The Complex Projective Space

Definition. Complex projective n-space, denoted by $\mathbb{C P}^{n}$, is defined to be the set of 1-dimensional complex-linear subspaces of \mathbb{C}^{n+1}, with the quotient topology inherited from the natural projection

$$
\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C} P^{n}
$$

Definition*. A complex linear subspace of \mathbb{C}^{n+1} of complex dimension one is called line. Define the complex projective space $\mathbb{C P}^{n}$ as the space of all lines in \mathbb{C}^{n+1}.

- Thus, $\mathbb{C P}^{n}$ is the quotient of $\mathbb{C}^{n+1} \backslash\{0\}$ by the equivalence relation

$$
z \sim w . \Leftrightarrow \exists \lambda \in \mathbb{C} \backslash\{0\} \ni w=\lambda z
$$

Namely, two points of $\mathbb{C}^{n+1} \backslash\{0\}$ are equivalent iff they are complex linearly dependent, i.e. lie on the same line.
Denote the equivalence class of z by $[z]$.
\odot We also write

$$
z=\left(z^{0}, \cdots, z^{n}\right) \in \mathbb{C}^{n+1}
$$

and define

$$
U_{i}=\left\{[z]: z^{i} \neq 0\right\} \subset \mathbb{C P}^{n}
$$

i.e. the space of all lines not contained in the complex hyperplane $\left\{z^{i}=0\right\}$.

- We then obtain a bijection $\varphi_{i}: U_{i} \rightarrow \mathbb{C}^{n}$ via

$$
\varphi_{i}\left(\left[z^{0}, \cdots, z^{n}\right]\right):=\left(\frac{z^{0}}{z^{i}}, \cdots, \frac{z^{i-1}}{z^{i}}, \frac{z^{i+1}}{z^{i}}, \cdots, \frac{z^{n}}{z^{i}}\right)
$$

Thus $\mathbb{C P}^{n}$ becomes a smooth manifold, because, assuming w.l.o.g. $i<j$, the transition maps

$$
\begin{aligned}
\varphi_{j} \circ \varphi_{i}^{-1}: \varphi\left(U_{i} \cap U_{j}\right) & =\left\{z=\left(z^{1}, \cdots, z^{n}\right) \in \mathbb{C}^{n}: z^{j} \neq 0\right\} \rightarrow \varphi\left(U_{i} \cap U_{j}\right) \\
\varphi_{j} \circ \varphi_{i}^{-1}\left(z^{1}, \cdots, z^{n}\right) & =\varphi\left(\left[z^{1}, \cdots, z^{i}, 1, z^{i+1}, \cdots, z^{n}\right]\right) \\
& =\left(\frac{z^{1}}{z^{j}}, \cdots, \frac{z^{i}}{z^{j}}, \frac{1}{z^{j}}, \frac{z^{i+1}}{z^{j}}, \cdots, \frac{z^{j-1}}{z^{j}}, \frac{z^{j+1}}{z^{j}}, \cdots, \frac{z^{n}}{z^{j}}\right)
\end{aligned}
$$

are diffeomorphisms.

- The vector space structure of \mathbb{C}^{n+1} induce an analogous structure on $\mathbb{C P}^{n}$ by homogenization:
- Each linear inclusion $\mathbb{C}^{m+1} \subset \mathbb{C}^{n+1}$ induces an inclusion $\mathbb{C P}^{m} \subset \mathbb{C P}^{n}$. The image of such an inclusion is called linear subspace.
- The image of a hyperplane in \mathbb{C}^{n+1} is again called hyperplane, and the image of a two-dimensional space \mathbb{C}^{2} is called line.
- Instead of considering $\mathbb{C P}^{n}$ as a quotient of $\mathbb{C}^{n+1} \backslash\{0\}$, we may also view it as a compactification of \mathbb{C}^{n}.
- One says that the hyperplane H at infinity is added to \mathbb{C}^{n}; this means the following: the inclusion

$$
\mathbb{C}^{n} \rightarrow \mathbb{C P}^{n}
$$

is given by

$$
\left(z^{1}, \cdots, z^{n}\right) \mapsto\left[1, z^{1}, \cdots, z^{n}\right]
$$

Then

$$
\mathbb{C P}^{n} \backslash \mathbb{C}^{n}=\left\{[z]=\left[0, z^{1}, \cdots, z^{n}\right]\right\}=: H,
$$

where H is a hyperplane $\mathbb{C} \mathbb{P}^{n-1}$. It follows that

$$
\begin{equation*}
\mathbb{C P}^{n}=\mathbb{C}^{n} \cup \mathbb{C P}^{n-1}=\mathbb{C}^{n} \cup \mathbb{C}^{n-1} \cup \cdots \cup \mathbb{C}^{0} \tag{1}
\end{equation*}
$$

Proposition. $\mathbb{C} P^{1}$ is diffeomorphic to \mathbb{S}^{2}.
Proof. It follows from (1) that the two spaces are homeomorphic.
In order to see that they are diffeomorphic, we recall that \mathbb{S}^{2} can be described via stereographic projection from the north pole $(0,0,1)$ and the south pole $(0,0,-1)$ by two charts with image \mathbb{C}, namely

$$
\begin{aligned}
\varphi_{1}\left(x^{1}, x^{2}, x^{3}\right) & =\left(\frac{x^{1}}{1-x^{3}}, \frac{x^{2}}{1-x^{3}}\right) \\
\varphi_{1}\left(x^{1}, x^{2}, x^{3}\right) & =\left(\frac{x^{1}}{1+x^{3}}, \frac{x^{2}}{1+x^{3}}\right)
\end{aligned}
$$

and the transition map $z \mapsto \frac{1}{z}$. This, however, is nothing but the transition map $[1, z] \mapsto\left[\frac{1}{z}, 1\right]$ of $\mathbb{C P}^{1}$.

Proposition. The quotient map $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C} P^{n}$ is smooth. The restriction of π to $\mathbb{S}^{2 n+1}$ is a surjective submersion.
\odot Define an action of \mathbb{S}^{1} on \mathbb{S}^{n+1} by

$$
z \cdot\left(w^{1}, \cdots, w^{n+1}\right)=\left(z w^{1}, \cdots, z w^{n+1}\right) .
$$

This action is smooth, free and proper. Thus, we have the following.
Proposition. $\mathbb{C P} \mathbb{P}^{n} \cong \mathbb{S}^{2 n+1} / \mathbb{S}^{1}$.
\odot Each line in \mathbb{C}^{n+1} intersects $\mathbb{S}^{2 n+1}$ in a circle \mathbb{S}^{1}, and we obtain the point of $\mathbb{C P} \mathbb{P}^{n}$ defined by this line by identifying all points on \mathbb{S}^{1}.

Proposition. $\mathbb{C P}^{n}$ can be uniquely given the structure of smooth, compact, real $2 n$-dimensional manifold on which the Lie group $U(n+1)$ acts smoothly and transitively. In other words, $\mathbb{C P}^{n}$ is a homogeneous $U(n+1)$-space.
Proof. The unitary group $U(n+1)$ acts on \mathbb{C}^{n+1} and transforms complex subspaces into complex subspaces, in particular lines to lines. Therefore, $U(n+1)$ acts on $\mathbb{C} \mathbb{P}^{n}$.

Proposition. The round metric on $\mathbb{S}^{2 n+1}$ decends to a homogeneous and isotropic Riemannian metric on $\mathbb{C P}^{n+1}$, called the Fubini-Study metric.

- The projection

$$
\pi: \mathbb{S}^{2 n+1} \rightarrow \mathbb{C P}^{n}
$$

is called Hopf map. In particular, since $\mathbb{C P}^{1}=\mathbb{S}^{2}$, we obtain a map

$$
\pi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}
$$

with fiber \mathbb{S}^{1}.

Hopf Fibration

We have the smooth map

$$
\begin{gathered}
H: \mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{S}^{2} \\
H:(u, v) \mapsto\left(\frac{|v|^{2}-|u|^{2}}{|u|^{2}+|v|^{2}}, \frac{2 u \bar{v}}{|u|^{2}+|v|^{2}}\right)
\end{gathered}
$$

- On $\mathbb{S}^{3}(1)$, write the metric as

$$
d t^{2}+\sin ^{2}(t) d \theta_{1}^{2}+\cos ^{2}(t) d \theta_{2}^{2}, \quad t \in[0, \pi / 2],
$$

and use the complex notation,

$$
\left(t, e^{i \theta_{1}}, e^{i \theta_{2}}\right) \mapsto\left(\sin (t) e^{i \theta_{1}}, \cos (t) e^{i \theta_{2}}\right)
$$

to describe the isometric embedding

$$
\left(0, \frac{\pi}{2}\right) \times \mathbb{S}^{1} \times \mathbb{S}^{1} \hookrightarrow \mathbb{S}^{3}(1) \subset \mathbb{C}^{2}
$$

- Since the Hopf fibers come from complex scalar multiplication, we see that they are of the form

$$
\theta \mapsto\left(t, e^{i\left(\theta_{1}+\theta\right)}, e^{i\left(\theta_{1}+\theta\right)}\right)
$$

- On $\mathbb{S}^{2}\left(\frac{1}{2}\right)$ use the metric

$$
d r^{2}+\frac{\sin ^{2}(2 r)}{4} d \theta^{2}, \quad r \in\left[0, \frac{\pi}{2}\right],
$$

with coordinates

$$
\left(r, e^{i \theta}\right) \mapsto\left(\frac{1}{2} \cos (2 r), \frac{1}{2} \sin (2 r) e^{i \theta}\right)
$$

- The Hopf fibration in these coordinates, therefore, looks like

$$
\left(t, e^{i \theta_{1}}, e^{i \theta_{2}}\right) \mapsto\left(t, e^{i\left(\theta_{1}-\theta_{2}\right)}\right)
$$

- Now on $\mathbb{S}^{3}(1)$ we have an orthognal frame

$$
\left\{\partial_{\theta_{1}}+\partial_{\theta_{2}}, \partial_{t}, \frac{\cos ^{2}(t) \partial_{\theta_{1}}-\sin ^{2}(t) \partial_{\theta_{2}}}{\cos (t) \sin (t)}\right\}
$$

where the first vector is tangent to the Hopf fiber and the two other vectors have unit length.

- On $\mathbb{S}^{2}\left(\frac{1}{2}\right)$

$$
\left\{\partial_{r}, \frac{2}{\sin (2 r)} \partial_{\theta}\right\}
$$

is an orthonormal frame.

- The Hopf map clearly maps

$$
\begin{aligned}
\partial_{t} & \mapsto \partial_{r}, \\
\frac{\cos ^{2}(t) \partial_{\theta_{1}}-\sin ^{2}(t) \partial_{\theta_{2}}}{\cos (t) \sin (t)} & \mapsto \frac{\cos ^{2}(r) \partial_{\theta}+\sin ^{2}(r) \partial_{\theta}}{\cos (r) \sin (r)}=\frac{2}{\sin (2 r)} \cdot \partial_{\theta},
\end{aligned}
$$

thus showing that it is an isometry on vectors perpendicular to the fiber.

- Note that the map

$$
\left(t, e^{i \theta_{1}}, e^{i \theta_{2}}\right) \mapsto\left(t, e^{i\left(\theta_{1}-\theta_{2}\right)}\right) \mapsto\left(\begin{array}{cc}
\cos (t) e^{i \theta_{1}} & -\sin (t) e^{i \theta_{2}} \\
\sin (t) e^{-i \theta_{2}} & \cos (t) e^{-i \theta_{1}}
\end{array}\right)
$$

gives us the isometry from $\mathbb{S}^{3}(1)$ to $\mathrm{SU}(2)$.

- The map $\left(t, e^{i \theta_{1}}, e^{i \theta_{2}}\right) \mapsto\left(t, e^{i\left(\theta_{1}-\theta_{2}\right)}\right)$ from $I \times \mathbb{S}^{1} \times \mathbb{S}^{1}$ to $I \times \mathbb{S}^{1}$ is actually always a Riemannian submersion when the domain is endowed with the doubly warped product metric

$$
d t^{2}+\varphi^{2}(t) d \theta_{1}^{2}+\psi^{2}(t) d \theta_{2}^{2}
$$

and the target has the rotationally symmetric metric

$$
d r^{2}+\frac{(\varphi(t) \cdot \psi(t))^{2}}{\varphi^{2}(t)+\psi^{2}(t)} d \theta^{2}
$$

- This submersion can be generalized to higher dimensions as follows.
\odot On $I \times \mathbb{S}^{2 n+2} \times \mathbb{S}^{1}$ consider the doubly warped product metric

$$
d t^{2}+\varphi^{2}(t) d s_{2 n+1}^{2}+\psi^{2}(t) d \theta^{2}
$$

The unit circle acts by complex scalar multiplication on both $\mathbb{S}^{2 n+1}$ and \mathbb{S}^{1}, and consequently induces a free isometric action on the space: if $\lambda \in \mathbb{S}^{1}$ and $(z, w) \in \mathbb{S}^{2 n+1} \times \mathbb{S}^{1}$, then $\lambda \cdot(z, w)=(\lambda z, \lambda w)$.

- The quotient map

$$
I \times \mathbb{S}^{2 n+1} \times \mathbb{S}^{1} \rightarrow I \times\left(\left(\mathbb{S}^{2 n+1} \times \mathbb{S}^{1}\right) / \mathbb{S}^{1}\right)
$$

can be made into a Riemannian submersion by choosing suitable metric on the quotient space.

- To find the metric, we split the canonical metric

$$
d s_{2 n+1}^{2}=h+g
$$

where h corresponds to the metric along the Hopf fiber and g the orthogonal complement.

- In other words, if $\widehat{\pi}: T_{p} \mathbb{S}^{2 n+1} \rightarrow\left(T_{p} \mathbb{S}^{2 n+1}\right)^{V}$ is the orthogonal projection (with respect to $d s_{2 n+1}^{2}$) whose image is the distribution generated by the Hopf action, then

$$
h(v, w)=d s_{2 n+1}^{2}\left(\widehat{\pi}_{*} v, \widehat{\pi}_{*} w\right)
$$

and

$$
g(v, w)=d s_{2 n+1}^{2}\left(v-\widehat{\pi}_{*} v, w-\widehat{\pi}_{*} w\right)
$$

- We can then define

$$
d t^{2}+\varphi^{2}(t) d s_{2 n+1}^{2}+\psi^{2}(t) d \theta^{2}=d t^{2}+\varphi^{2}(t) g+\varphi^{2}(t) h+\psi^{2}(t) d \theta^{2}
$$

Now notice that

$$
\left(\mathbb{S}^{2 n+1} \times \mathbb{S}^{1}\right) / \mathbb{S}^{1}=\mathbb{S}^{2 n+1}
$$

and that \mathbb{S}^{1} only collapses the Hopf fiber while leaving the orthogonal component to the Hopf fiber unchanged.
In analogy with the above example, we therefore obtain that the metric on $I \times \mathbb{S}^{2 n+1}$ can be written

$$
d s^{2}+\varphi^{2}(t) g+\frac{(\varphi(t) \cdot \psi(t))^{2}}{\varphi^{2}(t)+\psi^{2}(t)} h
$$

(i) In the case when $n=0$, we recapture the previous case, as g does not appear.
(ii) When $n=1$, the decomposition $d s_{3}^{2}=h+g$ can also be written

$$
d s_{3}^{2}=\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}
$$

where $\left(\sigma^{1}\right)^{2}=h,\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}=g$, and $\left\{\sigma^{1}, \sigma^{2}, \sigma^{3}\right\}$ is the coframing coming from the identification $\mathbb{S}^{3} \cong S U(2)$.
The Riemannian submersion in this case can therefore be written

$$
\begin{gathered}
\left(I \times \mathbb{S}^{3} \times \mathbb{S}^{1}, d t^{2}+\varphi^{2}(t)\left[\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}\right]+\psi^{2}(t) d \theta^{2}\right) \\
\left(I \times \mathbb{S}^{3} \times \mathbb{S}^{1}, d t^{2}+\varphi^{2}(t)\left[\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}\right]+\frac{(\varphi(t) \cdot \psi(t))^{2}}{\varphi^{2}(t)+\psi^{2}(t)}\left(\sigma^{1}\right)^{2}\right)
\end{gathered}
$$

(iii) If we let $\varphi=\sin (t), \psi=\cos (t)$ and $t \in I=[0, \pi / 2]$, then we obtain the generalized Hopf fibration

$$
\mathbb{S}^{2 n+3} \rightarrow \mathbb{C P}^{n+1}
$$

defined by

$$
\left(0, \frac{\pi}{2}\right) \times\left(\mathbb{S}^{2 n+1} \times \mathbb{S}^{1}\right) \rightarrow\left(0, \frac{\pi}{2}\right) \times\left(\mathbb{S}^{2 n+1} \times \mathbb{S}^{1} / \mathbb{S}^{1}\right)
$$

as a Riemannian submersion, and the Fubini-Study metric on $\mathbb{C P}^{n+1}$ can be represented as

$$
d t^{2}+\sin ^{2}(t)\left(g+\cos ^{2}(t) h\right)
$$

