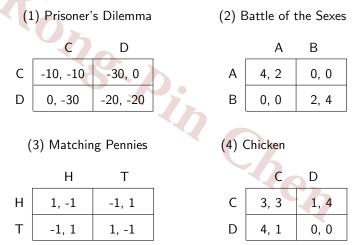
Economic Analysis of Law Spring, 2011 Lecture 3: Game Theory and Applications to Law

> Wen-Yeu Wang Kong-Pin Chen

Kong-Pin Chen (Academia Sinica)

Normal Form Games

- One-Shot.
- Examples:



з

イロト イポト イヨト イヨト

Dominant Strategy

- Dominant strategy: The best strategy to play regardless of others' strategies. (e.g., PD)
- If a game has a dominant strategy for every player, then outcome is easy to predict.

Equilibrium (Nash)

- No player can unilaterally changes his strategy and gain.
- Example: Battle of the Sexes, Chicken.
- Mixed strategy: randomization over available strategies (e.g., in matching pennies).

• Benchmark case:

A motorist (M) and a pedestrian (P). M can potentially hit P and cause an accident. They can exercise care to reduce occurrence of accident.

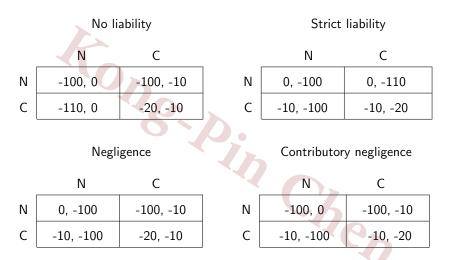
- Cost of accident: -100.
- Cost of Care: -10.

Prob. accident: 1/10 if both exercise due care; otherwise 1.

Social optimum calculation:

$$\begin{cases} (N, N) : -100 \\ (N, C) : -110 \\ (C, N) : -110 \\ (C, C) : -100 * 1/10 - 10 - 10 = -30 \end{cases}$$

Social Optimum: (C, C).



Negligence and Contributory Negligence are efficient

Image: Image:

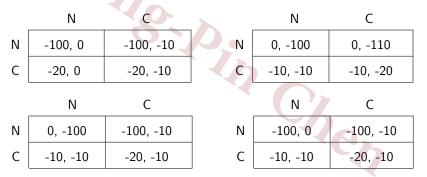
• When care costs differ: $C^P = 10$, $C^M = 85$

• Social optimum: (*N*, *N*).

N C				Ν	С
Ν	-100, 0	-100, -85	Ν	0, -100	0, -185
С	-110, 0	-20, -85	С	-10, -100	-10, -95
	N	С		N	С
Ν	0, -100	-100, -85	Ν	-100, 0	-100, -85
С	-10, -100	-20, -85	C	-10, -100	-10, -95

No Liability and Strict Liability are efficient.

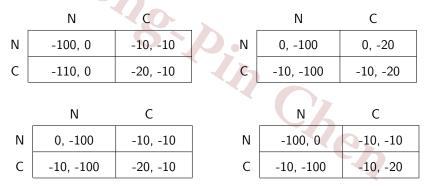
- When *M*'s care does not affect prob. of accident, suppose probability of accident is 1/10 if *P* has due care, and 1 if not.
- Social optimum: (C, N).



No Liability and Contributory Liability are efficient

- < A

- When *P*'s care does not affect prob. of accident, suppose probability of accident is 1/10 if *M* has due care, and 1 if not.
- Social optimum: (N, C).



Strict Liability and Negligence are efficient

General case:

- Let p_{ij} be the probability of accident when the care taken by P and M are i and j, respectively. (i, j = C, N)
- C_i^P and C_i^M are cost of taking care *i* and *j*, respectively.
- Total social loss: $\sum_{i,j} 100 p_{ij} + C_i^P + C_i^M$.
- What is the social optimum depends on the values of p_{ij} and C_i^P , C_j^M .

• Also can draw the game matrix for each liability regime. For examples, strict liability:

$$\begin{array}{|c|c|c|c|c|c|} N & -C_{N}^{P}, -C_{N}^{M} - 100P_{NN} & -C_{N}^{P}, -C_{C}^{M} - 100P_{NC} \\ C & -C_{C}^{P}, -C_{N}^{M} - 100P_{CN} & -C_{C}^{P}, -C_{C}^{M} - 100P_{CC} \end{array}$$

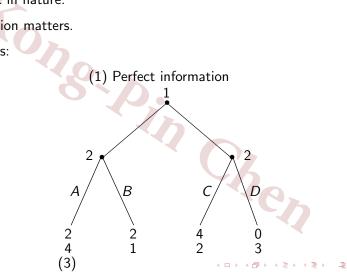
C

• General Lesson:

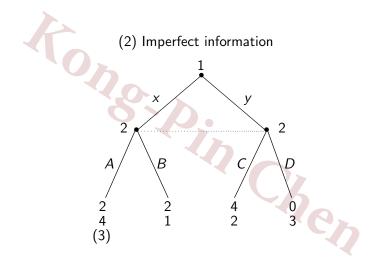
Depending on environments (viz, values of p_{ij} and C^M , C^P), different legal rules are needed in order to attain social optimum.

Extensive Form Games

- Dynamic in nature.
- Information matters.
- Examples:



Extensive Form Games



로 🛌 😐

Equilibrium: Subgame perfect equilibrium (SPE)

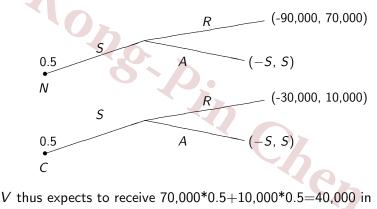
- Key: Backward induction.
- Example I: SPE(x, (A, D)).
- Example II: SPE $\left(\left(\frac{1}{4}x, \frac{3}{4}y\right), \left(\frac{1}{2}A, \frac{1}{2}B\right)\right)$.

- Two types of litigation model: expectation model and private information model.
- Expectation model: The reason why parties do not settle out-of-court is because they have different perceptions of winning chance.
- Private information model: Because they have different information.

- Example: An accident occurs which costs the victim (V) 100,000. Litigation cost for both victim and injurer (I) are 10,000.
- Suppose prob that injurer will be found liable is *p*.
- If litigated, V expects to receive 100,000p 10,000, while I expects to lose 100,000p + 10,000. For any p, there is a range for settlement. But why sometimes not in reality?
- Expectation model explanation: $p_V > p_I$.
- If $100,000p_V 10,000 > 100,000p_I + 10,000$ (i.e., $p_V p_I > 1/5$), then there will be no settlement range.

- Private information model: I knows more than V about the value of p.
- Suppose *I* is of two types: negligent or careful. The former is expected to prevail with prob 0.2, and the latter 0.8.
- Only I knows his own type.
- V believes that I is equally likely to be either.

• Game form I: Suppose I makes a take-it-or-leave-it offer:



litigation.

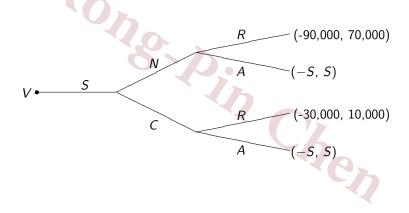
Separating equilibrium

- *N*-type offers 70,000.
- C-type offers 0.
- V accepts iff $S \ge 70,000$
- Pooling equilibrium:

V's expects payoff is 40,000, and will accept S if and only if

 $S \ge 40,000$. But *C*-type is only willing to offer 30,000. There is thus no offer that is accepted for sure.

• Game form II: V makes take-it-or-leave-it offer.



• SPE:

- *N*-type: accept *S* iff $S \leq 90,000$.
- C-type: accept S iff $S \leq 30,000$.
- *S*^{*} = 90,000.
- Expected payoff:
 - N-type: -90,000.
 - C-type: -30,000.
 - *V* = 90,000.
- In both models, N-type settles and C-type litigates.
- Both have positive chance to go to court.

• What if British rule is used?

- I's payoff is -120,000 if wins, and 0 if lose.
- V's payoff is 100,000 if wins, and -20,000 if lose.
- What if V or I are risk-averse? More favorable to proposer.