
Connections in Vector Bundles and Curvature

Definition 1. By a connection in a vector bundle π : E → M over a C∞

manifold M , we mean a bilinear map

D : Γ(TM)× Γ(E) → Γ(E)

satisfying the following conditions:

(i) DfXs = fDXs,

and

(ii) DX(fs) = fDXs + (Xf)s,

where f ∈ C∞(M), X ∈ Γ(TM), and s ∈ Γ(E).
We call DXs the covariant derivative of s relative to X .

• We shall see that any vector bundle admits a connection.
(i) First consider the product bundle M × Rn.

Let x1, · · · , xn be the canonical coordinates in Rn.
We take a frame field (s1, · · · , sn), where si(p) = ∂

∂xi
, and set

DXsi = 0, i = 1, · · · , n.

For any s =
∑

i aisi and every vector field X , we set

DXs =
n∑

i=1

(Xai)si.

For this connection, DXs is just the partial derivative in the direction of X if s
is considered as a Rn-valued function on M .
We call it a trivial connection in the product bundle.

(ii) For an arbitrary vector bundle π : E → M , we take a locally finite open covering
{Uα}α∈A such that π−1(Uα) is trivial and denote by Dα a trivial connection in
each π−1(Uα).

– Let {fα} be a partition of unity for the covering Uα and define

DXs =
∑

α

fαDα
Xs.

It is easy to verify that this defines a connection in E.

Proposition 1. Let Di (1 ≤ i ≤ k) be k connections in a given vector bundle.

Then every linear combination
∑k

i=1 Di, where t1 + · · · + tk = 1, is a connection.

Definition. Let D be a connection in a vector bundle π : E → M . Then the map
that assigns to a pair of vector fields X , Y the operator

R(X, Y ) → 1
2
(DXDY − DY DX − D[X,Y ])

is called the curvature of the connection.
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Connection Form and Curvature Form

• Let D be a connection in a vector bundle π : E → M , and R its curvature.
In this subsection, we discuss how we can locally represent D and R by differential
forms.

• Suppose we take a frame field s1, · · · , sn ∈ Γ(EU ), where U is a certain open
subset of M . For any vector field X on U , we may write down

DXsj =
n∑

i=1

wi
j(X)sj with ωi

j ∈ C∞(U).

— Since ωi
j(fX) = fωi

j(X), it follows that each ωi
j is a 1-form on U .

In fact, these n2 1-forms contain all the information on the connection D on U .

Definition. Denoting them collectively as

ω = (ωi
j),

we call ω the connection form of D on U .

We may consider ω as a 1-form on U with values in the set M(n, R) of all n × n
matrices.

• We may look at the curvature R from the same point of view.
• For any vector fields X , Y on U , we define Ωi

j(X, Y ) ∈ C∞(U) by writing

R(X, Y )(sj) =
n∑

j=1

Ωi
j(X, Y )si.

We have
Ωi

j(Y, X) = −Ωi
j(X, Y ), Ωi

j(fX, gY ) = fgΩi
j(X, Y ).

Hence, each Ωi
j is a 2-form on U .

Definition. Denoting them collectively as

Ω = (Ωi
j),

on U with values in M(n, R)), we call Ω the curvature form.

• The following theorem describes the relationship between the connection form
and the curvature form, and is called the structure equation.

Theorem 2. For a vector bundle the connection form ω = (ωi
j) and the curvature

form (Ωi
j) are related by

dω = −ω ∧ ω − Ω.

Componentwise, this is

dωi
j = −

n∑

k=1

ωi
k ∧ ωk

j − Ωi
j .
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Proof. From the definition of the curvature form, we obtain

(1) 2R(X, Y )(sj) = 2
n∑

i=1

Ωi
j(X, Y )sj ,

On the other hand, the definition of curvature gives us

2R(X, Y )(sj) = (DY DX − DXDY + D[X,Y ])sj

(2)

= DY (
n∑

i=1

ωi
ij(X)si) − DX(

n∑

i=1

ωi
j(Y )si) +

n∑

i=1

ωi
j([X, Y ])si

=
n∑

i=1

(Y ωi
j(X))si +

n∑

i,k=1

ωk
j (X)ωi

k(Y )si

−
n∑

i=1

(Xωi
j(Y ))si −

n∑

i,k=1

ωk
j (Y )ωi

k(X)si +
n∑

i=1

ωi
j([X, Y ])si.

Now if we substitute

2dωi
j(X, Y ) =Xωi

j(Y ) − Y ωi
j(X) − ωi

j([X, Y ])

2ωi
k ∧ ωk

j (X, Y ) =ωi
k(X)ωk

j (Y ) − ωi
k(Y )ωk

j (X),

in (2), we obtain

(3) 2R(X, Y )(sj) = 2
n∑

i=1

[
n∑

k=1

ωi
k ∧ ωk

j (X, Y ) − dωi
j(X, Y )]si.

Comparing (1) and (3), we obtain the structure equation. �

Transformation Rules of The Local Expressions for A Connection And
Its Curvature

• Let D be a connection in a vector bundle π : E → M . Given two open subsets
Uα and Uβ in M and trivilizations

ϕα : π−1(Uα) ∼=Uα × Rn,

ϕβ : π−1(Uβ) ∼=Uβ × Rn.

let g :→ GL(n, R) be the transition function. We denote by ωα, Ωα; ωβ , Ωβ

the connection and curvature forms on Uα and Uβ relative to the frame fields
induced by ϕα and ϕβ .
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Proposition 3. We have the transformation rules

ωβ =g−1
αβωαgαβ + g−1

αβdgαβ ,(i)

Ωβ =g−1
αβΩαgαβ.(ii)

Proof. Let s1, · · · , sn be the frame field on Uα induced by ϕα, and t1, · · · , tn the
field induced on Uβ by ϕβ . On Uα ∩ Uβ we have

(4) tj =
n∑

i=1

gi
jsi,

where the components of gαβ are denoed by gi
j .

– Applying DX to (4), we obtain

(5)
n∑

k=1

ω(β)k
j (X)tk =

n∑

i=1

dgi
j(X)si +

n∑

i,k=1

gk
j ω(α)i

k(X)si

where the components of ωα and ωβ are denoted by ω(α)i
j and ω(β)i

j .
– Substituting (4) into (5), we obtain

n∑

k=1

ω(β)k
j (X)gi

ksi =
n∑

i=1

dgi
j(X)si +

n∑

i,k=1

gk
j ω(α)i

k(X)si.

Comparing the coefficients of si, we obtain
n∑

k=1

ω(β)k
j (X)gi

k =
n∑

i=1

dgi
j(X) +

n∑

i,k=1

gk
j ω(α)i

k(X).

Since this holds for arbitrary X and i, j, we can write

gαβωβ = dgαβ + ωαgαβ.

Multiplying by g−1
αβ on both sides, we obtain the desired equation.

(ii) From Theorem 2 we have

Ωβ = −dωβ − ωβ ∧ ωβ .

– Now we take the exterior derivative of each side of (i).
Here functions and 1-forms appear as matrices, but their exterior derivatives can
be easily handled by usual relues.
For instance, if we write g for gα,β for simplicity, then exterior differentiation
of g−1g = I , where I is the unit matrix, gives rise to dg−1g + g−1dg = 0, from
which we obtain

dg−1 = −g−1dgg−1.

Now from (i), we obtain

−Ωβ = − dωβ − ωβ ∧ ωβ

= − g−1dgg−1 ∧ ωαg + g−1dωαg − g−1ωα ∧ dg − g−1dgg−1 ∧ dg

+ (g−1ωαg + g−1dg) ∧ (g−1ωαg + g−1dg)

=g−1(dωα + ωα ∧ ωα)g = −g−1Ωαg. �


