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Section 7

Isoperimetric Problem

An optimization problem may be subject to an integral constraint:

max ftlF(t,x,x’)dt (D)
to
subject to f “G(t,x,x)dt=B, x(t)=x, x(t,)=x,, )

g

where F and G are twice continuously differentiable functions and B is a
given number. For example, the problem of maximizing the area enclosed
by a straight line and a string of length B can be posed in this form. Let
the straight line extend from (z4,x,) = (0,0) to (#;,x;) =(?,,0). Then the
area under the curve will be given by (1) with F(z, x,x") = x. The con-
straint on string length is given by (2) with G(z,x,x")=[1+ (x)?]"/2.
(Recall Example 1.5.) In this problem, the perimeter is constant, specified
by (2)—hence the name “isoperimetric.” Such an example has provided
the name for the whole class of problems given by (1) and (2). Another
example of the form of (1) and (2) was given in Exercises 5.5 and 5.6,

max f 1re_"P()c) dt 3)
0

T
subject to f xdt=B, 4)
0

where x(¢) is the rate of extraction of a resource, B the initial endowment
of the resource, and P(x) the profit rate at ¢ if the resource is extracted and
sold at rate x(¢). Because of the special structure of (4), one can convert
the isoperimetric constraint (4) into a fixed endpoint constraint, by de-
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fining
y(t) = fo X(s) ds (5)

as the amount of resource extracted by time 7. Then y’(r) = x(¢) and (3)
and (4) are equivalently stated as

5
max fo e~"P(y") dt (6)

subjectto  y(0)=0, y(T)=B. @)

Typically, there is no simple transformation to eliminate an isoperimet-
ric constraint. However, recall that in a constrained calculus optimization
problem, one may either use the constraint to eliminate a variable (yielding
an equivalent unconstrained problem), or the constraint may be appended
to the objective with a Lagrange multiplier and equivalent necessary
conditions developed (see Section AS). A Lagrange multiplier technique
works here also. For instance, appending (4) to (3) with a Lagrange
multiplier gives

i =j;Te"”P(x) dt —A(LTxdz - B)
=f0T[e—rfp(x) —Ax]dt+AB. (8)

A necessary condition for x to maximize the augmented integrand (8) is
that it satisfy the Euler equation |

e "P'(x)=A. ‘ 9)

In agreement with the findings of Exercise 5.6, the present value of
marginal profits is constant over the planning period.

In the general case, (1) and (2), we append constraint (2) to (1) by an
undetermined multipler A. Any admissible function x satisfies (2), so for
such an x,

f“F(z,x,x') dt =f"[F(z,x,x') —AG(t,x,x")]dt +AB.  (10)
Ig Io

The integral on the left attains its extreme values with respect to x just
where the integral on the right does; A then is chosen so that (2) is satisfied.
The Euler equation for the integral on the right is

F.—AG,=d(F.—AG,)/dt. (11)
From (A5.11) the Lagrange multiplier method rests on the supposition
that the optimal point is not a stationary point of the constraining relation;

this prevents division by zero in the proof. An analogous proviso pertains
here for a similar reason. Thus, a necessary condition for solution to (1)
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and (2) may be stated as follows:

If the function x* is an optimal solution to (1) and (2) and if x* is not an
extremal for the constraining integral (2), then there is a number \ such that
x*(t), A satisfy (2) and (11).

Example 1
s 1 ’ 2d
min fo [x'(2)]? dt

1
subject to f x(t)dt=B, x(0)=0, x(1)=2.
0

The augmented integrand is (x”)* — Ax. Its Euler equation A +2x” = 0 has
the solution :

x(t)= —At?/4+c;t +c,.

Three constants are to be determined—A, ¢;, ¢,—using the integral
constraint and boundary conditions:

flxdt=f](—}\zz/4+clt+cz)dt=B,
0 0

x(0)=02=0, x(].)= —')\/4+CI+C2=2-
Hence
c,=6B—4, c, =0, A=24(B-1).

Example 2. For

F

max x dt

J
, T
subject to f [1+(x)*)"/2dt=B, x(0)=0, x(T)=0,
0
the augmented integrand x — A[1 + (x")?]'/? has Euler equation
1= —d(Ax'/[ 1+ (x)?]"?) /a1,

Separate the variables and integrate:

t=-Ax'/[1+ ()] +k. .
Solve for x’ algebraically:

x’=(t—k)/[)\2— (t—-k)z]m.



