
Celestial Dynamics: Homework I

Instructor: Gu, Pin-Gao

due in class on Apr 8th, 2009

1. Angular diameter distance: Consider a bright point source moving at a speed of

vr in a circular Keplerian orbit of radius R. The distance of the object from us is DA,

which is À R. The orbital plane is edge-on from our view. The angle between the

center of the orbit and the point source viewed from us is ∆θ.

1.1 It can be expected that as the point source moves, its line of sight velocity vlos

and ∆θ vary periodically with time. Show that vlos varies linearly with ∆θ as

follows

vlos ≈ vrDA∆θ

R
. (1)

Note that vlos can be measured from the Doppler shift of the point source.

1.2 What are the maximum values of ∆θ and vlos?

1.3 Show that the centripetal acceleration a of the point source can be estimated

from the variation of vlos (i.e. dvlos/dt) when the point source moves to the

vicinity of ∆θ ≈ 0. In other words, a can be measured from vlos when vlos ¿ vr.

1.4 After knowing vr, a, and the maximum value of ∆θ, show that

DA =
v2

r

a∆θmax

, (2)

where ∆θmax denotes the maximum value of ∆θ. Since the distance of the

object DA is determined from the angular size ∆θ, DA has been referred to as

the “angular diameter distance”, or sometimes is called “geometric distance”, a

distance measure relying simply on geometry of a circular Keplerian motion.

1.5 The above calculations have applied to the distance measures of maser point

sources orbiting a super-massive black hole in a Keplerian disk at the center

of a Seyfert 2 galaxy far away from us. The purpose is to measure the Hubble

constant with unprecedented precision. In one particular case, a = 3× 10−2 cm

s−2, ∆θmax = 4 mas, and vr = 1130 km/s. Based on these parameters, estimate

DA and the mass of the central super-massive black hole.

2. Mars’ orbit: 400 years ago, Kepler published his 1st and 2nd laws based on the

heliocentric model fitting to the observations of Mars’ movement on the sky. We

should do a homework problem about Mars’ orbit in memory of the historical
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milestone. Solve Prob. 2.2 in Murray & Dermott. Note that you can obtain the

simple instructions to solve the problem on the book website, but you are required to

present all detailed steps in your solutions.

3. Mass function: We have learnt in class about the description of the orbital motion

of one star in a binary system with respect to a reference plane. In this problem,

we consider the orbital motion of m1 described in terms of a1, e, Ω, ω, I, and f .

According to the conventional definition of I in Astronomy (i.e. I = 90◦ means that

the orbital plane is edge on), the reference plane should be perpendicular to the line

of sight. Like the figure shown in class, you may choose the x-axis pointing to the

ascending node from the origin (i.e. the center of mass of the binary system) to work

out the problem.

3.1 Show that the line-of-sign velocity (also known as “radial velocity”) is given by

K [cos(ω + f) + e cos ω] , (3)

where the amplitude

K =
2πa1 sin I

P (1− e2)1/2
. (4)

3.2 Then show that
(m2 sin I)3

(m1 + m2)2
=

K3P (1− e2)3/2

2πG
, (5)

where the left hand side is conventionally called the mass function and can be

determined by the measurable quantities via the Doppler shift of m1 on the right

hand. Then estimate the amplitude of the radial velocity K of the Sun due to

the gravitational tug of Jupiter. Can you run faster than that speed?

4. Gravitational slingshot: Small bodies (such as spacecrafts, asteroids, or comets)

can be accelerated or decelerated by a gravitational encounter with a planet. The

simplest explanation for this is to consider this so-called slingshot effect as an analogy

of a 1-D collision problem: a small body colliding gravitationally with a planet

behaves almost like a massless particle hitting a rigid wall. As a result, the velocity of

the small body relative to the planet does not change the magnitude but just changes

the sign before and after the “collision”. As a result, a small body gains twice of the

planet’s velocity during a head-on collision. Of course, in reality the orbital encounter

should be a 3-D phenomenon involving the impact parameter and the inclination,

and the concept “head-on” in the case of gravitational pull should be interpreted as a

pitcher winding up to throw a high-velocity strike. Nevertheless, the relative velocity

during the encounter can be proved to be still a conserved quantity in 3-D. Show that
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the relative velocity v between a small body and a planet during a close encounter

can be related to the Tisserand parameter T as follows

v2 ≈ 3− 2T. (6)

5. Roche radius of a non-synchronized secondary: In class we have studied the

effective potential of a binary system with synchronous rotation. Consider the same

binary system consisting of a primary body of mass m1 and a secondary body of mass

m2 (m2 < m1), and the separation of these two bodies is a. However, the spin rate

of the secondary body Ωs is not necessarily equal to the orbital frequency n. For

simplicity, we consider the case that Ωs is parallel to n. We shall adopt the reference

frame in which the origin lies at the center of the mass of the secondary and the x-axis

points to the center of the mass of the primary.

5.1 Using the standard system of units in class to non-dimensionalize the equations

(i.e. G(m1 + m2) = 1 and a = 1)1, show that the effective potential (i.e.

gravitational plus centrifugal potential) at some point P of the secondary body

can be written as the following form:

χ = µ1

[
1

r1

+
q

r2

+
β2

2
(1 + q) d2 − x

]
, (7)

where q ≡ m2/m1 (or ≡ µ2/µ1 in terms of the standard system of units) is the

mass ratio and β ≡ Ωs/n measures the synchrony of the secondary. r1 and r2 are

the distances from the primary and the secondary to the point P, respectively. d

is the shortest distance between the rotation axis of the secondary and the point

P.

5.2 Show that at the Lagrangian 1 point, the following equation holds

q

(
1

r2
2

− β2r2

)
=

1

(1− r2)2
+ β2r2 − 1. (8)

5.3 If r2 << 1 and β2r3
2 << 1, the Roche radius of the secondary can be

approximated to

r2 ≈
(

q

β2 + 2

)1/3

. (9)

Compare this expression with the Roche radius in the synchronized case, and

then explain in terms of simple physics why β < 1 (> 1) increases (decreases)

the Roche radius of the secondary.

1In other words, to resume the normal units of the equation, the potential χ should be multiplied by
G(m1 + m2)/a and all distances (i.e. r1, r2, d, and x) should be multiplied by a.
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6. Zero-velocity curves through L3: Solve Prob. 3.1 in Murray & Dermott. Note

that there is an error in the last line of the problem: the angular separation should be

23.9◦ rather than 23.5◦.


