
The Complex Projective Space

Definition. Complex projective n-space, denoted by CPn, is defined to be the
set of 1-dimensional complex-linear subspaces of Cn+1, with the quotient topology
inherited from the natural projection

π : Cn+1 \ {0} → CPn.

Definition*. A complex linear subspace of Cn+1 of complex dimension one is
called line. Define the complex projective space CPn as the space of all lines in
Cn+1.

• Thus, CPn is the quotient of Cn+1 \ {0} by the equivalence relation

z ∼ w. ⇔ ∃λ ∈ C \ {0} 3 w = λz.

Namely, two points of Cn+1 \ {0} are equivalent iff they are complex linearly
dependent, i.e. lie on the same line.
Denote the equivalence class of z by [z].

� We also write
z = (z0, · · · , zn) ∈ Cn+1

and define
Ui = {[z] : zi 6= 0} ⊂ CPn,

i.e. the space of all lines not contained in the complex hyperplane {zi = 0}.
— We then obtain a bijection ϕi : Ui → Cn via

ϕi([z0, · · · , zn]) :=
(
z0

zi
, · · · , z

i−1

zi
,
zi+1

zi
, · · · , z

n

zi

)
.

Thus CPn becomes a smooth manifold, because, assuming w.l.o.g. i < j, the
transition maps

ϕj ◦ ϕ−1
i : ϕ(Ui ∩ Uj) = {z = (z1, · · · , zn) ∈ Cn : zj 6= 0} → ϕ(Ui ∩ Uj)

ϕj ◦ ϕ−1
i (z1, · · · , zn) =ϕ([z1, · · · , zi, 1, zi+1, · · · , zn])

=
(
z1

zj
, · · · , z

i

zj
,

1
zj
,
zi+1

zj
, · · · , z

j−1

zj
,
zj+1

zj
, · · · , z

n

zj

)

are diffeomorphisms.

• The vector space structure of Cn+1 induce an analogous structure on CPn by
homogenization:

– Each linear inclusion Cm+1 ⊂ Cn+1 induces an inclusion CPm ⊂ CPn.
The image of such an inclusion is called linear subspace.

– The image of a hyperplane in Cn+1 is again called hyperplane,
and the image of a two-dimensional space C2 is called line.
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• Instead of considering CPn as a quotient of Cn+1 \ {0}, we may also view it as
a compactification of Cn.

— One says that the hyperplane H at infinity is added to Cn; this means the
following: the inclusion

Cn → CPn

is given by
(z1, · · · , zn) 7→ [1, z1, · · · , zn].

Then
CPn \ Cn = {[z] = [0, z1, · · · , zn]} =: H,

where H is a hyperplane CPn−1. It follows that

(1) CPn = Cn ∪ CPn−1 = Cn ∪ Cn−1 ∪ · · · ∪ C0.

Proposition. CP 1 is diffeomorphic to S2.

Proof. It follows from (1) that the two spaces are homeomorphic.
In order to see that they are diffeomorphic, we recall that S2 can be described via
stereographic projection from the north pole (0, 0, 1) and the south pole (0, 0,−1)
by two charts with image C, namely

ϕ1(x1, x2, x3) =
(

x1

1 − x3
,

x2

1 − x3

)

ϕ1(x1, x2, x3) =
(

x1

1 + x3
,

x2

1 + x3

)
,

and the transition map z 7→ 1
z . This, however, is nothing but the transition map

[1, z] 7→ [ 1z , 1] of CP1. �

Proposition. The quotient map π : Cn+1\{0} → CPn is smooth. The restriction
of π to S2n+1 is a surjective submersion.

� Define an action of S1 on Sn+1 by

z · (w1, · · · , wn+1) = (zw1, · · · , zwn+1).

This action is smooth, free and proper. Thus, we have the following.

Proposition. CPn ∼= S2n+1/S1.

� Each line in Cn+1 intersects S2n+1 in a circle S1, and we obtain the point of CPn
defined by this line by identifying all points on S1.

Proposition. CPn can be uniquely given the structure of smooth, compact, real
2n-dimensional manifold on which the Lie group U(n+ 1) acts smoothly and tran-
sitively. In other words, CPn is a homogeneous U(n+ 1)-space.

Proof. The unitary group U(n+1) acts on Cn+1 and transforms complex subspaces
into complex subspaces, in particular lines to lines. Therefore, U(n + 1) acts on
CPn. �
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Proposition. The round metric on S2n+1 decends to a homogeneous and isotropic
Riemannian metric on CPn+1, called the Fubini-Study metric.

• The projection
π : S2n+1 → CPn

is called Hopf map. In particular, since CP1 = S2, we obtain a map

π : S3 → S2

with fiber S1.

Hopf Fibration

We have the smooth map
H : C2 \ {0} → S2

H : (u, v) 7→
(
|v|2 − |u|2

|u|2 + |v|2
,

2uv
|u|2 + |v|2

)
.

• On S3(1), write the metric as

dt2 + sin2(t)dθ21 + cos2(t)dθ22 , t ∈ [0, π/2],

and use the complex notation,

(t, eiθ1 , eiθ2) 7→ (sin(t)eiθ1 , cos(t)eiθ2)

to describe the isometric embedding

(0,
π

2
) × S1 × S1 ↪→ S3(1) ⊂ C2.

• Since the Hopf fibers come from complex scalar multiplication, we see that they
are of the form

θ 7→ (t, ei(θ1+θ), ei(θ1+θ)).

• On S2( 1
2 ) use the metric

dr2 +
sin2(2r)

4
dθ2, r ∈ [0,

π

2
],

with coordinates

(r, eiθ) 7→
(

1
2

cos(2r),
1
2

sin(2r)eiθ
)
.

• The Hopf fibration in these coordinates, therefore, looks like

(t, eiθ1 , eiθ2) 7→ (t, ei(θ1−θ2)).
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• Now on S3(1) we have an orthognal frame

{
∂θ1 + ∂θ2 , ∂t,

cos2(t)∂θ1 − sin2(t)∂θ2
cos(t) sin(t)

}
,

where the first vector is tangent to the Hopf fiber and the two other vectors have
unit length.

• On S2( 1
2 ) {

∂r,
2

sin(2r)
∂θ

}

is an orthonormal frame.
• The Hopf map clearly maps

∂t 7→ ∂r,

cos2(t)∂θ1 − sin2(t)∂θ2
cos(t) sin(t)

7→ cos2(r)∂θ + sin2(r)∂θ
cos(r) sin(r)

=
2

sin(2r)
· ∂θ,

thus showing that it is an isometry on vectors perpendicular to the fiber.

• Note that the map

(t, eiθ1 , eiθ2) 7→ (t, ei(θ1−θ2)) 7→
(

cos(t)eiθ1 − sin(t)eiθ2
sin(t)e−iθ2 cos(t)e−iθ1

)

gives us the isometry from S3(1) to SU(2).

• The map (t, eiθ1 , eiθ2) 7→ (t, ei(θ1−θ2)) from I×S1×S1 to I×S1 is actually always
a Riemannian submersion when the domain is endowed with the doubly warped
product metric

dt2 + ϕ2(t)dθ21 + ψ2(t)dθ22

and the target has the rotationally symmetric metric

dr2 +
(ϕ(t) · ψ(t))2

ϕ2(t) + ψ2(t)
dθ2.

.
• This submersion can be generalized to higher dimensions as follows.
� On I × S2n+2 × S1 consider the doubly warped product metric

dt2 + ϕ2(t)ds22n+1 + ψ2(t)dθ2.

The unit circle acts by complex scalar multiplication on both S2n+1 and S1,
and consequently induces a free isometric action on the space: if λ ∈ S1 and
(z, w) ∈ S2n+1 × S1, then λ · (z, w) = (λz, λw).

� The quotient map

I × S2n+1 × S1 → I × ((S2n+1 × S1)/S1)
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can be made into a Riemannian submersion by choosing suitable metric on the
quotient space.

— To find the metric, we split the canonical metric

ds22n+1 = h+ g,

where h corresponds to the metric along the Hopf fiber and g the orthogonal
complement.

– In other words, if π̂ : TpS2n+1 → (TpS2n+1)V is the orthogonal projection (with
respect to ds22n+1) whose image is the distribution generated by the Hopf action,
then

h(v, w) = ds22n+1(π̂∗v, π̂∗w)

and
g(v, w) = ds22n+1(v − π̂∗v, w − π̂∗w).

— We can then define

dt2 + ϕ2(t)ds22n+1 + ψ2(t)dθ2 = dt2 + ϕ2(t)g + ϕ2(t)h+ ψ2(t)dθ2.

Now notice that
(S2n+1 × S1)/S1 = S2n+1

and that S1 only collapses the Hopf fiber while leaving the orthogonal component
to the Hopf fiber unchanged.
In analogy with the above example, we therefore obtain that the metric on
I × S2n+1 can be written

ds2 + ϕ2(t)g +
(ϕ(t) · ψ(t))2

ϕ2(t) + ψ2(t)
h.

(i) In the case when n = 0, we recapture the previous case, as g does not appear.

(ii) When n = 1, the decomposition ds23 = h+ g can also be written

ds23 = (σ1)2 + (σ2)2 + (σ3)2,

where (σ1)2 = h, (σ2)2 + (σ3)2 = g, and {σ1, σ2, σ3} is the coframing coming
from the identification S3 ∼= SU(2).

– The Riemannian submersion in this case can therefore be written
(I × S3 × S1, dt2 + ϕ2(t)[(σ1)2 + (σ2)2 + (σ3)2] + ψ2(t)dθ2)

y

(I × S3 × S1, dt2 + ϕ2(t)[(σ2)2 + (σ3)2] + (ϕ(t)·ψ(t))2

ϕ2(t)+ψ2(t) (σ
1)2).

(iii) If we let ϕ = sin(t), ψ = cos(t) and t ∈ I = [0, π/2], then we obtain the
generalized Hopf fibration

S2n+3 → CPn+1

defined by
(0,

π

2
) × (S2n+1 × S1) → (0,

π

2
) × (S2n+1 × S1/S1)

as a Riemannian submersion, and the Fubini-Study metric on CPn+1 can be
represented as

dt2 + sin2(t)(g + cos2(t)h).


