Celestial Mechanics: Homework II

Instructor: Gu, Pin-Gao due in class on May 6th, 2009

1. J_2 and oblateness: This problem is a slightly modified version of Prob. 4.1 in Murray & Dermott. In general, the *n*th harmonic coefficient of a planet's gravity field is given by the integral

$$J_n = -\frac{2\pi}{MR^n} \int_0^R \int_{-1}^1 P_n(\mu) r^{n+2} \rho(r,\mu) d\mu dr,$$
 (1)

where P_n is the Legendre polynomial of degree n, $\mu = \cos \theta$, M and R are the planet's mass and mean radius, and $\rho(r, \mu)$ is the interior density distribution. Consider a uniform density planet with oblateness $\epsilon = (a - b)/a$, where a and b are the equatorial and polar radii.

- 1.1 Prove that $J_2 = (C A)/Ma^2$, which has been mentioned in class.
- 1.2 By dividing the planet into a sphere of radius *b*, surrounded by a thin shell of variable thickness $h(\theta) = \epsilon R \sin^2 \theta$, and evaluating the integral separately for the two pieces, show that $J_2 \approx 2\epsilon/5$, in the limit that $\epsilon \ll 1$.
- 1.3 Why does this procedure fail for a planet with a radial density gradient?
- 1.4 For a planet in hydrostatic equilibrium, show that $\epsilon = (3/2)J_2 + q/2$, where the quantity q is related to the Love number k_2 by $k_2 = 3J_2/q$.
- 2. Tidal Dissipation in Planets: Solve Prob. 4.6 in Murray & Dermott.
- 3. Orbital Precession of Saturn: Solve Prob. 6.3 in Murray & Dermott.
- 4. Secular Interactions of Two Planets: Solve Prob. 7.1 in Murray & Dermott.
- 5. GJ 876: In 2000, two planets orbiting the M4V star GJ 876 were discovered¹. The mass of GJ876 is estimated to be 0.32 solar masses. Deduced from the radial-velocity method and astrometry, the two planets are found to be locked in the 2:1 mean motion resonance and their masses are $m_1 = 0.597 M_{Jup}$ and $m_2 = 1.90 M_{Jup}$, where M_{Jup} denotes one Jupiter mass. Their orbital elements are as follows: $P_1 = 30.38$ d, $P_2 = 60.93$ d, $e_1 = 0.218$, $e_2 = 0.029$, $\varpi_1 = 154.4^\circ$, and $\varpi_2 = 149.1^\circ$. Write down the equations of motion for e and ϖ of these two planets due to the resonant perturbation.

¹A third planet of $0.018M_{Jup}$ was discovered later in 2005.