γ_1 and then follow γ_2 (reparametrized if necessary). Then

$$
d_g(p,r) \le L_g(\gamma) = L_g(\gamma_1) + L_g(\gamma_2).
$$

Taking the infimum over all such γ_1 and γ_1 , we find that

$$
d_g(p,r) \le d_g(p,q) + d_g(q,r).
$$

(This is one reason why it is important to define the distance function **using piecewise smooth curves instead of only smooth ones.**)

- (e) **Claim:** $d_q(p,q) > 0$ **if** $p \neq q$.
- Let (U, p) be any smooth coordinate chart with $p \in U$ but $q \notin U$.
- Let $V = \varphi^{-1}(B_\varepsilon(\varphi(p)))$ such that $\overline{V} \subset U$. **Lemma 3** shows that ∃positve constant C such that $d_q(p,q) \geq C^{-1} \varepsilon > 0$.
- **(II)** To show that **the metric topology generated by** d_q is the same as **the given manifold topology on** M, we will show that **the open set in the manifold are open in the metric topology and vice versa**.
	- (i) Suppose first that $U \subset M$ is open in the manifold topology.
	- Let p be any point of U, and let $V = \varphi^{-1}(B_\varepsilon(\varphi(p)))$ such that $\overline{V} \subset U$.
	- The argument in $(I)(e)$ shows that

$$
d_g(p,q) \ge \varepsilon/C \quad \text{whenever} \quad q \notin \overline{V}.
$$

— The contrapositive of this statement is that

$$
d_g(p,q) < \varepsilon / C \Rightarrow q \in \overline{V} \subset U,
$$

or in other words, the metric ball of radius ε/C around p is contained in U.

- This shows that U is open in the metric topology.
- (ii) Conversely, suppose that W is open in metric topology.
- Choosing $p \in W$, let V be any smooth coordinate ball $V = \varphi^{-1}(B_{\varepsilon}(\varphi(p)))$ around p, and let c, C be positive constants such that (2) is satisfied for $q \in \overline{V}$. — Choose ε small enough that the closed metric ball $\overline{B_{\varepsilon/c}(p)}$ is in W.
- $-\operatorname{Let} V_{\varepsilon} = \{q \in M : d'(\varphi(p), \varphi(q)) \leq \varepsilon\}.$ Lemma 3 shows that $V_{\varepsilon} \subseteq B_{\varepsilon/c}(p) \subset W.$
- Since V_{ε} is a nbhd of p in the manifold topology, this shows that W is open in the manifold topology. \square