
Stellar Physics (Radiative Processes): Homework IV

Instructor: Gu, Pin-Gao

due in class on May 23rd, 2014

1. Effective temperature of a geometrically thin disk: When we derived the

emergent flux from a blackbody F = σT 4 in class, we have made use of the relation

F = πB for an isotropic emitter without proving it beforehand. But you can find

the proof in the text around eq.(1.14) and Figure 1.6 in Rybicki & Lightman. Now

make use of Figure 1.6 in the book again, but consider a star of radius R (as shown in

the figure), surrounded by a geometrically thin, flat disk with its disk plane aligned

with the dashed line in the figure. In other words, point P denotes any point that lies

on the disk with a distance r from the stellar center. The flat disk is assumed to be

infinitesimally thin in geometry but optically thick.

1.1 You can employ spherical coordinates with the origin at point P such that the

axis of the coordinate system points to the stellar center (see Figure 1.6). Show

that the stellar flux passing through the disk surface is F =
∫

I∗ sin θ cos φdΩ,

where I∗ is the constant brightness on the spherical photosphere of the star.

1.2 Given the fact that the top surface of the optically thick disk can only be

illuminated by the flux coming from the top half of the star, show that

F =
σT 4
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where T∗ is the effective temperature of the star.

1.3 Assume that the disk attains thermal equilibrium. In the limit that (R/r) ¿ 1

(i.e. far from the star), show that Tdisk ∝ r−3/4.

2. radiation force: Consider a plane-parallel stellar atmosphere with known extinction

coefficient χν(z) = αν(z) + σν(z) and known radiation field Iν(z, µ). Find an

expression for the force per unit volume on the stellar matter exerted by the radiation

field due to extinction.

3. Eddington approximation: In class we assumed the intensity to be expanded to

linear order I(µ) = a + bµ to solve the radiative transfer equation. This procedure

leads to the Eddington approximation: f ≡ K/J = 1/3. In this problem, we shall

study various versions of the approximation.
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3.1 Consider the intensity of the form I(µ) = I0 +
∑

n Inµ
n. If the sum includes only

odd powers n, what should be the value of f?

3.2 Suppose that I(µ) = I1 for 0 ≤ µ ≤ 1 and I(µ) = I2 for −1 ≤ µ ≤ 0. What is

the value of f?

3.3 Consider I(µ) = a(1 − µ2), which is analogous to the emission from electron

scattering. What is f in this case?

4. Eddington limit of luminosity:

4.1 Rybicki & Lightman: Problem 1.4

4.2 Follow up the preceding exercise. Assume that the luminosity of an accreting

object reaches its maximum value, i.e. the Eddington luminosity LEDD. The

mass and radius of the central object is one solar mass and 10 km, respectively

(i.e. typical parameters for a neutron star). What is the effective temperature

of the accreting HII gas? Also estimate the viral temperature of the accreting

HII gas, which is assumed to be in quasi-hydrostatic equilibrium? Which

temperature is higher? Make an attempt to explain why.

5. more from Ribicky & Lightman:

5.1 Ribicky & Lightman: problem 1.7

5.2 Ribicky & Lightman: problem 1.8


