
Length and Distances on Riemannian Manifolds

• We are now in a position to introduce two of the most fundamental concepts
from classical the Riemannian geoometry into the Riemannian setting: length
of curves and distances between points.

Length of Curves

Definition. If γ : [a, b] → M is a piecewise smooth curve segment, we define the
length of γ to be

Lg(γ) =
∫ b

a

|γ′(t)|g dt.

• Because |γ′(t)|g is continuous at all but finitely many values of t, and has well-
defined left- and right-handed limits at those points, the length is well-defined.

• The key feature of the length of a curve is that it is independent of the
parametrization.

Definition. A reparametrization of a piecewise smooth segment γ : [a, b] → M
is a curve segment of the form γ̃ = γ◦ϕ, where ϕ : [c, d] → [a, b] is a diffeomorphism.

Proposition 1 (Parameter Independence of Length). Let (M, g) be a Rie-
mannian manifold, and let γ : [a, b] → M be a piecewise smooth curve segment. If
γ̃ is any reparametrization of γ, then Lg(γ̃) = Lg(γ).

Proof. (I) First suppose that γ is smooth. Let ϕ : [c, d] → [a, b] be a diffeomorphism
such that γ̃ = γ ◦ϕ. The fact that ϕ is a diffeomorphism implies that either ϕ′ > 0
or ϕ′ < 0.

(i) Let us assume first that ϕ′ > 0. We have

Lg(γ̃) =
∫ d

c

|γ̃′(t)|gdt =
∫ d

c

| d

dt
(γ ◦ ϕ)(t)|gdt

=
∫ d

c

|ϕ′(t)γ′(ϕ(t))|gdt =
∫ d

c

|γ′(ϕ(t))|gϕ′(t)dt

=
∫ b

a

|γ′(s)|gds = Lg(γ).

(ii) In case ϕ′ < 0, we need to interduce two sign changes into the above calculations.
(1) The sign changes once when ϕ′(t) is moved outside the absolute value signs,

because |ϕ′(t)| = −ϕ′(t).
(2) Then it changes again when we change varable, because ϕ reverses the

direction of the integral.
(II) If γ is only piecewise smooth, we apply the same argument on each subinterval

on which it is smooth. �

Typeset by AMS-TEX

1



2

The Riemannian Distance Function

• Using curve segments as “measuring tapes”, we can define a notion of distance
between points on a Riemannian manifold.

Definition. If (M, g) is a connected Riemannian manifold and p, q ∈ M , the
(Riemannian) distance between p and q, denoted by dq(p, q), is defined to be
the infimum of Lg(γ) over all piecewise smooth curve segments γ from p to q.

• Because any pair of points in a connected smooth manifold can be joined by a
piecewise smooth curve segment, this is well-defined.

Example. On Rn with the Euclidean metric g, one can show that any straight
line segment is the shortest piecewise smooth curve segment between its endpoints.
Therefore, the distance function dg is equal to the usual Euclidean distance:

dg(x, y) = |x − y|.

• We will show below that the Riemannian distance function turn M into a metric
space whose topology is the same as the given manifold topology.

— The key is the following technical lemma, which shows that any Riemannian
metric is locally comparable to the Euclidean metric in coordinates.

Lemma 2. Let (M, g) be any Riemannian manifold of dimension n. Let g be the
Euclidean metric on Rn. For any coordinate chart (U, ϕ) around p ∈ M and any
compact set K ⊂ U , there exist positive constants c, C such that ∀x ∈ K and
∀v ∈ TxM ,

(1) c|v|g ≤ |ϕ∗v|g ≤ C|v|g , where |v|g = (g(v, v))1/2 and |v|g = (g(v, v))1/2.

Proof. For any compact set K ⊂ U , let L ⊂ TM be the set

L = {(x, v) ∈ TM : x ∈ K, |v|g = 1}.

L is a compact subset of TM .
Since the norm |ϕ∗v|g is continuous and strictly positive, ∃positive constants

c, C such that
c ≤ |ϕ∗v|g ≤ C whenever (x, v) ∈ L.

(a) If s ∈ K and v is any nonzero vector in TxM , let λ = |v|g .
(i)Then (x, λ−1v) ∈ L, so by homogeneity of the norm,

|ϕ∗v|g = λ|λ−1v|g ≤ λC = C|v|g .

(ii)A similar computation shows that |ϕ∗v|g ≥ c|v|g .
(b) The same inequalities are trivially true when v = 0. �
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Lemma 3. Let (M, g) be any Riemannian manifold of dimension n. Let g be the
Euclidean metric on Rn. For any coordinate chart (U, ϕ) around p ∈ M , let ρ > 0
be so small that Bρ(ϕ(p)) ⊂ ϕ(U), and ϕ−1(Bε(ϕ(p))) ⊂ U . Then there exist
positive constants c, C such that ∀q ∈ ϕ−1(Bρ(ϕ(p))),

(2) cd(p, q) ≤ d′(ϕ(p), ϕ(q)) ≤ Cd(p, q),

where d′(ϕ(p), ϕ(q)) is the Euclidean distance from ϕ(p) to ϕ(q).

Proof. Let V = ϕ−1(Bρ(ϕ(p))). Since V is a compact subset of U , Lemma 2 shows
that ∃positve constants c, C such that

(**) c|X |g ≤ |ϕ∗X |g ≤ C|X |g, whenever x ∈ V and X ∈ TxM.

Then for any piecewise smooth curve segment γ lying in V , it follows that

cLg(γ) ≤ Lg(γ ◦ ϕ) ≤ CLg(γ).

Fix q ∈ V .
(I) Suppose γ : [a, b] → M is an arbitrary curve with γ(a) = p and γ(b) = q.
(i) If γ([a, b]) ⊂ V , then

d′(ϕ(p), ϕ(q)) ≤ Lg(ϕ ◦ γ) ≤ CL(γ).

(ii) If γ([a, b]) does not lie entirely in V , define

t = max{s : γ(λ) ⊂ V , ∀λ ≤ s}.

Then t < b. Also
d′(ϕ(p) − ϕ(γ(t))) = ρ

and
d′(ϕ(p), ϕ(q)) ≤ ρ = Lg((ϕ ◦ γ)

∣∣∣
[a,t]

) ≤ CLg(γ
∣∣∣
[a,t]

) ≤ CLg(γ).

So in either case, d′(ϕ(p), ϕ(q)) ≤ CL(γ). Taking the infimum over all such γ, we
find that

d′(ϕ(p), ϕ(q)) ≤ Cd(p, q).

(II) On the other hand, let ϕ(γ) be the straight-line segment from ϕ(p) and ϕ(q); i.e.

γ(t) = ϕ−1(ϕ(p) + t(ϕ(q) − ϕ(p))).

Then γ(t) has image in V and so has length Lg(γ) satisfying

cd(p, q) ≤ cLg(γ) ≤ Lg(ϕ ◦ γ) = d′(ϕ(p), ϕ(q)). �
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Proposition 2.91 (Riemannian Manifolds as Metric Spaces). Let (M, g) be
a connected Riemannian manifold. With the Riemannian distance function, M is a
metric space whose metric topology is the same as the original manifold topology.

Proof. (I) Claim: (M, dg) is a metric space.
(a) It is immediate from the definition that dg(p, q) ≥ 0 for all p, q ∈ M .
(b) Because any constant curve segment has length zero, it follows that dg(p, p) = 0.
(c) dg(p, q) = dg(q, p), since any curve segment from p to q can be reparametrized

to go from q to p.
(d) Suppose γ1 and γ2 are piecewise smooth curve segments from p to q and q to r,

respectively. Let γ be a piecewise smooth curve segment that first follow γ1 and
then follow γ2 (reparametrized if necessary). Then

dg(p, r) ≤ Lg(γ) = Lg(γ1) + Lg(γ2).

Taking the infimum over all such γ1 and γ1, we find that

dg(p, r) ≤ dg(p, q) + dg(q, r).

(This is one reason why it is important to define the distance function using
piecewise smooth curves instead of only smooth ones.)

(e) Claim: dg(p, q) > 0 if p 6= q.
— Let (U, p) be any smooth coordinate chart with p ∈ U but q /∈ U .
— Let V = ϕ−1(Bε(ϕ(p))) such that V ⊂ U . Lemma 3 shows that ∃positve

constant C such that dg(p, q) ≥ C−1ε > 0.

(II) To show that the metric topology generated by dg is the same as the given
manifold topology on M , we will show that the open set in the manifold
are open in the metric topology and vice versa.

(i) Suppose first that U ⊂ M is open in the manifold topology.
— Let p be any point of U , and let V = ϕ−1(Bε(ϕ(p))) such that V ⊂ U .
— The argument in (I)(e) shows that

dg(p, q) ≥ ε/C whenever q 6∈ V .

— The contrapositive of this statement is that

dg(p, q) < ε/C ⇒ q ∈ V ⊂ U,

or in other words, the metric ball of radius ε/C around p is contained in U .
— This shows that U is open in the metric topology.

(ii) Conversely, suppose that W is open in metric topology.
— Choosing p ∈ W , let V be any smooth coordinate ball V = ϕ−1(Bε(ϕ(p)))

around p, and let c, C be positive constants such that (2) is satisfied for q ∈ V .
— Choose ε small enough that the closed metric ball Bε/c(p) is in W .
— Let Vε = {q ∈ M : d′(ϕ(p), ϕ(q)) ≤ ε}. Lemma 3 shows that Vε ⊆ Bε/c(p) ⊂ W .
— Since Vε is a nbhd of p in the manifold topology, this shows that W is open in

the manifold topology. �


