SZX HUNTSVILLE 2011

Mass and Hot Baryons from Cluster Lensing and SZE Observations

Keiichi Umetsu

Academia Sinica IAA (ASIAA), Taiwan

September 19, 2011

Collaborators

Lensing collaborators:

- T. Broadhurst (Bilbao), E. Medezinski (JHU), A. Zitrin (Tel Aviv),
- N. Okabe (ASIAA, Taiwan), M. Sereno (POLITO)

CLASH lensing collaboration:

- M. Postman (PI), H. Ford (Co-PI), E. Medezinski, M. Nonino, A. Zitrin,
- T. Broadhurst, D. Coe, P. Melchior, M. Meneghetti, J. Mereten, A. Molino,
- M. Bartelmann, N. Benitez, M. Donahue. D. Lemze, S. Seitz et al.

Bolocam/AMiBA CLASH-SZE collaboration:

- S. Golwala (PI), J. Sayers, N. Czakon et al. (CLASH-Bolocam)
- P.M. Koch, K.Y. Lin, S.M. Molnar (CLASH-Bolocam and AMiBA),
- P.T.P. Ho (PI), M.T. Chen, G.C. Liu, H. Nishioka, C.W. Huang, C.T. Li,
- Y.W. Liao, J.H.P. Wu, M. Birkinshaw et al. (AMiBA)

New Era of Multi-λ Cluster Astrophysics and Cosmology

Comparing / combining high-quality multi-λ cluster observations [lensing/SZE/X-ray/optical/dynamics] for Cluster Cosmology and Astrophysics

Umetsu et al. 2011a, ApJ, 729, 127

Cluster Lensing as a Primary Mass Probe

SUBARU wide-field imaging (Suprime-Cam) for weak lensing

High-resolution space imaging with *Hubble* for strong lensing

Full Lensing Analysis in the Cluster Regime

- Weak Gravitational Lensing (WL)
 - Distortion (shearing)
 - Dilution (purity of BG sample)
 - **Depletion** (magnification)
 - **Deprojection** (2+1D analysis)
 - Stacked lensing analysis
- Strong Gravitational Lensing (SL)

The Proof-of-Concept Consistency Test of Cluster Weak-Lensing

Mean tangential ellipticity of galaxies behind massive clusters (A370, Cl0024, RXJ1347) does increase with source redshift.

Model-Independent Single Cluster WL Tomography

COSMOS photo-z distributions of BR_cz'-selected background samples

Medezinski, Broadhurst, Umetsu, Benitez, & Taylor 2011 (MBU+11)

Keys: WL Distortion and Dilution

Tangential Distortion:

$$\gamma_{+}(R) \propto \Delta \Sigma_{+}(R) \equiv \overline{\Sigma}(\langle R) - \Sigma(R)$$

The Dilution Effect

Background (BG):

WL signal rises all the way to the center.

Green = Cluster+BG galaxies:

WL signal is diluted progressively toward the center by unlensed cluster members!

Broadhurst, Takada, Umetsu+05; Umetsu & Broadhurst 08; Medezinski+07,10

Count Depletion due to Magnification

Sky expands due to gravitational magnification

Leading to a depletion of counts-in-cells

Simulations with *glafic* (M. Oguri)

Weak Lensing Magnification Bias

Lensing-induced fluctuations in background counts:

$$\frac{\delta n(\mathbf{\theta})}{n_0} = \mu^{s-1}(\mathbf{\theta}) - 1 \approx 2(s-1)\kappa(\mathbf{\theta})$$

with unlensed LF of BG galaxies

$$n_0(>F) \propto F^{-s}$$

When the count-slope is shallow (s<1), a net deficit of counts results: the case for faint red galaxies (Broadhurst, Taylor, Peacock 1995)

Umetsu et al. 2011a, ApJ, 729, 127

Combining WL Shear and Magnification

Tangential distortion (shear)

Number counts (magnification bias)

A unique mass profile solution $\Sigma(R)$ can be obtained from Bayesian analysis of WL shear + mag-bias (Umetsu et al. 2011a)

What we gain by adding magnification?

Marginalized PDFs of $\Sigma(R)$ in N=12 radial bins: A1689

Shear data alone

Shear + mag-bias

Umetsu et al. 2011a

- Mass-sheet degeneracy is fully broken
- ~30% improvement in mass determination

Combining Full Lensing Constraints (shear, magnification, strong lensing)

Strong and Weak lensing contribute equal logarithmic coverage of radial mass profile for massive clusters:

→ Combined SL + WL probes the full radial range [0.5%, 150%] R_{vir}

4 high-mass clusters characterized by a large Einstein radius, θ_{Ein} ~ 40"(zs=2)

Umetsu+2008, 2009, 2010, 2011a, 2011b (figures taken from Postman+11)

A Precise Cluster Mass Profile Averaged from the Highest-Quality SL+WL Data

Stacking clusters by

$$\langle \Sigma \rangle = \left(\sum_{n} C_{n}^{-1} \right)^{-1} \left(\sum_{n} C_{n}^{-1} \Sigma_{n} \right)$$

Total S/N=58σ

A single NFW gives an excellent fit over ~2-decades of radius

SIS model is rejected at >60 σ significance

Lensing observations are consistent with that, DM is non-relativistic (cold) and effectively collisionless on the relevant scales.

Umetsu et al. 2011b, ApJ, 738, 41 (arXiv:1105.0444)

Constraint on Central Cusp Slope

Slightly shallower than, but consistent with, NFW (cf. Merrit+06, Graham+06, Navarro+10) Umetsu et al. 2011b

Projection Effect by Halo Triaxiality

Spherical

Triaxial (prolate)

Hennawi, Dalal, Bode, Ostriker 2007

Mean Concentrations for SL Clusters (θ_{Ein} =40")

Figure 10, Oguri et al. 2011 (arXiv:1109.2594)

Umetsu+ method

SL mass profile + WL shear profile + WL mag-bias profile

Oguri+ method Einstein radius + WL shear profile

Bayesian Deprojection of 3D Dark-Matter Structure

Full-2+1D SL+WL Bayesian analysis (A1689) by Sereno & Umetsu 2011

C200 vs. major-minor axis ratio, q₁

C200 vs. l.o.s. alignment, $cos[\theta]$

SZE Multi-scale Multi-frequency Cluster Program

CLASH-SZE collaboration

- Collaboration between CLASH and several SZE groups:
 Bolocam, MUSTANG/GBT, AMiBA, ... (discussion going on with AMI group)
- Forming an SZE consortium to study the CLASH sample (20 X-ray and 5 lensing selected clusters at 0.18<z<0.9)

Aim: Probing hot cluster baryons from small to large angular scales

- Large angular scale: 1 to 10+ arcmin
 - Bolocam@150GHz (1 to 14 arcmin)
 - AMiBA-13@94GHz (2 to 11 arcmin)
- Small angular scale: 0.1' to 1'
 - GBT/Mustang@90GHz (9" to 40")

Bolocam/CSO 150GHz

Ongoing Bolocam-CLASH SZE collaboration

- Angular coverage of $\Delta\theta$ = 1 to 14 arcmin
- Probing IC-gas structure out to R500+

See N. Czakon's talk and J. Sayers's poster

23/25 CLASH clusters observed with Bolocam, with a typical peak S/N=10

CLASH sample will be completed in this October to a peak sensitivity of S/N>10

CLASH WL and SZE Collaboration: Cluster-Cluster Lensing in A383 (z=0.19)

A z=0.9 BG cluster (M_{vir} ~2e14 M_{sun}) weakly magnified (~14%) by A383 See Zitrin et al. 2011 (arXIv:1108.4929)

Umetsu, Medezinski, Nonino +CLASH

Sayers, Czakon, Sunil et al.

AMiBA/MLO at 94GHz (ASIAA+NTU, Taiwan)

Combining Lensing w/ SZE+X-ray:

Hot Baryon Fractions in Clusters
Large-scale f_{gas} constraints (~0.8 r_{vir} , <z>=0.2) from tSZE+WL+X, independent of

dynamical state and level of hydrostatic equilibrium

AMiBA-7 tSZE + WL + X-ray

fraction,

mass

Gas

WMAP7 tSZE and X-ray constraints

Komatsu et al. 2010, WMAP-7yr

Umetsu, Birkinshaw, Liu et al. 2009, ApJ, 694, 1643 (arXiv:0810.969)

Summary

- We explored the utility of high-quality lensing data by combining all possible lensing information available in the cluster regime:
 - WL Distortion (shear)
 - WL Dilution (purity of BG sample)
 - WL Depletion (magnification)
 - Strong lensing (SL)
 - Stacking SL+WL (shear + magnification)
 - Deprojection of 2D SL+WL
- Cluster lensing and LCDM come closer:
 - Stacked cluster mass profile shapes are in good agreement with latest N-body simulations.
- Multi-scale Multi-frequency SZE collaboration is going on along with the CLASH program.