
Hölmström (1979)

• This paper proposes a model which has later become the

standard formulation for the principal-agent relation.

• Two contributions:

(1) Making clear the tradeoff between risk and incentives in

the moral hazard problem.

(2) Investigating the informational value of signals.
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Model

• A principal (P ) hires an agent (A) to engage in a production.

• Output y, which depends on A’s effort level, is observable and

verifiable.

• The level of A’s effort, e, is his private information.

• Let f(y; e) be the density function of y, conditional on e.

• f(y; e) first-order stochastically dominates f(y; e′) for all

e′ < e. That is, F (y; e) ≤ F (y; e′) for all e > e′, with strict

inequality holds for some y.
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Model

• Since e is unobservable and y is observable and correlated with e,

the way to provide incentives to A is to offer A a contract which is

function of y : w(y).

• Utility of A:

u(w)− v(e);

where w is wage and e is effort level. Assume u′ > 0, u′′ ≤ 0,

v′ > 0, v′′ > 0.

• Utility of P :

U(y − w);

where U ′ > 0, U ′′ ≤ 0.

• P offers a take-it-or-leave-it contract to A, who decides whether to

accept or not.

• Reservation utility of A: u.

Kong-Pin Chen Hölmström (1979) 3/20



First-Best Case

• In order to emphasize the importance of the observability of effort,

let’s for the moment assume that e is observable.

• The principal’s problem is easy:

(i) If he intends to implement any effort level ē, the contract is

w =

{
w(y); if e = ē,

0; if e 6= ē;
(1)

where w(y) is such that∫
y

u(w(y))f(y; ē)dy − v(ē) = u.

(ii) The value of ē is then chosen to maximize the principal’s utility:

ē ∈ arg max
e

∫
y

U
(
y − w(y)

)
f(y; e)dy.
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First-Best Case

• Note that, even if e is observable, w can’t depend only on e.

Because of the need to share risk, it also depends w(y).

Reason:

(a) if w depends only on e, at optimum A’s wage is fixed;

(b) P then bears all the risk from production;

(b) This is not optimal because there is room for risk-sharing,

as both A and P are risk-averse.
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First-Best Case

• These two steps can be combined into one optimization

program:

max
e,w(y)

∫
y U
(
y − w(y)

)
f(y; e)dy

s.t.
∫
y u(w(y))f(y; e)dy − v(e) ≥ u.

• The constraint above is called the individually rational

constraint.
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First-Best Case

• The FOC of the solution is

U ′(y − w(y)
)

u′
(
w(y)

) = λ ∀y; (2)

where λ ≥ 0 is a constant.

• Equation (1) implies that

U ′(y − w(y)
)

U ′
(
y′ − w(y′)

) =
u′
(
w(y)

)
u′
(
w(y′)

) ∀y, y′.
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First-Best Case

• From (2) it is easy to show that w′(y) > 0 and
(
y − w(y)

)′
> 0:

Both P and A benefit from increases in output.

• In the special case when P is risk neutral and A is risk averse, w(y)

is a constant.

• Similarly, when P is risk averse and A is risk neutral, y − w(y) is a

constant.

• Whoever is risk-neutral receives a fixed payment, if the other party

is risk neutral.

• When e is observable, the needs to provide incentives and to share

risks can be separated.
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Formulation when Effort is Unobservable: Second-Best

• Suppose e is unobservable.

• The objective function of P (program M):

max
e, w(y)

∫
U
(
y − w(y)

)
f(y; e)dy

s.t.
∫
u
(
w(y)

)
f(y; e)dy − v(e) ≥ u; (3; IR)

e ∈ arg max
e′

∫
u
(
w(y)

)
f(y; e′)dy − v(e′). (4; IC)
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Formulation when Effort is Unobservable: Second-Best

• Constraint (3) is the individually rational (IR) constraint:

In order for A to accept contract w(y), the expected utility from

w(y) must be at least the reservation value.

• Constraint (4) is the incentive compatibility (IC) constraint:

Since e is not observable, A certainly chooses the level of e to

maximize his expected utility, given the incentive structure w(y).

• Note that although e is not observable to P , he can actually infer

its value by solving for (4).

• Compared to the case when e is observable, now an additional

constraint (IC) must be satisfied.
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First-Order Condition Approach

• Replace (4) by its first-order condition:∫
u
(
w(y)

)
fe(y; e)dy − v′(e) = 0. (4′)

• The Lagrarangian of program M is

L =

∫
U
(
y − w(y)

)
f(y; e)dy

+ λ
[ ∫

u
(
w(y)

)
f(y; e)dy − v(e)− u

]
+ µ

[ ∫
u
(
w(y)

)
fe(y; e)dy − v′(e)

]
;

where λ ≥ 0 and µ ≥ 0 are constants.
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First-Order Condition Approach

• FOC:

U ′(y − w(y)
)

u′
(
w(y)

) = λ+ µ
fe(y; e)

f(y; e)
∀y,∫

U
(
y − w(y)

)
fe(y; e)dy

+ µ
[ ∫

u
(
w(y)

)
fee(y; e)dy − v′′(e)

]
= 0. (5)
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First-Order Condition Approach

• Proposition 1: Compared to the case when e is observable, there is

efficiency loss in the optimal contract.

• Proof:

Suffice to show that IC constraint is binding, i.e., µ > 0. If, on the

contrary, µ ≤ 0. Then for all y with fe(y; e) ≥ 0,

U ′(y − w(y)
)

u′
(
w(y)

) = λ+ µ
fe(y; e)

f(y; e)
≤ λ =

U ′(y − wλ(y)
)

u′
(
wλ(y)

) ;

where wλ(y) is the solution of (2) when the lagrange multiplier for

(2) is replaced by the value of λ in program M.

• As U ′′ ≤ 0 and u′′ ≤ 0, we know that y − w(y) ≥ y − wλ(y).
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First-Order Condition Approach

• On the other hand, if y is such that fe(y; e) ≤ 0, then we can

similarly show that y − w(y) ≤ y − wλ(y).

• Combine the above two results we know that∫
U
(
y − w(y)

)
fe(y; e)dy ≥

∫
U
(
y − wλ(y)

)
fe(y; e)dy

= U
(
y − wλ(y)

)
Fe(y; e)

∣∣∣∞
0

−
∫
U ′(y − wλ(y)

)(
y − wλ(y)

)′
Fe(y; e)dy > 0, (6)

where the last inequality comes from the facts that Fe(y; e) ≤ 0 and

that (y − wλ(y))′ > 0. However, we know that the second term in

(5) is positive by the facts that µ ≤ 0 and SOC. Thus (5)

contradicts with (6). QED
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Is Wage Increasing in Output?

• Differentiate the first equation of (5) with respect to y:

w′(y) =
U ′′ − µ∂(fe/f)

∂y u′

U ′′ + U ′ u′′

u′
.

• w′(y) can be negative when ∂(fe|f)/∂y is sufficiently

negative: A might be paid less when output increases.

• We can guarantee w′(y) > 0 only if ∂(fe/f)
∂y > 0.
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Is Wage Increasing in Output?

• In general, w(y) is not always increasing in y:

Example: Let ỹ = θ̃ + e, when e ∈ [0, 1/2]. θ̃ = 1 or 0 with

equal probability.

The output level y = 1/2 must be a result of e being 1;

and the output level y = 1 must be a result of e being 0.

P infers lower effort when he observes higher output.

• Lesson: Sometimes P infers a lower effort level when he

observes higher output. In that case it is natural that A’s

wage is lower when output is higher.
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Is Wage Increasing in Output?

• Needed in order for w′(y) > 0 : f(y; e)/f(y; e′) increases in y for all

e > e′. That is,

f(y; e+ ∆e)

∆ef(y; e)
increases in y.

Make ∆e→ 0, we have fe(y; e)/f(y; e) increases in y.

• The value of fe/f is called “likelihood ratio”.

• The property that fe/f is increasing in y is called “monotone

likelihood ratio property” (MLRP).

• Wage is guaranteed to increase with output only when the density

function of output satisfies MLRP.
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The Value of Information

• Suppose in addition to y, there is also another verifiable signal x.

• Should the optimal contract be a function of x also?

Not necessarily.

• FOC:
U ′(y − w(x, y)

)
u′
(
w(x, y)

) = λ+ µ
fe(x, y; e)

f(x, y; e)
;

where f(x, y; e) is joint density of x and y.

• If fe/f = h(y, e), which is a function of y only, then w(x, y) will be

independent of x, meaning that the optimal contract needs not

incorporate the information offered by the signal x.
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The Value of Information

• This actually means that f(x, y; e)/f(x, y; e′) is independent of x:

Changes in x does not change the relative probability between any

two e and e′.

• Note that if
fe(x, y, e)

f(x, y, e)
= h(y, e),

then integrating both sides upon e we have

log f(x, y, e) = ḡ(x, y) + H̄(y, e);

i.e.,

f(x, y, e) = g(x, y)H(y, e). (7)
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The Value of Information

• Equation (7) exactly means that y is a sufficient statistics for (x, y),

i.e., f(y|x; e) = f(y; e). (The Factorization Theorem.)

• In this case

fe(x, y; e)

f(x, y; e)
=
h(y, e)f(x, y; e)

f(x, y; e)
= h(y, e);

which is independent of x.

• Proposition: An additional signal x is of informational value (and

thus should be written into the contract) if and only if y is not a

sufficient statistic of x, or, equivalently, f(·) cannot be factorized in

a way that f(x, y, e) = g(x, y)H(y, e) for some g(·) and H(·).
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