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Stellar Physics
Lecture 4: composition, ionization, 

and opacity
Reference: Rybicki & Lightman
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Mean molecular weight
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Thermal Ionization fraction: Saha eqn.
Mean molecular weight and hence thermodynamic properties 
depend on the composition and the degree of ionization.
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Thermal Ionization fraction: Saha eqn.
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Thermal Ionization fraction: Saha eqn.
For example, for a gas of pure hydrogen:
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opacity
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opacity
(3) bound-free absorption (or photo-ionization): photon is absorbed by
a bound electron, giving its energy above the ionization potential 
continuum opacity

(4) bound-bound absorption: photon is absorbed by a bound system,    
exciting it to a higher energy state. Since the transitions are discrete, 
one would expect that absorption in a few lines gives only a small 
contribution. However, the absorption lines in stars are strongly 
broadened by collisions (Doppler broadening), which enhances its
contribution to opacity.

(5) H- opacity: there exists a bound state for a second electron in the 
field of a proton. This second electron is loosely bound – absorption of 
photons with hν>0.75 eV (λ< 1655 nm, infrared), giving rise to a 
bound-free and free-free transitions. 

Forming H- requires Neutral H and free electrons. Free electrons can 
be from existing ionized H or from alkali metals (Na, K.…) which have 
low ionization potentials.









eHeH
eHH







8

opacity

• Deep in a stellar interior: free-free 
absorption & electron scattering are more 
important

• Outer layers of a star: free-bound & 
bound-bound absorption are more 
important

• cool stars and sub-stellar objects (brown 
dwarfs, gas giant planets): molecular or 
even grain opacities become important
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Balmer & Lyman jumps 
absorption discontinuities, ionization edges of abundant ions

http://www.astro.virginia.edu/class/oconnell/astr511/lec3-f03.html

b-b transitions: only for photons with eaactly right energy (discrete)
b-f transitions: for any photon with more than a critical energy (continuum)

opacity increases
at wavelengths shorter
than one of these critical edges

Application:
measure redshift
of a galaxy by a
filter on the blue
side of the edge
(e.g. Lyman dropout)
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Balmer & Lyman jumps

Note that in the preceding slide, I present an example to 
demonstrate bound-bound and bound-free opacities in stellar 
atmospheres, which are not optically thick. Therefore, the opacity 
should not be expressed by the Rosseland mean (averaged over all 
possible wavelengths), but is a function of wavelength. Nonetheless, 
I hope that the example gives you a physical sense of how different 
sources of opacity works.
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Rosseland mean Opacity

Kramers law (f-f transition)
a≈1
b≈-3.5H- opacity

a≈0.5
b≈9 due to
ionization of
alkali elements

dust opacity

Molecular opacity

electron scattering
(a flat curve)

Zhu, Hartmann, & Gammie
2009
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summary
• mean molecular weight: average molecular 

weight per free particle in a mixture of ideal 
gases

• Saha eqn: determine thermal ionization fraction, 
which in tern affects thermodynamic quantities.

• opacity sources: electron scattering, f-f, b-f, b-b, 
H-, molecular, grain; Rosseland mean opacities 
are tabulated but can be approximately 
expressed in terms of a power law of 
density/pressure and temperature in different 
regimes. 


