Laplacian And Harmonic Forms

e In this section, let (M, g) be an oriented Riemannian manifold, compact and
without boundary.
We note, however, that compactness is needed only when the formula (1) below
is used.

e We defined the inner product (wp,n,) at each point for two k-forms on M.
— We now introduce the inner product in AF(M) by integrating the function
(wp, Mp) over M; i.e.

(1) (wv 77) = ~/M<W777> UM,

where vy is the volume element of M. The following properties hold:
(i) (linearity) (aw + bw',n) = a(w,n) + b(w', 7).

(i) (symmetry) (w,n) = (n,w).

(iii) (positive-definite) (w,w) > 0; (w,w) =0 iff w = 0.

Thus (-, -) is an inner product on the vector space A (M).

In particular, the length |w|| = v/(w,w) is defined.

e The inner product (1) can also be written in the form

(2) (wm)=/Mw/\*n=/Mn/\*w.

We have also
(xw, xn) = (w,n),

which means that the Hodge operator x : A¥(M) — A"~*(M) is isometric
relative to the inner product above.

— By convention, we define the inner product between differential forms of two
different degrees to be 0,
so that the entire space A*(M) is provided with an inner product.

e Next we study how exterior differentiation d: A*(M) — A*(M) is trans-
formed by the Hodge operator.
e For this purpose, we consider linear operator

S = (=1)F e = (1) DT
by requiring the following diagram be commutative
AR(M)  ——  AF(M)
| Ja

Akil(M) Anfkﬁ'l(M)'
(=1)kx

From the definition, we immediately see that

x0 = (=1)*dx, %= (=¥ xd, §05=0.
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Proposition 1. Relative to the inner product (-,-) in A*(M), § is an adjoint
operator of exterior differentiation d; o.e., we have

3) (dw,n) = (w,dn).

Conversely, d is an adjoint operator of §.

Proof. 1t suffices to prove (3) when w and 7 are k- and (k + 1)- forms, respectively.
In this case, we have

dw A xn =d(w Asn) — (=1D)Fw Adxn
=d(w A *n) + w A *0m.

Integrating each side over M, we obtain from (2)

(dw,n) = /M d(w A *xn) + (w,0n) = (w,0n). O

Definition. For a Riemannian manifold M, the operator defined by
A =dé+6d: AF(M) — A (M)

is called the Laplacian or Laplace-Beltrami operator.
o A formw € A*(M) such that Aw = 0 is called a harmonic form.
In particular, a function such that Af = 0 is called a harmonic function.

Example. To compute the Laplacian on R", it suffices to compute Aw for a k-form
written
w= fdx; N---Ndx;,,

where z1,--- , x, are the ordinary coordinates in R".
— First, choose j1,- -, jn—i such that

dxi, N+ Ndxg, Ndzj, N---Ndzxj,_, =dzi A Adzy,.
Then we obtain, by the definition of *,

xw = fdx; N---Ndzj,_,

k
9]
dxw = E 9 f d,CCiS /\d.’IIj1 /\"'/\dw]‘n—k7
Xq
s=1 g

k

9 _

dw = (=)D g = E 3 / dr;, Ndzi, N---dzi, A+ Ada,.
Iis

s=1

Therefor we obtain



k

of
(4) déw :—deaqs Adzi, N~ ANdx,
s=1 1s
. 0% —
s Jt
— On the other hand, we have
n—k
0
dw = Z &Cf_ dxj, Ndzj, Ndxi, A---Ndxg,,
s=1 Js
and thus
n—k 8f .
swdw = Z(_nk“*lﬁd% Adxj, A Ndxj, .
s=1 Js
Further, we have
n—=k
0% f
d*dw = Z(—U’“a%2 dzj, - Ndzj,
s=1 Tjs
n—k k 82f .
Nkt gy, Adxi, Adzi A Adx;
+ ; ;( ) 8IJS 8Iis €z s le x]s x]n7k7
and hence
n—k 82f
(5) Sdw =~ 55 i e A da,
s=1 Tjs
n—k k an o
+ Z(—l)f“ﬁdxjs Adzi, Ndxg, A--- A da, .
x; Ox;
s=1 t=1 Js T ts
— Adding (4) and (5), we arrive at
n—k
0%f
Aw = —Z Wd:z:il <o Adxy,,.
s=1 Tjs

Thus the Laplacian is an extension of the classical Laplace operator to the case
of a general Riemannian manifold.

Proposition 2. The Laplacian A has the following properties:
(i) *A = Ax. If w is a harmonic form, so Is *w.
(ii)) A is self-adjoint, that is,
(Aw,n) = (w, An), Vw,n € A*(M).
(iii) Aw = 0 iff dw = 0 and dw = 0.
Proof. (i) is simple.
(ii) follows from the fact that d and § are adjoint to each other.
(iii) (<) If dw = dw = 0, then clearly Aw = 0.
(=) To show the converse, we need the assumption that M is compact.
In this case, the equality
0= (Aw,w) = ((dd + dd)w,w) = (dw, bw) + (dw,dw) =0
shows that Aw = 0 implies ||dw|| = ||dw|| =0, i.e., dv =dw =0. O



Corollary 3. If (M, g) is a connected, oriented compact Riemannian n-manifold,
then (i) a harmonic function on M is a constant function, and
(i) a harmonic n-form is a constant multiple of the volume element dv,.

Proof. (i) If a function f satisfies Af = 0, then Proposition 2(iii) implies df = 0.
Hence f is a constant function if M is connected.
(ii) Any n-form on M must be a function times the volume element:

w = fdu,.
If Aw =0, then
sw = *(fdvy) = f
is a harmonic function, hence f =constant ¢; i.e. w =cdv,. O
e Let M be an oriented compact Riemannian manifold.

— If r is the number of connected components, then
both HI,(M) and H%5(M) are isomorphic to the derect sum of r copies of R.

— From Corollary 3, it follows that for £ = 0 and for k = n,
every element of H, (];R is represented by a uniquely determined harmonic form.
— This fact remains valid for every k, as we will see in the Hodge theorem.



