
Stellar Physics: Homework III

Instructor: Gu, Pin-Gao

due in class on Apr 18th, 2014

1. Thermal ionization fraction:

1.1 Calculate the thermal ionization fraction x ≡ ne/n contributed from two alkali

elements K and Na for a gas with n = 1017 cm−3 at T = 3500K. Assume

that the ions are much less than the neutrals for each element to simplify the

Saha equation. The ionization potentials of K and Na are χK = 4.34 eV and

χNa = 5.14 eV. Take their abundances XK = 10−7 and XNa = 10−5.5.

1.2 Perform the same calculation for x contributed from H with XH = 0.74. Which

contribution to x is dominant, from alkali elements or from H? Is the assumption

of low ionization fractions reasonable in this problem?

2. Thermodynamical quantities influenced by thermal ionization:1

2.1 In class, I derive the mean molecular weight for a fully ionized ideal gas. Now

consider that a gas is partially ionized with the ionization fraction given by

x. Show that the mean molecular weight of the gas is modified to the form

µ = (ρ/mun)/(1 + x).

2.2 For an idea gas, derive
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from the first law of thermodynamics, where δ ≡ −(∂ ln ρ/∂ ln T )P .

2.3 We now focus on a pure hydrogen ideal gas, which was studied in class as an

example for the calculation of x due to thermal ionization. Use the Saha equation

to show that
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2.4 Use the internal energy u = 3RT
2µ

+ uion with the additional contribution

uion = xχH/mu due to ionization. Derive
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2
. (3)

1You should notice that the thermodynamical quantities (µ, cp, ∇ad, etc.) approach their “familiar”
values as x → 0 when working out the problems.
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2.5 It can be shown that ∇ad = Pδ/Tρcp (e.g. see “Stellar Interiors” by Hansen &

Kawaler). Use this expression to show that

∇ad =
2 + x(1− x)(5/2 + χH/kT )

5 + x(1− x)(5/2 + χH/kT )2
. (4)

Is this value larger or smaller than ∇ad for a monatomic (i.e. non-ionized) ideal

gas?

3. Polytrope:

3.1 Show that the gravitational energy of a sphere in which P = Kρ1+1/n is given by

the expression Eg = − 3
5−n

GM2

R
.

3.2 A brown dwarf is fully convective and may be modeled as an n = 1 polytrope.

Explain why brown dwarfs for a given K have similar sizes regardless of mass.2

3.3 In reality, a “fully” convective star is expected to even possess a thin radiative

envelope where the radiative cooling is so efficient that thermal convection

subsides. We may construct such a stellar model consisting of an polytropic

interior overlaid with a thin radiative layer. Use the condition that all of

the thermodynamic quantities (such as T , P and their gradients) need to be

continuous across the boundary between the polytropic interior and the radiative

outer layer. In addition, it is reasonable to assume that the stellar luminosity L

does not vary greatly across the thin radiative outer layer after it emerges from

the polytropic interior, because there is no localized source of heating there.

Consider an ideal gas. Show that

L ∝ kn
nMn(TbR)3−n

κb
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R
)n

, (5)

where kn is a function of n and the subscript b means the value evaluated at the

boundary between the polytropic interior and outer radiative layer.

2It can be proved that K is related to specific entropy. Hence, the same K means the same specific
entropy, and therefore we compare brown dwarfs with the same “heat” content.


