Connections in Vector Bundles and Curvature

Definition 1. By a connection in a vector bundle m : E — M over a C
manifold M, we mean a bilinear map

D :T(TM) x I'(E) — T'(E)

satisfying the following conditions:

and
(ii) Dx(fs) = fDxs+ (Xf)s,

where f € C*(M), X e I'(TM), and s € I'(E).
We call Dxs the covariant derivative of s relative to X.

e We shall see that any vector bundle admits a connection.
(i) First consider the product bundle M x R™.
Let x1,- -+, z, be the canonical coordinates in R".

We take a frame field (s1,- -, sp), where s;(p) and set
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Dxs;=0, 1=1,---,n.

For any s = ), a;s; and every vector field X, we set

n

Dxs = Z(Xai)si.

i=1

For this connection, Dxs is just the partial derivative in the direction of X if s
is considered as a R"-valued function on M.
We call it a trivial connection in the product bundle.

(ii) For an arbitrary vector bundle 7 : E — M, we take a locally finite open covering
{Uq}aea such that 771(U,) is trivial and denote by D a trivial connection in
each 7= 1(U,).

— Let {fo} be a partition of unity for the covering U, and define

Dxs = Z faD%s.

It is easy to verify that this defines a connection in F.

Proposition 1. Let D; (1 < i < k) be k connections in a given vector bundle.
Then every linear combination Zle D;, where t; + --- +t; = 1, is a connection.

Definition. Let D be a connection in a vector bundle 7 : E — M. Then the map
that assigns to a pair of vector fields X, Y the operator

1
R(X,Y) — §(DXDY — DyDx — Dixy))

is called the curvature of the connection.
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Connection Form and Curvature Form

e Let D be a connection in a vector bundle 7 : E — M, and R its curvature.
In this subsection, we discuss how we can locally represent D and R by differential
forms.

e Suppose we take a frame field s1,---,s, € T'(Ey), where U is a certain open
subset of M. For any vector field X on U, we may write down

Dxs; = Zw‘;‘-(X)sj with w} € C=(U).
i=1

— Since wi(fX) = fwi(X), it follows that each w! is a 1-form on U.
In fact, these n? 1-forms contain all the information on the connection D on U.

Definition. Denoting them collectively as

we call w the connection form of D on U.

We may consider w as a 1-form on U with values in the set M(n,R) of all n x n
matrices.

e We may look at the curvature R from the same point of view.
e For any vector fields X, Y on U, we define Q%(X,Y) € C>(U) by writing

R(X,Y)(s;) = ZQ;Z(X, Y)s;.

We have

Hence, each Qz is a 2-form on U.

Definition. Denoting them collectively as
Q= (Q;),

on U with values in M(n,R)), we call Q! the curvature form.

e The following theorem describes the relationship between the connection form
and the curvature form, and is called the structure equation.

Theorem 2. For a vector bundle the connection form w = (w?) and the curvature
form () are related by
dw=—-wAw—E.

Componentwise, this is

n
i i k_ i
dw} = Ewk/\wj Q.
k=1



Proof. From the definition of the curvature form, we obtain

(1) 2R(X,Y)(s;) =2) (X, Y)s;,
i=1

On the other hand, the definition of curvature gives us

(2)
2R(X,Y)(s;) = (DyDx — Dx Dy + Dix y])s;

DY(Z wij(X)s;) — Dx(z wi(Y)s;) + Zw;»([X, Y])si
; ; =1
= Z( SZ + Z w S;

n n

- (Xw = ) WY )wh(X)si + Y wi([X, Y])s;

i=1 ik=1 i=1

Now if we substitute

2dw}(X,Y) =Xwi(Y) — Ywi(X) — wi([X,Y])

2wi AW (X,Y) =wi (X)w] (V) = wi(Y)wy (X),

J

in (2), we obtain

(3) 2R(X,Y)(s;) =2> D> wi Awh(X,Y) = dw}(X,Y)]s;.

i=1 k=1

Comparing (1) and (3), we obtain the structure equation. [

Transformation Rules of The Local Expressions for A Connection And
Its Curvature

e Let D be a connection in a vector bundle 7 : E — M. Given two open subsets
U, and Ug in M and trivilizations

Qo : T HUy) 2U, x R™,
vg : Fﬁl(Ug) =Ug x R".
let g :— GL(n,R) be the transition function. We denote by wy, Qa; wg, Q3

the connection and curvature forms on U, and Ug relative to the frame fields
induced by ¢, and ¢g.



Proposition 3. We have the transformation rules
(1) wg :ggéwagaﬁ + g;édgaﬁu
(i) Qg Zg;éﬂagag.

Proof. Let s1,---,, be the frame field on U, induced by ¢, and t1,---

field induced on Ug by ¢g. On U, NUg we have

i=1

where the components of g3 are denoed by g;
— Applying Dx to (4), we obtain

(5) Zw Xt = Z dg] )s; + Z g;?w(oz)}c(X)sZ

k=1 ik=1

where the components of w, and wg are denoted by w(a)’ and w(3)%.

J J

— Substituting (4) into (5), we obtain

n

Zw(ﬁ )gisi = ng] )si + Z g;‘CW(OZ)Z (X)s;

k=1 ik=1

Comparing the coefficients of s;, we obtain

S wBF(X)gk =Y _dgi(X)+ Y ghw(@)i(X
k=1 =1 ]

Since this holds for arbitrary X and 4, j, we can write

Japwp = dgaﬁ + WaGags-

Multiplying by g(;ﬁl on both sides, we obtain the desired equation.
(ii) From Theorem 2 we have

Qﬁ = —dwg —wg ANwg.

— Now we take the exterior derivative of each side of (i).

,tn the

Here functions and 1-forms appear as matrices, but their exterior derivatives can

be easily handled by usual relues.

For instance, if we write g for g, g for simplicity, then exterior differentiation
of g7'g = I, where I is the unit matrix, gives rise to dg~'¢g + ¢~ 'dg = 0, from

which we obtain
dg~t = —g~'dgg™".

Now from (i), we obtain

—Qﬁ:—dWﬁ—WQ/\WQ

g A dg — 971619971

=—g 'dgg T ANwag+ g "dwag — g
+ (97 'wag + 97" dg) A (9 wag + g~ 'dg)

:gil(dwa + Wa /\Wa)g = —gilQag. O

Adg



