### Characterizing Galaxy Clusters with Gravitational Lensing: Halo Shape and Splashback Radius



### Keiichi Umetsu (ASIAA)

### Galaxy clusters: Largest class of dark-matter halos

Space-time abundance of rare massive clusters is "exponentially" sensitive to cosmology AND their mass calibration



# **Cluster gravitational lensing**



### Key Objectives

### Intra-halo structure

Density profile,  $\rho(r)$ Halo mass,  $M_{\Delta}$ Concentration,  $c_{\Delta} = R_{\Delta}/r_s$ Splashback radius,  $R_{sp}$ Halo shape

### **Surrounding LSS**

Halo bias  $b_h(M)$ DM clustering strength,  $\sigma_8$ Assembly bias

### Subaru/Suprime-Cam multicolor imaging for wide-field weak lensing

High-resolution space imaging with *HST* (ACS/WFC3) for strong lensing



### 34 arcmin

## CLUMI (CLUster lensing Mass Inversion): Multi-probe lensing analysis

### **Combining strong-lensing, weaklensing shear and magnification**

 $\{M_{\rm 2D, \it i}\}_{\it i=1}^{N_{\rm SL}}, \{\langle g_{+, \it i}\rangle\}_{\it i=1}^{N_{\rm WL}}, \{\langle n_{\mu, \it i}\rangle\}_{\it i=1}^{N_{\rm WL}}.$ 

 $P(\boldsymbol{\Sigma}|\mathrm{WL},\mathrm{SL}) \propto P(\mathrm{WL},\mathrm{SL}|\boldsymbol{\Sigma})P(\boldsymbol{\Sigma}) = P(\boldsymbol{n}_{\mu}|\boldsymbol{\Sigma})P(\boldsymbol{g}_{+}|\boldsymbol{\Sigma})P(\boldsymbol{M}_{2D}|\boldsymbol{\Sigma})P(\boldsymbol{\Sigma})$ 





Umetsu 2013, ApJ, 769, 13



## Ensemble Cluster Mass Profile (CLASH)

- Combining strong and weak lensing allows measurements of cluster density profiles over a wide dynamic range.
- The stacked profile is well described by cuspy, outward-steepening density profiles as predicted for CDM-dominated M 10<sup>14</sup> halos.
- Cored profiles (e.g., Burkert) are disfavored by the data.
- Both strong and weak lensing are needed!!!



Umetsu+16, *ApJ*, 821, 116 Merten+15, *ApJ*, 806, 4



## Concentration vs. Mass (CLASH)

The c(M) relation is sensitive to the shape and normalization of P(k)





## CLASH vs. Superlens Clusters

- X-ray selected CLASH clusters (Umetsu+16)
- Superlens clusters with  $R_{Ein} > 30''$  (Umetsu+11b)



Umetsu+16, ApJ, 821, 116

# **Cluster gravitational lensing**



### **Key Objectives**

### Intra-halo structure

Density profile,  $\rho(r)$ Halo mass,  $M_{\Delta}$ Concentration,  $c_{\Delta} = R_{\Delta}/r_s$ Splashback radius,  $R_{sp}$ Halo shape

### **Surrounding LSS**

Halo bias  $b_h(M)$ DM clustering strength,  $\sigma_8$ Assembly bias

J. Merten's SaWLens reconstruction of MACS1206 (Umetsu+12, ApJ, 755, 56)

# Splashback Radius of Galaxy Clusters

Umetsu & Diemer 2017, *ApJ*, 836, 231 Okumura, Nishimichi, Umetsu, & Osato 2017, arXiv:1706.08860 (submitted to PRL)

## Splashback radius, $R_{sp}$ : Physical halo boundary



More, Diemer, & Kravtsov 2015

# Splashback feature in real space

Steepest "3D" gradient point as splashback radius  $R_{sp}$ 



*N*-body simulations (Diemer & Kravtsov 14, DK14)

# Splashback feature in real and velocity space

Intrinsic Alignments and Splashback Radius of Dark Matter Halos from Cosmic Density and Velocity Fields

Teppei Okumura,<sup>1</sup>,<sup>\*</sup> Takahiro Nishimichi,<sup>2,3</sup> Keiichi Umetsu,<sup>1</sup> and Ken Osato<sup>4</sup>

<sup>1</sup>Institute of Astronomy and Astrophysics, Academia Sinica, P. O. Box 23-141, Taipei 10617, Taiwan <sup>2</sup>Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan <sup>3</sup>CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan <sup>4</sup>Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan (Dated: July 4, 2017)

arXiv:1706.08860

### Cluster-galaxy correlations from N-body simulations



### Splashback feature in projected density



N-body simulations (DK14)

# Splashback in surface number density profiles of cluster galaxies?



 $R_{
m sp}^{
m 3d}/R_{
m 200m}$ 

1.0

0.8

0.6

1.0

1.5

2.5

3.0

Mass accretion rate  $\Gamma$ 

3.5

4.0

4.5

2.0

5.0

5.5

- Splashback feature detected using "galaxies", instead of "mass"
- However, observed R<sub>sp</sub>(gal)/R<sub>200m</sub>(WL) values are significantly smaller than predicted!
- Likely due to projection effects in cluster membership identification (Zu et al. 16)



# Splashback in CLASH lensing data?



**CLASH X-ray regular subsample** prevalently composed of relaxed clusters (70%; Meneghetti+14)

$$\langle M_{200m} \rangle = (1.3 \pm 0.1) \times 10^{15} h^{-1} M_{sun}$$
  
 $\langle v_{200m} \rangle = 4.0 \pm 0.1$   
16 clusters with  $\langle z \rangle \cong 0.34$   
Umetsu+16. *ApJ*. 821. 116

- CLASH spans a factor of 5 (1.7) in mass (radius), so that sharp gradient feature is washed out when stacked in physical units.
- How to extract  $R_{sp}$  from coarsely binned ensemble profiles?

# Solution: Parametric forward modeling of "scaled" cluster lensing profiles

Mass distribution around halos in  $\Lambda$ CDM (DK14)

$$\Delta \rho(r) = \rho(r) - \rho_{\rm m} = \rho_{\rm inner} \times f_{\rm trans} + \rho_{\rm outer}$$

A scaled version of DK14 density profile:

$$\Delta \rho(r = r_{\Delta} x) = \mathcal{N} \left\{ \exp\left[-\frac{2}{\alpha}c_{\Delta}^{\alpha}(x^{\alpha} - 1)\right] \left[1 + \left(\frac{x}{\tau_{\Delta}}\right)^{\beta}\right]^{-\gamma/\beta} + \frac{B_{\Delta}}{\epsilon_{\Delta} + x^{s_{e}}} \right\}$$
  

$$\propto f_{\text{inner}}(x) f_{\text{trans}}(x) + f_{\text{outer}}(x),$$

 $y(x) := \frac{\Sigma(R = r_{\Delta}x)}{\Sigma(r_{\Delta})}$  specified by  $p = \{c_{\Delta}, \alpha, \tau_{\Delta}, B_{\Delta}, s_{e}, \beta, \gamma\}$ 

We marginalize over nuisance shape parameters ( $s_e$ ,  $\beta$ ,  $\gamma$ ) using "generic" priors found from N-body simulations of DK14

Umetsu & Diemer 17, ApJ, 836, 231





## Results: CLASH logarithmic density gradient



## Constraints on Splashback R<sub>sp</sub> & M<sub>sp</sub>



 Table 3

 Constraints on the Splashback Radius and Mass

| Δ      | $R_{ m sp}^{ m 3D}/r_\Delta$ | $R_{\rm sp}^{\rm 3D}$ | $M_{ m sp}/M_\Delta$ | $M_{\rm sp}$            |
|--------|------------------------------|-----------------------|----------------------|-------------------------|
|        |                              | (Mpc/h)               |                      | $(10^{13} M_{\odot}/h)$ |
| 200m   | > 0.89 (1.23)                | > 1.83 (2.52)         | > 0.93 (1.13)        | > 1.21 (1.48)           |
| virial | > 0.91 (1.52)                | > 1.67(2.78)          | > 0.94(1.30)         | > 1.13(1.56)            |
| 200c   | > 1.04 (1.90)                | > 1.52 (2.79)         | > 1.03 (1.55)        | > 1.04 (1.57)           |
| 500c   | > 1.37 (3.09)                | > 1.30(2.94)          | > 1.31 (2.39)        | > 0.90 (1.64)           |
| 2500c  | > 2.69 (4.96)                | > 1.09 (2.00)         | > 2.91 (5.22)        | > 0.77 (1.38)           |
| 2500c  | > 2.69 (4.96)                | > 1.09 (2.00)         | > 2.91 (5.22)        | > 0.77 (1.38)           |

**Note**. — Lower limits (68% CL) and best-fit model values (in parentheses) for the three-dimensional splashback radius and mass. The splashback radius and mass in physical length units were converted using the effective overdensity radius  $r_{\Delta}^{\text{eff}}$  and mass  $M_{\Delta}^{\text{eff}}$  of the sample, respectively.

Tighter lower bounds on  $(R_{sp}, M_{sp})$  obtained when cluster profiles are normalized to outer halo radii  $(r_{200m})$ 

#### Umetsu & Diemer 17



CLASH data consistent with a representative range of MAR

# Cluster Halo Shape from Weak Lensing

In collaboration with CLASH and CLUMP-3D: Mauro Sereno, I-Non Chiu, Stefano Ettori, Julian Merten, Jack Sayers et al.

For SaWLens-2, see Julian's talk See I-Non Chiu and Mario Bonamigo's talks on Thursday

# Halo shape as a cosmological probe

- Aspherical halo shape due to collisionless DM nature
- Halo shape depends on  $\sigma 8$  and halo mass
- Dynamically young halos tend to be more prolate





![](_page_23_Figure_6.jpeg)

# 2D halo shape in lensing, optical (BCG), X-ray, and SZE

![](_page_24_Picture_1.jpeg)

BCG

![](_page_24_Figure_3.jpeg)

IC-gas in HSE is rounder than the DM distribution:  $e^{ICM}/e^{DM} \sim 0.7$  (Lee & Suto 03)

![](_page_24_Figure_5.jpeg)

MACS1206 (Umetsu+12)

![](_page_25_Picture_0.jpeg)

## CLASH HST dataset

![](_page_25_Picture_2.jpeg)

Zitrin et al. 2015, ApJ, 801, 44

## **CLASH X-ray dataset**

![](_page_26_Figure_1.jpeg)

Donahue et al. 2016, ApJ, 819, 36

## CLASH+ SZE dataset

![](_page_27_Figure_1.jpeg)

Czakon et al. 2015, ApJ, 806, 18

### CLUMI-2D: Combining 2D shear and magnification

![](_page_28_Figure_1.jpeg)

## Joint-likelihood mass reconstruction

### Joint 2D-shear + magnification likelidhood

$$l(\mathbf{m}) = l_g(\mathbf{m}) + l_\mu(\mathbf{m})$$

parameter vector

$$\mathbf{m} = \left( \left\{ \Sigma_i \right\}_{i=1}^{N_{\text{pix}}}, \mathbf{c} \right)$$

with calibration (nuisance) parameters

$$c = \Big( \langle W \rangle_g, f_{W,g}, \langle W \rangle_\mu, \, \overline{n}_\mu, \, \alpha \Big).$$

$$l_g = \frac{1}{2} \sum_{m,n=1}^{N_{\text{pix}}} \sum_{\alpha=1}^{2} \left[ g_{\alpha,m} - \hat{g}_{\alpha,m}(\boldsymbol{m}) \right] \left( \mathcal{W}_g \right)_{mn} \left[ g_{\alpha,n} - \hat{g}_{\alpha,n}(\boldsymbol{m}) \right]$$

$$l_{\mu} = rac{1}{2} \sum_{i=1}^{N_{ ext{bin}}} \left[ n_{\mu,i} - \hat{n}_{\mu,i}(\textbf{\textit{m}}) 
ight] \left( \mathcal{W}_{\mu} 
ight)_{ij} \left[ n_{\mu,j} - \hat{n}_{\mu,j}(\textbf{\textit{m}}) 
ight]$$

Distribution of constraints (A1689)

![](_page_29_Figure_10.jpeg)

### CLASH-WL2D: Reconstruction examples

![](_page_30_Figure_1.jpeg)

## Stacked CLASH PDF (eNFW): $M_{200c}$ , $c_{200c}$

20 CLASH clusters (16 X-ray-selected + 4 magnification selected) from Umetsu+14

1.0 median median PDF PDF point estimate point estimate R(M<sub>200c</sub>)  $P(c_{200c})$ 0.0 L З 6 10 2 8 Halo mass,  $M_{200c}$  [10<sup>15</sup> $h^{-1}M_{\odot}$ ] Halo concentration, c<sub>200c</sub>

*<c>*=3.75 +/- 0.27

## Stacked CLASH PDF (eNFW): 2D axis ratio

![](_page_32_Figure_1.jpeg)

# WL vs. BCG, X-ray, SZE alignments

![](_page_33_Figure_1.jpeg)

# Summary

- No statistically significant detection of the splashback radius from CLASH lensing. NFW/Einasto gives very good fits!!!
- Assuming the DK14 profile with generic priors, first lensing constraints on the splashback feature obtained. No tension with LCDM.
- Larger statistics needed for "detection" of  $R_{sp}$  by lensing  $\rightarrow$  Subaru HSC SSP-Wide survey (1400 degrees<sup>2</sup>)

![](_page_34_Figure_4.jpeg)

More+16, ApJ, 825, 39 (SDSS galaxies)

![](_page_34_Figure_6.jpeg)