Stellar Physics: Homework II

Instructor: Gu, Pin-Gao due in class on Apr 2nd, 2014

1. Radiative diffusion and Kelvin-Helmholtz timescale: Use the radiative diffusion equation to show that the diffusion time of photons through the sun is $t_D \sim \rho c_p R_{\odot}^2/k$, where $k = 16\sigma T^3/3\kappa_R\rho$. Using representative values of the opacity, density, and specific heat, show that t_D is of the order of 10⁷ years. Comment on the agreement between the radiative diffusion timescale and the Kelvin-Helmholtz timescale.

2. Photospheric boundary conditions

- 2.1 Take a opacity equal to $1 \text{ cm}^2/\text{g}$ at the solar photosphere. Estimate the pressure at the photosphere in terms of 1 atm. Roughly estimate the ratio of the photospheric pressure p_p to the pressure at the center of the Sun p_c (p_c is taken from the last homework assignment).
- 2.2 In class, I derive the photospheric boundary condition in the absence of any external irradiation. Assume that there exists isotropic external irradiation with the flux given by F_{irr} .¹ Show that

$$\sigma T^4 = \frac{1}{2} F\left(\frac{3}{2}\tau + 1\right) + F_{irr}.$$
(1)

Note that at the photosphere (i.e. $\tau = 2/3$), the above equation leads to $\sigma T^4 = F + F_{irr}$, meaning that the blackbody temperature at the photosphere is contributed from the "intrinsic" energy flux from the stellar interior F plus the external irradiation F_{irr} .

- 3. What if no quantum tunneling? This is an exercise from the book "Modern Astophysics" by Carroll & Ostlie.
 - 3.1 What temperature would be required for to protons to collide if quantum mechanical tunneling is neglected? Assume that nuclei having velocities ten times the root-mean-square (rms) value for the Maxwell-Boltzmann distribution can overcome the Coulumb barrier. Compare your answer with the estimated central temperature for the Sun $T \approx 10^7$ K.

 $^{{}^{1}}F_{irr}$ can originate from a companion star in a close binary system.

- 3.2 Calculate the ratio of the number of protons having velocities ten times the rms value to those moving at the rms velocity.
- 3.3 Assuming (incorrectly) that the Sun is pure hydrogen, estimate the number of hydrogen nuclei in the Sun. Could there be enough proton moving with a speed times the rms value to account for the Sun's luminosity?

4. Thermaonuclear reaction:

- 4.1 In class, I show the nuclear energy liberated from pp chain to produce one α particle is about 26.7 MeV. Use this information to estimate the flux of pp chain solar neutrinos at the Earth given the solar luminosity L_{\odot} . Assume that the pp chain is entirely responsible for the solar energy production. If 2% of the energy is lost this way, what is the average neutrino energy?
- 4.2 Show that the energy generation rates per unit mass for pp chain ϵ_{pp} and for the CNO cycle ϵ_{CNO} are

$$\epsilon_{pp} = c_1 \rho X^2 T^{-2/3} \exp\left[-33.8 \left(\frac{10^6}{T}\right)^{1/3}\right], \qquad (2)$$

$$\epsilon_{CNO} = c_2 \rho X X_{CNO} T^{-2/3} \exp\left[-155 \left(\frac{10^6}{T}\right)^{1/3}\right],$$
 (3)

where X is the mass fraction of hydrogen, X_{CNO} is the total mass fraction of carbon, nitrogen, and oxygen, c_1 and c_2 are constants. Note that deriving approximate numerical values in the exponential terms are O.K.

- 4.3 Calculate their power-law indices ν_{pp} and ν_{CNO} and explain what causes the difference in the temperature dependence.
- 4.4 Consider the following model of a massive star. Its mass is $M = 10 M_{\odot}$ and its radius $R = 3.6 R_{\odot}$. Its central density is 10 g/cm⁻³ and the bulk of energy generation takes place within a radial distance 0.15*R*. Assume constant density for this region and a temperature 2.7×10^7 K. Adopt $X_{CNO} = 0.005X$ and $c_2 = 8 \times 10^{31}$ in c.g.s. units. Determine the rate of energy generation by the star. Also, calculate how soon it will use up the hydrogen in its central core.
- 4.5 Repeat the same calculations for the Sun assuming burning in the central region out to 0.2*R*. Take a central density of about 55 g/cm⁻³ and a central temperature 10⁷ K. Adopt $c_1 = 2.5 \times 10^{10}$ in c.g.s. units.