Riemannian measure

e Start with the formula for change of variables of integral calculus:
Let D, © be domains in R™, n > 1, and let

p:D—Q

be a C! diffeomorphism, and let J,,(z) denote the Jacobian matrix associated to
@ at z. Then, for any L' function f on 2, we have

(7) [ opnaesav = [ rav.

e Now let M be a Riemannian manifold, and let x : U — R™ be a chart on M.
Then, for each p € U, we let G*(p) denote the matrix given by

)

0

G*(p) = (93;(p)), gfj(P)=<3xi >

,—
J
» ox

and we set
g* =detG* > 0.

Question: What if we are given a different chart y: U — R"™ on the same
set U in M?

Then we relate the formulae as follows: Set J to be the Jacobian matrix

Aoy
A

then we have 9 9
i —J.;
OxJ ; oy~

which implies
G"=J'GYJ,

where J7' denotes the transpose of .J, which implies

Vg* = +/g¥|det J|.

Thus we have the local densities

(®) VFdE - da” = gy - dy”,

by which we mean that the integral
1) = [ (va)ea et da”
z(U)
depends only on f and U—not on the particular choice of chart z.
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e We now turn the local Riemannian measure to a global Riemannian measure
on all of M.
(i) First, pick an atlas
{20 : Uy = R": v € A},

and subordinate partition of unity {¢, : @ € A}.
(ii) Then define the global Riemannian metric dV' by

AV = > pa/gFda), - - dal,

a€cA

or, eqivalently,
[ rav =3 1600 0
M a€cA
— One easily check that the measure is well-defined; that is, it is independent of
both the particular choices of atlas and subordinate partition of unity.

— One easily checks that a function f is measurable w.r.t. dV iff fox™
surable on z(U) for any chart z : U — R™.

I is mea-

In what follws, we work with this measure.

Definition. For any measurable B in M, we let V(B) denote the measure of B
and refer to V(B) as the volume of B.

IfT is an (n — 1)-dimensional submfd of M, then we usually denote its Riemannian
measure by dA;

and for any measurable A in T', we denote its measure by A(A), and refer to A(A)
as the area of A.

The Effective Calculation of Integrals

e If the manifold M is diffeomorphic to R™, then one has, possibly, a convenient
way to literally calculate an integral, by referring the calculation to one coordi-
nate system.

However, as soon as one cannot cover the manifold with one “naturally” cho-
sen chart, one would then be forced to literally pick an atlas and subordinate
partition of unity.

This would not go well at all.

e The simplest overarching approach is to use the geometry of the Riemannian
manifold to indicate a judicious choice of a set of measure 0 to delete,
which will thereby leave an open set that is the domain of a chart on M.

— The quickest example that comes to mind is the stereographic projection of the
sphere S™ to R™, in which the domain of the chart covers all of S™ minus the
pole of the projection.

So any integral on the sphere may be referred to this chart.

e Before proceeding, we note that (8) implies that the notion of a set of mea-
sure 0 depends only on the differentiable structure of the mfd.
— It makes no difference whether we are referring to a local measure on M induced
by Lebesgue measure on the image of a chart on M, or whether we are referring
to Riemannian measure.



Continung, we work, in our setting, with polar coordinates as follows.

For convenience, we assume that M is complete.

For any p € M, introduce normal coordinates about p, which describe (locally)
a differentiable map of (0, 00) x 0B1(0p) into M \ {p}, given by

(t, &) — expté.

(i) This map may fail to be the inverse map of a chart on M \ {p}

since the map may fail to be a diffemorphism.
(ii) Also, since exp(9Bi(0,)) is not diffeomorphic to a subset of R" 1,

one cannot use &, literally, as an (n — 1)-dimensional coordinate.
The second difficulty is simply addressed by picking a chart on exp(9B1(0,).
It need never be explicit, since the final formulation never require it.
The first difficulty must be dealt with by restricting the geodesic spherical
coordinates to D), \ {p}.

Thus, a chart on M \ Cut(p) = D(p) is given by
-1
ex : D — D ;
(exp], )7 Do\ ok = Dy \ )

and the Riemannian measure is given on D,, by

dV(exp€) = /g(t; €)dt dpup (€),

for some function /g on D,,, where dpu,(§) denote the Riemannian measure on
0B1(0,) induced by the Eucliden Lebesgue measure on T, M.

The set {p} has measure 0; so we never have to explicitly include it in, or exclude
it from, our discussion of integrals.

More significantly, C(p) has measure 0. Indeed, the function ¢(§) is continuous
onall of SM = {¢€ € TM : |§] = 1}, so its restriction to dB1(0,) is continuous.

Thus, the tangential cut locus of p is the image of the continuous map

£ c(§)€

from 0B1(0,) to T, M, and therefore has the Lebesgue measure 0.
The image of the tangential cut locus of p under the differentiable exponential
map is C(p), the cut locus of p in M. Therefore

Proposition 1. For any p € M, the cut locus C(p) of p is a set of measure 0.

Thus, for any p € M, and integrable function f on M, we have

/ fav = / F(expt€)y/g(t: €)dt du(€)
M D,
c(§)
_ / dpip(€) / Flexpt€)y/g(t: €)dt
9B (0,) 0

_ / dt / £ (exp t€)\/5(t: €)dyi, (€)
0 t=19B;(0,)ND,

where t710B;(0,) N D, is the subset of 9B;1(0,) obtained by dividing each of the
elements of 0B,(0,) N D, by t.



4

Theorem 2. We have
VI(t;§) = det A(t;€),
where A(t; ) is the solution of the system of ODEs on £+ :

A"+ R(t)A =0,

satisfying the initial conditions A(0;&) =0, A'(0;¢) = 1.
Proof. Let ¢ be a chart on dB1(0,), £ = ¢~ !, and let = be a chart on D, \ {p}

given by
-1

Then, what was called 0, H is here equal to 9/0z", and what was referred to as
0o H is here equal to 9/0z*, a =1,--- ,n— 1.

— Let G be the matrix of the Riemannian metric on M associated to the chart z,
and let @ be the matrix of the Riemannian metric on 9B, (0p) associated to the
chart u.

— Then, equation (6) translates to our language here as

1

], )

JapB = ZA:;,Y/Q\,Y(;VLL;Q, a,B,7,0=1,---,n—1,
v,0

and (4) and (5) translate to
gnn =1, Gon =Gna =0, a=1.-- n—-1

We conclude that
Vo= \/Z_]\ det A,

which implies the claim. [

Notation. Given z € M, we let V(z;7) denote the volume of B,(z) = B(x;r);
that is
V(z;r) :/ dv.
Br(z)

Notation. For each z € M, r > 0, define D;(r) to be the subset of 9B;1(0,)
consisting of those elements £ for which r¢ € D, i.e.

rDy(r) = 0B,(0,) N Dy.

— We have

Vi(x;r) —//DmﬂBT(w) det A(t; xi)dtdu, (&)

_ / "t / det A(t; €)dpiq (€).
0 D, (t)



