Competitive Equilibrium (from Varian's Textbook)

Kong-Pin Chen

Introduction

- The existence and welfare theorems of the competitive market is a crown jewel of the achievenments of the economic science in the 20th century.
- It lays the foundation for the superiority of the *laissez-faire* economy or, the capitalism.
- This theory essentially shows that, if the market is perfectly competitive, then there exists a price system in which
 - (i) every consumer maximizes his utility;
 - (ii) every producer maximizes its profit;
 - (iii) total demand equal total supply for every good; and
 - (iv) under this price system, the economy attains Pareto optimal.

Start with the Exchange Economy

- n consumers (i = 1, ...n), m goods (j = 1, ...m).
- Price of good $j: p_j$.
- $\mathbf{x}_i \equiv (x_{i1}, x_{i2}, ..., x_{im})$: consumer i's consumption.
- $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$: an allocation.
- $\mathbf{p} = (p_1, ..., p_m) = \text{price vector}, \ p_j \ge 0, \ \forall j.$

Start with the Exchange Economy

- $\mathbf{e}_i = (e_{i1}, ..., e_{im})$: endowment of consumer i.
- $e = (e_1, e_2, ..., e_n)$
- Let

$$\mathbf{x}_i(\mathbf{p}, \mathbf{pe}_i) = \operatorname{argmax}_{\mathbf{x}} u_i(\mathbf{x}).$$

s.t.
$$\mathbf{px}_i = \mathbf{pe}_i$$
.

• $\mathbf{x}_i(\mathbf{p}, \mathbf{pe_i})$ is the demand function of consumer *i*.

Walrasian Equilibrium

• A price system and an allocation, $(\mathbf{p}^*, \mathbf{x}^*)$ is a Walrasian equilibrium (WE) if

$$\sum_{i=1}^{n} x_{i}(\mathbf{p}, \mathbf{pe_{i}}) \leq \sum_{i} \mathbf{e_{i}}$$

• The inequality because a good might be free, and consumer might be satiated, so that quantity demanded is finite (and less than total endowment) even if price is zero.

•

$$z(\mathbf{p}) \equiv \sum_{i=1}^{n} [\mathbf{x}_i(\mathbf{p}, \mathbf{p}\mathbf{e}_i) - \mathbf{e}_i];$$

which is the excess demand function.

Walrasian Equilibrium

Walras Law: For any price \mathbf{p} , $\mathbf{p}\mathbf{z}(\mathbf{p}) = 0$.

Proof.

$$\mathbf{pz}(\mathbf{p}) = \sum_{i=1}^{n} \mathbf{px}_i(\mathbf{p}, \mathbf{pe}_i) - \sum_{i=1}^{n} \mathbf{pe}_i = \sum_{i=1}^{n} [\mathbf{px}_i(\mathbf{p}, \mathbf{pe}_i) - \mathbf{pe}_i] = 0 \quad \Box$$

Walras law is actually just a budget constraint requirement.

If \mathbf{p}^* is the price corresponds to the Walrasian equilibrium and $z_j(\mathbf{p}^*) < 0$, then it must be that $p_j^* = 0$.

Proof.

Since in WE, $\mathbf{z}(\mathbf{p}^*) \leq 0$, and, since $p_j^* \geq 0 \,\forall j, p_j^* z_j(p^*) \leq 0 \,\forall j$. If $z_j(\mathbf{p}^*) < 0$ and $p_j^* > 0$, it must be that $\mathbf{p}^* \mathbf{z}(\mathbf{p}^*) < 0$, contradicting Walras Law.

Walrasian Equilibrium

- **A1**: If $p_i = 0$, then $z_i(\mathbf{p}) > 0$.
- A1 is an assumption of aggregate non-satiation.
- Note that since $\mathbf{x}_i(\lambda \mathbf{p}, \lambda \mathbf{p} \mathbf{e}_i) = \mathbf{x}_i(\mathbf{p}, \mathbf{p} \mathbf{e}_i)$ for all $\lambda > 0, \mathbf{x}(\lambda \mathbf{p}, \lambda \mathbf{p} \mathbf{e}_i) = \mathbf{x}(\mathbf{p}, \mathbf{p} \mathbf{e}_i)$.
- In this case, we can restrict \mathbf{p} to belong to the (m-1)-dimensional simplex $S^{m-1} = {\mathbf{p} \in \Re^m_+ | \sum_{j=1}^m p_j = 1}$.

Theorem

If $\mathbf{z}(\cdot)$ is continuous on S^{m-1} and that $\mathbf{pz}(p) \equiv 0$, then there exists $p^* \in S^{m-1}$ such that $\mathbf{z}(\mathbf{p}^*) \leq 0$.

Proof.

Define $\mathbf{g}: S^{m-1} \to S^{m-1}$ by

$$g_j(p) = \frac{p_j + max(0, z_j(\mathbf{p}))}{1 + \sum_{l=1}^k max(0, z_l(\mathbf{p}))}, j = 1, ..., m.$$

 $g_j(\cdot)$ is continuous because $z_j(\cdot)$ is. Also $\mathbf{g}(p) \in S^{m-1}$ because $\sum_{j=1}^m g_j(p) = 1$. By Brouwer's fixed-point theorem, there exists $p^* \in S^{m-1}$ such that $\mathbf{p}^* = \mathbf{g}(\mathbf{p}^*)$.

Proof.(Cont.)

That is,

$$p_j^* = \frac{p_j^* + max(0, z_j(\mathbf{p}^*))}{1 + \sum_l max(0, z_l(\mathbf{p}^*))} \text{ for } j = 1, ..., k.$$

This implies

$$p_i^* \sum_{l=1}^k \max(0, z_l(\mathbf{p}^*)) = \max(0, z_l(\mathbf{p}^*)), \ j = 1, ..., k.$$

Multiply both sides by $z_j(\mathbf{p})$:

$$z_j(\mathbf{p}^*)p_j^* \left[\sum_{l=1}^k \max(0, z_l(\mathbf{p}^*)) \right] = z_j(\mathbf{p}^*) \max(0, z_j(\mathbf{p}^*)), \ j = 1, ..., k.$$

Proof (Cont.)

Summing up:

$$\left[\sum_{l=1}^{k} \max(0, z_{l}(\mathbf{p}^{*}))\right] \sum_{j=1}^{k} p_{j}^{*} z_{j}(\mathbf{p}^{*}) = \sum_{j=1}^{k} z_{j}(\mathbf{p}^{*}) \max(0, z_{j}(\mathbf{p}^{*})).$$

By Walras Law,

$$\sum_{i=1}^k z_j(\mathbf{p}^*) \max(0, z_j(\mathbf{p})) = 0.$$

Therefore

$$z_j(\mathbf{p}^*) \le 0. \ \forall j = 1, ..., m.$$

• If good j is such that $z_j(\mathbf{p}^*) < 0$, then we know that $p_j^* = 0$. However, **A1** requires that $z_j(\mathbf{p}^*) > 0$ for any $p_j^* > 0$. Therefore, if we impose **A1**, $z(\mathbf{p}^*) = 0$.

First Welfare Theorem

• An allocation \mathbf{x} is called feasible if $\sum_{i=1}^{n} \mathbf{x}_i = \sum_{i=1}^{n} \mathbf{e}_i$. It is Pareto efficient (PE) if there does not exist another feasible allocation \mathbf{x}' so that every agent i prefers \mathbf{x}' to \mathbf{x} .

First Welfare Theorem Assume A1, holds. If (\mathbf{x}, \mathbf{p}) is WE, then it is PE.

Proof.

First note that since every agent i maximizes utility given endowment in a WE, it is equivalent to say that if there is any \mathbf{x}'_i preferred by i to \mathbf{x}_i , then it must be $p\mathbf{x}_i < p\mathbf{x}'_i$.

First Welfare Theorem

Suppose (\mathbf{x}, \mathbf{p}) is WE but not PE, then there exist a feasible \mathbf{x}' so that every i prefer \mathbf{x}'_i to \mathbf{x}_i . Therefore, $\mathbf{p}\mathbf{x}_i < \mathbf{p}\mathbf{x}'_i$ for all i. This implies

$$\mathbf{p}\sum_{i=1}^{n}\mathbf{e}_{i} = \mathbf{p}\sum_{i=1}^{n}\mathbf{x}_{i}' > \mathbf{p}\sum_{i=1}^{n}\mathbf{x}_{i},$$

a contradiction.

• Let \mathbf{x}^* be a PE allocation such that $\mathbf{x}_i^* > 0$ for all i. Assume preferences are convex, continuous, and monotonic. Then \mathbf{x}^* is a WE with endowment $\mathbf{e} = \mathbf{x}^*$.

Proof.

Let
$$P_i = \{\mathbf{x}_i | \mathbf{x}_i \succ_i \mathbf{x}_i^*\}.$$

Define
$$P = \sum_{i=1}^{n} P_i = \{\mathbf{z} | \mathbf{z} = \sum_{i=1}^{n} \mathbf{x}_i, \mathbf{x}_i \in P_i\}.$$

P is convex since every P_i is.

Let $\bar{e} = \sum_{i=1}^{n} \mathbf{x}_{i}^{*}$. Obviously, $\bar{e} \notin P$. Therefore, by the separating hyperplane theorem, there exists $\mathbf{p} \neq 0$ such that

$$\mathbf{pz} \ge \mathbf{p}\overline{\mathbf{e}} for all \ \mathbf{z} \in P$$
,

Proof.(Cont.)

i.e.,

$$\mathbf{p}(\mathbf{z} - \sum \mathbf{x}_i^*) \ge 0 \ \forall \mathbf{z} \in P.$$

Want to show that \mathbf{p} is a WE price vector. First, $\mathbf{p} \geq 0$: Consider $\bar{\mathbf{e}} + \mathbf{v}_i$, where $\mathbf{v}_i = (0, ..., 1, 0, ...0)$. Obviously it lies in P. Therefore

$$\mathbf{p}(\bar{\mathbf{e}} + \mathbf{v}_i - \bar{\mathbf{e}}) \ge 0,$$

which reduces to $p_i \geq 0$.

Proof.(Cont.)

Second, we want to show that if $\mathbf{x}_i \succ_i \mathbf{x}_i^*$, then $\mathbf{p}\mathbf{x}_i \geq \mathbf{p}\mathbf{x}_i^*$ for all i: Constuct an allocation \mathbf{z} as follows

$$\mathbf{z}_i = (1 - \theta)\mathbf{x}_i,$$

$$\mathbf{z}_j = \mathbf{x}_j^* + \frac{\theta}{n - 1}\mathbf{x}_i.$$

If θ is small enough, then i still prefers \mathbf{z}_i to \mathbf{x}_i^* (by continuity). Moreover, j prefers \mathbf{z}_j to \mathbf{x}_j^* for all j (by monotonicity). Therefore,

 $\sum_{i=1}^{n} \mathbf{z}_i \in P.$

Proof.(Cont.)

Again, by separating hyperplane theorem,

$$\mathbf{p} \sum \mathbf{z}_i \geq \mathbf{p} \sum_{i=1}^n \mathbf{x}_i^*.$$

That is,

$$\mathbf{p}\left[\mathbf{x}_{i}(1-\theta) + \sum_{j \neq i} \mathbf{x}_{j}^{*} + \mathbf{x}_{i}\theta\right] \geq \mathbf{p}\left[\mathbf{x}_{i}^{*} + \sum_{j \neq i} \mathbf{x}_{j}^{*}\right], \text{implying}$$
$$\mathbf{p}\mathbf{x}_{i} \geq \mathbf{p}\mathbf{x}_{i}^{*}.$$

Proof (Cont.)

Finally, we show $\mathbf{x}_i \succ_i \mathbf{x}_i^*$ implies $\mathbf{p}\mathbf{x}_i > \mathbf{p}\mathbf{x}_i^*$:

We already know that $\mathbf{px}_i \geq \mathbf{px}_i^*$.

Suffice to show that $\mathbf{p}\mathbf{x}_i = \mathbf{p}\mathbf{x}_i^*$ leads to contradiction.

By continuity we know that for $\theta \in (0,1)$, $\theta \mathbf{x}_i \succ_i \mathbf{x}_i^*$ if θ is sufficiently close to 1, so that $\theta \mathbf{p} \mathbf{x}_i \geq \mathbf{p} \mathbf{x}_i^*$.

However, $\mathbf{p}\mathbf{x}_i = \mathbf{p}\mathbf{x}_i^*$ implies that $\theta \mathbf{p}\mathbf{x}_i < \mathbf{p}\mathbf{x}_i^*$, a contradiction to above.

