
Integration on Lie Groups

Definition. Let G be a Lie group. A covariant tensor field or differential form σ
on G is said to be left-invariant if L∗

gσ = σ for all g ∈ G.

Proposition 1. If ω is a left-invariant 1-form and X is a left-invariant vector field,
then ω(X) is a constant function on G.

• Let G be an n-dimensional Lie group. Since G is paralleizable, G is orientable.
We now fix once and for all an orientation on G.

• Consider the left-invariant n-form on G.
– Since such a form is uniquely determined by its value at a point, and since the

Λn(TgG), for a fixed g ∈ G, is one-dimensional, there is exactly a one-dimensional
space of left-invariant n-forms on G.

– Choose a non-zero left-invariant n-form consistent with the fixed orientation on
G.

Proposition 2. Let G be a Lie group endwed with a left-invarant orientation.
Then G has a left-invariant orientation form that is uniquely defined up to a con-
stant multiple.

Proof. Let E1, · · · , En be a left-invariant global frame on G (i.e. a basis for the
Lie algebra of G). By replacing E1 with −E1 if necessary, we may assume that this
frame is positively oriented.
— Let ε1, · · · , εn be the dual coframe.
— Left invariance of Ej implies that

(L∗
gε

i)(Ej) = εi(Lg∗Ej) = εi(Ej),

which shows that L∗
gε

i = εi, so εi is left-invariant.
(i) Let Ω = ε1 ∧ · · · ∧ εn. Then

L∗
gΩ = L∗

gε
1 ∧ · · · ∧ L∗

gε
n = ε1 ∧ · · · ∧ εn = Ω,

so Ω is left-invariant as well.
– ∵ Ω(E1, · · · , En) = 1 > 0, ∴ Ω is an orientation form for the given orientation.
– Clearly, any positive constant multiple of Ω is also a left-invariant orientation

form.
(ii) Conversely, if Ω̃ is any other left-invariant orientation form, we can write

Ω̃e = cΩe, for some positive number c.

Using left-invariance, we find that

Ω̃g = L∗
g−1Ω̃e = cL∗

g−1Ωe = cΩg,

which proves that Ω̃ is a positive constant multiple of Ω. �
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Proposition 3. Let G be a compact Lie group endwed with a left-invarant ori-
entation. Then G has a unique left-invariant orientation form Ω with the property
that

∫
G

Ω = 1.

Proof. Since G is compact and oriented,
∫

G
Ω is a positive number, and hence we

can define
Ω̃ = (

∫

G

Ω)−1Ω.

Claerly, Ω̃ is the unique left-invariant orientation form for which G has unit vol-
ume. �

Remark. The orientation form Ω̃ whose existence is asserted in this proposition
is called the Harr volume form on G, and often denoted by dV .
Similarly, the map f 7→

∫
G

f dV is called the Harr integral.

• Consider the diffeomorphism Lσ for σ ∈ G. Then since (Lσ)∗dV = dV , Lσ is
orientation-preserving, so that, for f ∈ C∞(G) with compact support,

∫

G

f =
∫

G

fdV =
∫

G

(Lσ)∗(fdV ) =
∫

G

(f ◦ Lσ)dV =
∫

G

f ◦ Lσ.

In other words, the integral of a smooth function f on G is the same as the
integral of any of its left-tanslates f ◦ Lσ.
Accordingly, we call the the Harr integral left-invariant.

Question: To what extent the Harr integral is also right invariant? That
is, when do we have ∫

G

f =
∫

G

f ◦ Rσ , ∀σ ∈ G?

Lemma. The form (Rσ)∗dV is also left-invariant.

Proof. (Lτ )∗(Rσ)∗dV = (Rσ)∗(Lτ )∗dV = (Rσ)∗dV , for all τ ∈ G. �

Corollary. The form (Rσ)∗dV is some constant multiple of dV .

• Thus there is defined a function λ̃ : G → R such that

(Rσ)∗dV = λ̃(σ)dV.

It is easy to check that λ̃ is C∞. We let

λ(σ) = |λ̃(σ)|.

Then, for each σ ∈ G,
∫

G

fdV =
∫

G

(f ◦ Rσ)λ(σ)ω.

Thus we obtain the following.
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Lemma. The Harr integral is right invariant iff λ ≡ 1 on G.

• Observe that

(1) λ(στ) = λ(σ)λ(τ),

so that λ is a Lie group homomorphism of G into the multiplicative group R+.

Definition. λ is called the modular function.
A lie group G for which λ ≡ 1 is called unimodular.

Theorem 4. Each compact Lie group G is unimodular.

Proof. For each σ ∈ G,

1 =
∫

G

dV = λ(σ)
∫

G

dV = λ(σ). �

Theorem 5. The Harr integral on a compact Lie group is both left and right
invariant.

Applicaion of Theorem 5

Definition. Let G be a Lie group and let α : G → Aut(V ) be a representation into
the automorphisms of a real or complex inner product space V . The representation
α is called unitary (respectively orthogonal) in the case in which V is complex
(respectively, real) inner product space if

(2) 〈α(τ)v, α(τ)w〉 = 〈v, w〉, ∀v, w ∈ V and ∀τ ∈ G.

Theorem 6. Let G be compact and V complex (respectively real). Then there is
an inner product on V with respect to which α is unitary (respectively orthogonal).

Proof. Let { , } be any inner product on V . Set

〈n, w〉 =
∫

G

{α(σ)v, α(σ)w}dσ,

where we use dσ to denote that we are considering the integrand as a function of
σ in G.
It is immediate that 〈 , 〉 is again an inner product, and

〈α(τ)v, α(τ)w〉 =
∫

G

{α(σ)α(τ)v, α(σ)α(τ)w}dσ

=
∫

G

{α(στ)v, α(στ)w}dσ, by (1)

=
∫

G

{α(σ)v, α(σ)w}dσ, by the right invariance on G

=〈v, w〉. �


