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Radiation intensity and flux

Definition of Intensity | :
dE, (t) =1, (F,S,t)d2dAd vt

| [erg/cm?/s/sr/Hz]

Definition of I'lux F [erg/cm?/s/Hz]

I, = ij cos 6 d§2




Radiative transfer equation

e.g. Rybicki & Lightman:

al, =—a,| +] = dl, =—|,+S

ds ' T,

dz, = pk,ds, Iph:i:i
pK, No,

Forthesun, p~14 g cm™, x~04-1cm’g™
= |, ® 2 cm = stellar matter Is very opaque.



Blackbody radiation

B a black body is a perfect radiator that absorbs all radiation incident on it
(reflects no light, and so-named as blackbody) and reemits radiation in a
frequency spectrum depending only on its temperature T. Blackbody radiation is
Isotropic, and its power spectrum is described by the Planck function B  (T)

B thermal radiation is radiation emitted by matter in thermal equilibrium.
Thermal radiation becomes blackbody radiation only for optically thick media
(=5 adr>>1)andinthiscasel =B

B |n a fluid with a temperature gradient, we may apply the concept of “local
thermodynamic equilibrium (LTE) as a local version of complete thermodynamic
equilibrium. The LTE is valid when collisional processes dominate over radative
processes, hence enabling matter and radiation to share the same temperature.
B Kirchhoff's Law: under LTE, S, =B

B (T) = 2h S
" ¢’ exp(hv/kT)-1




Radiative diffusion

radiative tranfer equation (e.g. Rybicki & Lightman):
|, << R, = adopt the plane - parallel assumption

dl, dl, .
=—=—ql +],
dr ds v

dl, =—1,+S,
dr

v

cosd

— C0S¢

In the optically thick regim, LTE=S, =B, and I, changesslowly overi.
PK

Hence the derivative termis small and we can solve for |, using iteration.
0 g0 _
;7 =S)” =B
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B
:Ifl)zBV—cosed—V, |? =B, —cosf—"—,...........
dr dr

4z dB, dT
3x,p dT dr

160T2 dT B 160T*
3o dr 3ol

Consider 1st order, F, = J'cose 1Wd0 =—

Then, F, = [ Fdv=-

= 1 dB,
1 b dT dv dinT
where — = 4 and V= .
Ky r dB, 4, dinp
o dT



Radiative diffusion

The Rosseland mean opacity is the average of 1/ ¢ . That is, more
Energy is transported at frequencies where the matter is more
transparent. It is also a mean weighted with dB/dT; this means that more
energy is transported at frequencies where the radiation field is more
temperature dependent.



Convective Instabllity

e.g. Frank Shu: gas dynamics

op op op
d =|—|dp, d o= — | dp+|—| ds
pblob (ap JS p pamblent (ap js p ( 85 jp

Convective instability willarise if
doyes < (>)dpamen FOr @ upward (downward) displacement
or

(2—";] ds > (<)0 for a upward (downward) displacement
p

Now, Maxwell's relations give

8’0_1 =8—T >0
oS ) op ),

ds . : - : L
= 3 < 0 for convective linear instability (Schwarzchild's criterion)
r

Nonlinear outcome is that strong convective mixing would smear out
the entropy gradient.




Convective instabllity

the criterion can be expressed by temperature gradient :

1st law of thermal dynamicsapplies to an ideal gas

p, 4, du du R

ds=—+—d —dInT——dIn = dinp-dInp)—-—din
e = LAne= —(dInp-dinp) ,4ne

=Cc,(dInp-dinp)—(c,—-c)dInp

=ds=c,dIn(p/p’)=cdIn(T”/p"*)=c,dIn p(d InT —7/_1]

dinp »
C
ds _—y dinT (dInT =S v-v,)
dr I dlnp dinp ), |
If V>V_,, convectiveinstability occurs. Efficient convection

(e.g. fully convective stars or brown dwarfs) tends to give rise to
the adiabatic temperature gradient.



Brunt-Vaisala (buoyancy) frequency

Ar oc exp(iNt) : small displacement of the blob with a timescale described by 1/ N.

d 2Ar — 5/0 g (dpblob . dloambient jAr - _ g (apj Eﬁr

dtz pambient g } pambient dr dr ; g p dr

dr “p y ' dr dr .

plly
oT ) d T y-1_d(np/p’ dln[j
Nz:gp(_j ds_ ply=t dnplp) L p)_g
op ).
where |, =(d Ins/dr)™ is the entropy scale height.

When I, <0, N? <0 and therefore the convective instability grows at a rate of | N |.
The fluid is convectively unstable.

When I, >0, N* >0 and the blob oscillates at the Brunt - Vaisala (buoyancy)freq N
(i.e.eigenfrequency of a stably stratified fluid). No convection occurs.



Mixing-length theory for convection

Convection is one type of turbulence driven by an entropy gradient against
gravity. How to model the energy transport by turbulent mixing? The
turbulence cascade theory describes how the eddy kinetic energy is
passed from the large-scale eddies to the microscopic scale where the
energy is dissipated. Thermal convection transports heat from high-
temperature inner region to the outer part of a star, which is a non-linear
(i.e. non-local) process.

The mixing-length theory is a phenomenological model describing a
simple picture of convection in analogy to molecular heat transfer: the
transporting “particles” are macroscopic mass element (“blobs”) instead of
molecules. The “blob” travels over a distance called the mixing length, A,
before mixing with the surroundings and hence transporting energy.
Based on the theory, the convective flux may be written in terms of local

fluid quantities as follows Td
S :
A with A=dal
P

|:c:onv,MLT — pvconv d
r parametrized in terms of

pressure scale height & 10
one single isotropic eddy




Mixing-length theory for convection

1 g 1 . : : :

Viw =—7—=|NA=4 | =(V-V_), —= Isfrom numerical simulation
Al Jup( ) 2

A:pvcoanCplé(V_vad)

p

3/2
1 V-V
=——=pc, T /gA a
2217 Vo L | ]

P

ds

Foorw = Voo 1
conv p conv dr
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Total energy flux
F=F_+F

4
_ 4acT v
3okl
dacT”
3okl

F

rad
P

F Vv

(V.4 1S related to the total flux)

rad
P

ar 3KpF B 3Kp£VjF
d

dr ~ 4acT® ™ 4dacT?\ Vv,
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Efficiency of convection

reference: Cox & Giuli 1968, Principles of stellar structure

Convective blobs can exchange heat with ambient gas via radiation,
which reduces convective flux and damps convective motion. The thermal
properties of the blobs are not adiabatic. In other words,

dinT recall :
V., should be replaced by V'= dinT
d In p convective blob = dInP
Note that in the convection zone:V, , >V >V'>V _, dInT
“ " dInpP|,
Therefore, V'= dinT
d In P convective blob
1 g
V. =——=[|NA=A4 |[—(V-V'
= = )

3/2
ds A | V=V’
—A= T V-V T,/gA
dl’ p\/COHV C I ( ) 2/ IOC ( I j

p p

COI’]V p\/ COI’]V
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Efficiency of convection

“Stellar structure and evolution” by Kippenhahn & Weigert

Fig. 6.2, Temperature—pressure diagram with
a schematic sketch of the different gradients

W = JInT/31n P)in a convective layer. Start-

ing at a common point with f and Tp, the
different types of changes (adiabatic, in a nis-
ing clement, in the surroundings, for radiative
stratification) lead 1o different lemperatures at
a slightly higher point with Fyy + 4F (< F,
since ' decreases oulwards)

Y
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Efficiency of convection

How to calculate V' and hence F_?

Define
energy carried by convection just before dissolving

energy loss via radiation during lifetime

_ C pmeaxVeddy
A(4acl3)T AT (Alv,,) (xp) (Al 2)

C, xp’V A

conv

6ac T°
where numerical valuesT, , =2AT, V[ A=(2/9)A have been used.

In addition, by definition
F

conv,non—ad

F

conv,non

VA=

V-V V-V
Fconv,ad - ) (V —Va ) - (V _V') ) Vl_vad
So, V' issolved from the above two equations for 7~ in termsof V and V.
now, F=F_,+F,,=2>V,.,=V+0/2)'(V-V')
l.e.V, ., canbeexpressedintermsof V and V_,

I =
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Equations for stellar structure

hydrostatic equilibrium: — P = Gm4
om Anar
: or 1
mass conservation : =——
om 4ar‘p
energy conservatoin : & — a = du _ p2 dp
dm dt p° dt
radiatve diffusion : S = — 3KR2 Foy=— 3KR2 3 =
dm  l6acar-T 16acar< T\ V, 4

equation of state: p(p,T)

5 equations for 5 unknowns: p, o, T,F,r asfunctions of (m,t).
need initial and boundary conditions
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Boundary conditions

f_4ride_u_ar
3 x,p dr S 3 3
d .
N p(;f:d” =_KV’EFV. Integrate it over frequency references:
P

Rybicki & Lightman
Hansen & Kawaler
Cox & Giuli

ko L __xpF with K:EIvaLvdv
F Jo

= dprad __ -
dr C 4nr c

F
= Prag =?T+ Prag (0)

What s p,,, (0)? Consider only outgoing radiation at z =0

1 ep=27 (6=ri2 2
== I(O)coszészg—Zl(O)

rad

C Y4=0 6=0
p=27 (O0=rl2
F=]. LZO 1 (0) cos .2 = 7 (0)
- 2F
The above two give p,,4(0) = 3o

Finally, using p, =%aT4 :43—GT4 in the optically thick limit, we have
c

T4
dope Fo L 2F L qala (1+§rj,
3¢ c 3¢ 2 2

The photosphere is defined by T =T = 7, :%

d w1 29
R I R ey

dr « K

p
The above boundary condition can be understaood by

K,p,l, =213.
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Boundary conditions

4 ODEs need 4 boundary conditions to solve:
m=0: r=0, F=0 (bysphericalsymmetry)

Zg(l

m=M: p, = ~1,), F=oT" (blackbody)

mfp =
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summary

Equations for stellar structure and
evolution

Energy transport inside a star: radiative
diffusion (Rosseland mean) & thermal
convection (mixing length theory)

Convection: Schwarzchild criterion, Brunt-
Vaisala freq, efficiency

Photospheric conditions
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