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Stellar Physics
lecture 2: energy transport
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Radiative transfer equation
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Blackbody radiation

 a black body is a perfect radiator that absorbs all radiation incident  on it  
(reflects no light, and so-named as blackbody) and reemits radiation in a 
frequency spectrum depending only on its temperature T. Blackbody radiation is 
isotropic, and its power spectrum is described by the Planck function Bν (T)
 thermal radiation is radiation emitted by matter in thermal equilibrium. 
Thermal radiation becomes blackbody radiation only for optically thick media 
(τ=∫αdr >> 1) and in this case Iν=Bν.
 In a fluid with a temperature gradient, we may apply the concept of “local 
thermodynamic equilibrium (LTE) as a local version of complete thermodynamic 
equilibrium. The LTE is valid when collisional processes dominate over radative
processes, hence enabling matter and radiation to share the same temperature.
 Kirchhoff’s Law: under LTE, Sν =Bν
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Radiative diffusion
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Radiative diffusion
The Rosseland mean opacity is the average of 1/κν. That is, more
Energy is transported at frequencies where the matter is more 
transparent. It is also a mean weighted with dB/dT; this means that more 
energy is transported at frequencies where the radiation field is more 
temperature dependent.
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Convective instability
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Convective instability
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Brunt-Väisälä (buoyancy) frequency
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Mixing-length theory for convection
Convection is one type of turbulence driven by an entropy gradient against 
gravity. How to model the energy transport by turbulent mixing? The 
turbulence cascade theory describes how the eddy kinetic energy is 
passed from the large-scale eddies to the microscopic scale where the 
energy is dissipated. Thermal convection transports heat from high-
temperature inner region to the outer part of a star, which is a non-linear 
(i.e. non-local) process.

The mixing-length theory is a phenomenological model describing a 
simple picture of convection in analogy to molecular heat transfer: the 
transporting “particles” are macroscopic mass element (“blobs”) instead of 
molecules. The “blob” travels over a distance called the mixing length, Λ, 
before mixing with the surroundings and hence transporting energy. 
Based on the theory, the convective flux may be written in terms of local 
fluid quantities as follows

pconvMLTconv l
dr

TdsF      with   v,
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Mixing-length theory for convection

 

2/3

2

conv

22
1       

vv

simulation numerical from is  
22

1   ,)(
22

1v










 






p

ad
p

ad
p

pconvconvconv

ad
p

l
gTc

l
Tc

dr
dsTF

l
gN









12

Total energy flux
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Efficiency of convection
reference:  Cox & Giuli 1968, Principles of stellar structure

Convective blobs can exchange heat with ambient gas via radiation,
which reduces convective flux and damps convective motion. The thermal 
properties of the blobs are not adiabatic. In other words, 
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Efficiency of convection
“Stellar structure and evolution” by Kippenhahn & Weigert
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Efficiency of convection
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Equations for stellar structure
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Boundary conditions
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Boundary conditions
4 ODEs need 4 boundary conditions to solve:
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summary

• Equations for stellar structure and 
evolution

• Energy transport inside a star: radiative
diffusion (Rosseland mean) & thermal 
convection (mixing length theory)

• Convection: Schwarzchild criterion, Brunt-
Väisälä freq, efficiency

• Photospheric conditions


