
Riemannian measure

• Start with the formula for change of variables of integral calculus:
Let D, Ω be domains in Rn, n ≥ 1, and let

ϕ : D → Ω

be a C1 diffeomorphism, and let Jϕ(x) denote the Jacobian matrix associated to
ϕ at x. Then, for any L1 function f on Ω, we have

(7)
∫

D

(f ◦ ϕ)| det Jϕ|dV =
∫

Ω

f dV.

• Now let M be a Riemannian manifold, and let x : U → Rn be a chart on M .
Then, for each p ∈ U , we let Gx(p) denote the matrix given by

Gx(p) = (gx
ij(p)), gx

ij(p) =
〈

∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

〉
,

and we set
gx = detGx > 0.

Question: What if we are given a different chart y : U → Rn on the same
set U in M?

Then we relate the formulae as follows: Set J to be the Jacobian matrix

Jrj =
∂(y ◦ x−1)r

∂xj
;

then we have
∂

∂xj
=

∑

r

∂

∂yr
Jrj

which implies
Gx = JTGyJ,

where JT denotes the transpose of J , which implies

√
gx =

√
gy| det J |.

Thus we have the local densities

(8)
√
gxdx1 · · · dxn =

√
gydy1 · · · dyn,

by which we mean that the integral

I(f ;U) =
∫

x(U)

(f
√
gx) ◦ x−1dx1 · · · dxn

depends only on f and U—not on the particular choice of chart x.
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• We now turn the local Riemannian measure to a global Riemannian measure
on all of M .

(i) First, pick an atlas
{xα : Uα → Rn : α ∈ A},

and subordinate partition of unity {φα : α ∈ A}.
(ii) Then define the global Riemannian metric dV by

dV :=
∑

α∈A

φα

√
gxαdx1

α · · · dxn
α,

or, eqivalently, ∫

M

f dV =
∑

α∈A

I(φα; f ;Uα).

— One easily check that the measure is well-defined; that is, it is independent of
both the particular choices of atlas and subordinate partition of unity.

— One easily checks that a function f is measurable w.r.t. dV iff f ◦ x−1 is mea-
surable on x(U) for any chart x : U → Rn.

In what follws, we work with this measure.

Definition. For any measurable B in M , we let V (B) denote the measure of B
and refer to V (B) as the volume of B.
If Γ is an (n−1)-dimensional submfd of M , then we usually denote its Riemannian
measure by dA;
and for any measurable Λ in Γ, we denote its measure by A(Λ), and refer to A(Λ)
as the area of Λ.

The Effective Calculation of Integrals

• If the manifold M is diffeomorphic to Rn, then one has, possibly, a convenient
way to literally calculate an integral, by referring the calculation to one coordi-
nate system.
However, as soon as one cannot cover the manifold with one “naturally” cho-
sen chart, one would then be forced to literally pick an atlas and subordinate
partition of unity.
This would not go well at all.

• The simplest overarching approach is to use the geometry of the Riemannian
manifold to indicate a judicious choice of a set of measure 0 to delete,
which will thereby leave an open set that is the domain of a chart on M .

— The quickest example that comes to mind is the stereographic projection of the
sphere Sn to Rn, in which the domain of the chart covers all of Sn minus the
pole of the projection.
So any integral on the sphere may be referred to this chart.

• Before proceeding, we note that (8) implies that the notion of a set of mea-
sure 0 depends only on the differentiable structure of the mfd.

— It makes no difference whether we are referring to a local measure on M induced
by Lebesgue measure on the image of a chart on M , or whether we are referring
to Riemannian measure.
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• Continung, we work, in our setting, with polar coordinates as follows.
For convenience, we assume that M is complete.
For any p ∈ M , introduce normal coordinates about p, which describe (locally)
a differentiable map of (0,∞) × ∂B1(0p) into M \ {p}, given by

(t, ξ) 7→ exp tξ.

(i) This map may fail to be the inverse map of a chart on M \ {p}
since the map may fail to be a diffemorphism.

(ii) Also, since exp(∂B1(0p)) is not diffeomorphic to a subset of Rn−1,
one cannot use ξ, literally, as an (n− 1)-dimensional coordinate.

– The second difficulty is simply addressed by picking a chart on exp(∂B1(0p).
It need never be explicit, since the final formulation never require it.

– The first difficulty must be dealt with by restricting the geodesic spherical
coordinates to Dp \ {p}.

• Thus, a chart on M \ Cut(p) = D(p) is given by
(
exp

∣∣∣
Dp\{p}

)−1 : Dp \ {p} → Dp \ {p};

and the Riemannian measure is given on Dp by

dV (exp ξ) =
√
g(t; ξ)dt dµp(ξ),

for some function
√
g on Dp, where dµp(ξ) denote the Riemannian measure on

∂B1(0p) induced by the Eucliden Lebesgue measure on TpM .

(i) The set {p} has measure 0; so we never have to explicitly include it in, or exclude
it from, our discussion of integrals.

(ii) More significantly, C(p) has measure 0. Indeed, the function c(ξ) is continuous
on all of SM = {ξ ∈ TM : |ξ| = 1}, so its restriction to ∂B1(0p) is continuous.

• Thus, the tangential cut locus of p is the image of the continuous map

ξ 7→ c(ξ)ξ

from ∂B1(0p) to TpM , and therefore has the Lebesgue measure 0.
The image of the tangential cut locus of p under the differentiable exponential
map is C(p), the cut locus of p in M . Therefore

Proposition 1. For any p ∈M , the cut locus C(p) of p is a set of measure 0.

Thus, for any p ∈M , and integrable function f on M , we have
∫

M

fdV =
∫

Dp

f(exp tξ)
√
g(t; ξ)dt dµp(ξ)

=
∫

∂B1(0p)

dµp(ξ)
∫ c(ξ)

0

f(exp tξ)
√
g(t; ξ)dt

=
∫ ∞

0

dt

∫

t−1∂Bt(0p)∩Dp

f(exp tξ)
√
g(t; ξ)dµp(ξ)

where t−1∂Bt(0p) ∩ Dp is the subset of ∂B1(0p) obtained by dividing each of the
elements of ∂Bt(0p) ∩ Dp by t.
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Theorem 2. We have √
g(t; ξ) = detA(t; ξ),

where A(t; ξ) is the solution of the system of ODEs on ξ⊥:

A′′ + R(t)A = 0,

satisfying the initial conditions A(0; ξ) = 0, A′(0; ξ) = I .

Proof. Let ψ be a chart on ∂B1(0p), ξ = ψ−1, and let x be a chart on Dp \ {p}
given by

x =
(
ψ ◦

[ (exp
∣∣
Dp

)−1

|(exp
∣∣
Dp

)−1|

]
, |(exp

∣∣∣
Dp

)−1|
)
.

Then, what was called ∂tH is here equal to ∂/∂xn, and what was referred to as
∂αH is here equal to ∂/∂xα, α = 1, · · · , n− 1.
— Let G be the matrix of the Riemannian metric on M associated to the chart x,

and let Ĝ be the matrix of the Riemannian metric on ∂B1(0p) associated to the
chart u.

— Then, equation (6) translates to our language here as

gαβ =
∑

γ,δ

A∗
αγ ĝγδAδβ , α, β, γ, δ = 1, · · · , n− 1,

and (4) and (5) translate to

gnn = 1, gαn = gnα = 0, α = 1, · · · , n− 1.

We conclude that √
g =

√
ĝ detA,

which implies the claim. �

Notation. Given x ∈ M , we let V (x; r) denote the volume of Br(x) = B(x; r);
that is

V (x; r) =
∫

Br(x)

dV.

Notation. For each x ∈ M , r > 0, define Dx(r) to be the subset of ∂B1(0x)
consisting of those elements ξ for which rξ ∈ Dx, i.e.

rDx(r) = ∂Br(0x) ∩ Dx.

— We have

V (x; r) =
∫ ∫

Dx∩Br(x)

detA(t;xi)dtdµx(ξ)

=
∫ r

0

dt

∫

Dx(t)

detA(t; ξ)dµx(ξ).


