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Nontrivial stochastic resonance temperature for the kinetic Ising model

Kwan-tai Leung and Zolta´n Néda*
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

~Received 21 September 1998!

The kinetic Ising model in a weak oscillating magnetic field is studied in the context of stochastic resonance.
The signal-to-noise ratio calculated with simulations is found to peak at a nontrivial resonance temperature
above the equilibrium critical temperatureTc . We argue that its appearance is closely related to the vanishing
of the kinetic coefficient atTc . Comparisons with various theoretical results in one and higher dimensions are
made.@S1063-651X~99!09103-5#

PACS number~s!: 64.60.Ht, 05.40.2a, 05.50.1q
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I. INTRODUCTION

A series of recent papers@1–5# reveal unequivocally the
phenomenon of stochastic resonance~SR! @6# in the kinetic
Ising model driven by an oscillating magnetic field. The po
sibility of SR was anticipated by viewing the Ising model
a system of coupled two-state oscillators in a stochastic fo
field which is taken to be thermal fluctuations. In our pre
ous papers@1,2#, we considered the synchronization aspe
@7# of SR manifested in the correlation functionC(T) be-
tween the magnetic fieldh and the magnetizationM (T) as a
function of temperatureT. C(T) was shown to exhibit two
relative maxima at resonance temperaturesTr1,Tc
,Tr2 (Tc being the critical temperature of the equilibriu
system withh50). The values of bothTr1 andTr2 depend
on the driving frequency. They converge toTc in the experi-
mentally relevant, low frequency limit, thus no novel cha
acteristic temperature for the kinetic Ising model was o
served. The results are qualitatively the same for tw
dimensional~2D! and three-dimensional~3D! systems, and
of course in the one-dimensional~1D! caseTr1 is absent.

Conventionally, SR is characterized by the behavior
the signal-to-noise ratio~SNR!. In the case of the 1D kinetic
Ising model governed by Glauber dynamics@8#, the SNR
was computed analytically@4# both for the response of a
embedded spin and of the whole chain, after Glauber’s or
nal derivation@8#. Their results~to be discussed in greate
detail in Sec. IV! suggest that the SNR exhibits a maximu
at a weakly frequency dependent resonance tempera
Tr

1D . In this manner a characteristic temperature for the
netic Ising model was introduced.

The aim of this work is to study the behavior of the SN
for the kinetic Ising model in general spatial dimensiond.
We are particularly interested in the mechanism respons
for the maximum of SNR versus temperature, its posit
and the associated scaling behavior as a function of sys
sizes, driving amplitude, driving frequency, and dimensio
ality of the system.

II. SIMULATION METHOD

Standard Monte Carlo simulations for the kinetic Isi
model in an oscillating magnetic field,h5A sin(vst), on one-
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to four-dimensional square-type lattices are carried out. H
bath algorithm is used. The flipping probablity is in acco
dance with the accepted kinetic Ising model definition

Pflip5
exp~2bDE!

11exp~2bDE!
, ~1!

whereb51/kT(k is the Boltzmann constant, andT the tem-
perature! and DE is the energy change of the sytem due
the proposed spin-flip. We set the energy scale by consi
ing k51. For one and two dimensions, a detailed study
the SNR as a function of the driving frequencyf s52pvs ,
driving amplitude A, system sizeV5Ld, and sampling
lengthN are performed. Having determined the trend of su
dependences, SNR in three and four dimensions are ca
lated only for representative values of the parameters.f s is
expressed in units of 1/MCS~inverse Monte Carlo step pe
site! andA in units of the nearest neighbor coupling consta
J. Free boundary conditions are imposed and system size
to V533104 are simulated.

To determine the SNR at each temperature, we follow
time evolution of the total magnetizationM (t) for N52p

MCS, after sufficient equilibration, wherep ranges from 10
to 12. The power spectrumS( f ) of M (t) is computed using
the fast Fourier transformation method. Averaging over 5
to 1000 independent runs, the ensemble-averaged po
spectrum̂ S( f )& is obtained. A typical̂ S( f )& is presented in
Fig. 1, which shows the characteristic sharp peak at the d
ing frequencyf s along with background noises. To compu
the SNR, the noise level nearf s is determined by averaging
^S( f )& over the interval I 5@ f s26/N, f s22/N#ø@ f s
12/N, f s16/N#. The result is denoted byu^S( f )&u I . Taking
the height of the peak minus the averaged noise level as
signal, we define the SNR in the simulations by

R̃sim5
^S~ f s!&2u^S~ f !&u I

u^S~ f !&u I
. ~2!

In a typical continuum linear-response calculation of t
power spectrum, one obtains the general form

S~v!5S0~v!1Qd~v2vs!, ~3!

where S0(v) is the zero-field spectrum, andQ}A is the
amplitude of signal. These two terms correspond to the no

-
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background and the sharp peak, respectively, as depicte
Fig. 1. Conventionally, the SNR is defined by the ra
Q/S0(vs) @6#. Thus, in order to compare with theories, som

adjustments toR̃ need to be made. It is straightforward to s
that the proper definition after replacingf by v is

Rsim5
2p

N
R̃sim, ~4!

where we have also normalized by the trivial factorN which
arises from discrete Fourier transform, so thatRsim is inde-
pendent ofN. Hereafter our simulation results will be pre
sented in terms ofRsim. Notice that in the small frequenc
and small amplitude limit,Rsim is expected to scale as~cf.
@4#!

Rsim~T;V,A!5VA2g~T!, ~5!

whereg(T) is independent ofV andA.

III. SIMULATION RESULTS

In all the dimensions considered,Rsim(T) exhibits a char-
acteristic peak at a resonance temperatureTr . Results for
one dimension are presented in Figs. 2 and 3 for the eff
of the driving frequency, system sizes, and driving amp
tude. From Fig. 2, we see that varying the frequency p
duces no major shift inTr . Hence we obtain

Tr
1D'J. ~6!

In Fig. 2, the scaled SNR is plotted for a variety of com
nations ofN, V, andA. The fact that they all collapse ont
one curve confirms the expected scaling form~5!. Its break-
down is evident only for driving amplitudesA*J, as shown
in Fig. 3, due to nonlinear effects. From Fig. 2 one can a
observe that for temperatures belowTr the simulation data
are sensitive toA even for quite small values ofA. In this
region much smallerA than simulated are required in ord
to reach the asymptotic zero-amplitude limit. Decreasing
amplitude further, however, would increase the statistical
rors significantly.

FIG. 1. Characteristic shape of^S( f )& for a driving frequency
f s'0.097.
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The results in two dimensions are qualitatively the sa
for T.Tc @Tc522J/ ln(A221)'2.269J, @9## as in one di-
mension, except a stronger influence of the driving freque
on R(T) is seen~see Fig. 4!. At high frequencies, a secon
peak gradually develops belowTc , as illustrated in the mag
nified plot in the inset of Fig. 4. Our simulations show th
this second peak becomes more refined as the lattice si
increased. We also check the validity of the scaling relat
~5! and find it fails only for fairly large driving amplitudes
A.0.2. Thus, in the low-frequency, small-amplitude lim
the resonance peak forT.Tc converges to

Tr
2D'~1.3560.03!Tc . ~7!

With that we confirm the existence of a characteristic te
perature distinct fromTc . For higher frequencies, the pea
aboveTc shifts slightly towardTc .

For three dimensions the same trend versus frequenc
observed with lower frequencies, resulting in a higherTr ,

FIG. 2. General shape of theR(T)/VA2 curve in one dimension
for different sets of driving frequencyf s , driving amplitudeA,
system sizeV, and time stepN. The continuous line is the exac
theoretical result~10!.

FIG. 3. Breakdown of the scaling law~5! for high driving field
intensityA. N54096,V51000, andf s50.0195 for all curves.
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but even in the low-frequency limit the sharp peak is clo
to Tc (Tc'4.511J; see for example@10#! than in two di-
mensions:

Tr
3D'~1.160.05!Tc . ~8!

The second peak belowTc also becomes more evident fo
higher frequencies, and its height is now comparable to
of the main peak~Fig. 5!.

Turning to four dimensions, namely, the upper critic
dimension of the Ising model, we see clearly a twin-pe
structure in R(T) ~Fig. 5! and the peak aboveTc (Tc
'6.68J from Ref. @11#! is even closer toTc than in three
dimensions:

Tr
4D'~1.0560.05!Tc . ~9!

FIG. 4. General shape and frequency dependence of
R(T)/VA2 curves in two dimensions. All results are forV550
350,N51024, andA50.11. The magnified region shows the pe
underTc , observable for high driving frequencies.

FIG. 5. Modified 1D theory withJe5Jd ~solid line!, and MF
approximation ~dashed line! in comparison with characteristi
simulation data for all the considered dimensions. For one dim
sion A50.05,V51000; for two dimensions,A50.11,V5502; for
three dimensions,A50.09,V5303, and for four dimensions,A
50.07,V5124. For all considered dimensionsf s50.0195 andN
54096.
r
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In Fig. 6 we summarize the overall trends of the heig
and position of the main resonance atTr.Tc versus the co-
ordination number of the lattice, 2d, in the low-frequency,
small-amplitude limit. The decrease of the peak height f
lows roughly a power lawd2c with c'2.

IV. ANALYTICAL APPROACHES AND DISCUSSIONS

A. 1D exact result

As mentioned above, the SNR for the 1D kinetic Isin
model has been computed by Schimansky-Geier and
workers @4# in the low-frequency limit. For completenes
their result is recorded here

R1D5
pVA2

4T2 A12tanh2S 2J

T D . ~10!

Comparison with simulation data is given in Fig. 5. Th
agreement is excellent for smallA, except below the peak
where the data are more sensitive toA, and theA→0 limit is
not yet reached. But the overall trend ofR as a function ofA
supports the above prediction.

B. Mean-field theories

For higher dimensions, no exact result onR is available
and we must resort to approximations. A naive approxim
tion is to consider at high temperature that an average sp
different dimensions only differ by the number of spin
coupled to it, given by 2d. We may then make use of Eq
~10!, derived for one dimension, to obtain an approxima
formula of R(T) for d.1 by replacingJ with an effective
coupling constant

Je5Jd. ~11!

Of course this approximation should hold only at high te
peratures, but comparison with simulations in Fig. 5~solid
lines! shows agreement better than naively expected, e
cially in two dimensions.

he

n-

FIG. 6. Trend forTr , and the height of the peak as a function
the dimensionality of the square-type lattices. The decrease o
height is well fitted by ad2c power law withc52.
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Independent of the approximation, the general form of
SNR is given by

R5
p

2

~DM !2

S0~vs!
, ~12!

where S0(v) is the frequency dependent power spectr
~noise strength!, andDM is the amplitude of the total mag
netization induced by the external magnetic field, i.e.,
‘‘signal’’ in M (t)5Vm1DM sin(vst2f) where m is the
equilibrium magnetization per spin, andf is the phase shift
@2#. Note thatQ5p(DM )2/2 is just the amplitude in Eq.~3!.

The simplest approach to calculateDM and S0 is the
mean-field ~MF! approximation. The mean fieldDM can
easily be found@2#:

~DMMF!25
V2A2

T2
~12mMF

2 !2
1

1

tMF
2

1vs
2

, ~13!

wheremMF can be determined in the standard way by n
merically solving the self-consistency equationmMF
5tanh(2dJmMF /T), and tMF is the mean-field relaxation
time:

tMF5
1

12
2dJ

T
~12mMF

2 !

. ~14!

The noise strengthS0
MF(v) can be determined using th

Wiener-Khintchin theorem:

S0
MF~v!5

2

tMF

^M2&MF2V2mMF
2

1

tMF
2

1v2

. ~15!

The numerator can readily be found via the susceptibility
be (12mMF

2 )tMF . With these we obtain

RMF5
pVA2~12mMF

2 !

4T2
. ~16!

We plot RMF(T) in Fig. 5 ~dashed lines!. The mean-field
result agrees with simulations at high temperatures, but n
Tc it misses the peaks entirely. Instead, the factor 12mMF

2

yields a cusp atTc
MF . Thus mean-field theory fails to captur

the essence of the SNR from simulations.

C. High-temperature expansions

The clue for the origin of the above discrepancy com
from re-examining the 1D exact result. It is instructive
rewrite R1D of Eq. ~10! in a more general form:

R1D5
pVA2l

4T
, ~17!
e

e

-

o

ar

s

where

l5
1

T
A12tanh2S 2J

T D5
1

T cosh~2J/T!
~18!

is the zero-fieldkinetic coefficient, given by the ratio be
tween the susceptibility and relaxation time,

l5
x

t
, ~19!

for generaldimension@12#. For one dimension,x5e2J/T/T
and t51/@12tanh(2J/T)# are exact. For higher dimension
no exact result forx,t or l are known, but Eq.~17! remains
valid. In fact, Eq.~16! is the mean-field version of Eq.~17!,
with lMF5(12mMF

2 )/T.
In the more refined mean-field approach introduced

Ref. @2# based on the time-dependent Ginzburg-Laud
equation, the SNR can be derived and it takes the same f
as Eq.~17!. With that approach in two dimensions,xT is
accurate up toO(v3),t up to O(v4) and hencelT51
24v21O(v4), where v5tanh(J/T) is the usual high-
temperature expansion~HTE! parameter. This also yields
smoothR(T) with no peak.

Of course the HTE oflT is available in the literature to
much higher order for the 2D kinetic Ising model, at least
to O(v20) @13#. It is interesting to ask if this more accuratel
gives the peak inR(T). Figure 7 plots the cumulative con
tributions up to various ordersvn, and it is clear that even
O(v20) is not enough to yield the simulated shape ofR(T).
That this is the right conclusion is indicated by doing t
same procedure for one dimension where the HTE is kno

FIG. 7. High temperature expansion results as a function ov
5tanh(J/T) and v5tanh(2J/T) for two- and one-dimensional sys
tems, respectively. (n indicates the order of the expansion.!
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to all orders. The result~Fig. 7! shows the same trend as
two dimensions. The peak is not revealed until up ton
'70. We conclude that the peak inR(T) is an elusive quan-
tity to obtain; its absence is due to the inaccuracy of
approximation of the kinetic coefficientl nearTc . In retro-
spect, approximations of high-temperature nature are bo
to fail, because their expansion parameters are close to u
near where the peak is supposed to be. We must there
address the critical region.

D. Critical dynamics

From the general form~17!, the SNR for a weak field is
proportional to the kinetic coefficientl. From a renormal-
ization group analysis@12#, t;e2nz, andx;e2g, wheree
}T2Tc , we obtainl;en(z221h), where g5n(22h) is
used. It is then clear thatR(T) must exhibit a maximum nea
Tc because critical slowing down entails the vanishing of
kinetic coefficient atTc @12#, R(T) must bend down nearTc
asT is lowered.

It is, however, clear from the simulations thatR(T) does
not really vanish atTc ~the finite-size effect plays no rol
since the convergence with respect toV already occurs a
rather smallV). The physical reason for this is that the pre
ence of an oscillating magnetic field prevents the sys
from fully developing its correlations nearTc within the fi-
nite period 1/f s . Singularities are rounded. In particula
critical slowing down is suppressed due to the cutoff oft at
1/f s . Hence roundings are expected to occur at roughlyT* ,
where (T* 2Tc)/Tc; f s

1/nz . For an infinite system size, th
vanishing ofR is then controlled byf s according toR(Tc)
; f s

(z221h)/z(R is controlled byL instead ifL, f s
21/z). Thus,

for small frequencies, we expect the kinetic coefficient
drop significantly asTc is approached, giving rise to the pea
in the SNR, and hence to a temperature scale distinct f
Tc .

Since an accurate functional form ofl(T) nearTc is lack-
ing, to partially remedy the situation we illustrate the abo
idea by means of a phenomenological description for
SNR. We simply replace the above ‘‘; ’’ signs by equalities
and specify e5(T2Tc)/T to obtain tRG5e2nz,xRGT
5e2n(22h) and

lRGT5en~z221h!. ~20!

For the 2D kinetic Ising model, the exponent values areh
5 1

4 ,n51, andz'2.16 (z is not known exactly@13#!. This
particular form has the obvious advantage of capturing b
the correct high-temperature value~both t andxT→1 asT
→`) and the behavior nearTc . In fact, tRG andxRG agree
surprisingly well with the HTE away fromTc . The corre-
sponding SNR,RRG(T), is plotted in Fig. 8, which indeed
shows the characteristic peak at about the right place.
scenario is qualitatively the same in higher dimensions,
the singularities are weaker~logarithmic in four dimensions!
which plausibly explains whyTr-Tc decreases withd ~Fig.
6!.
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V. CONCLUSION

We have simulated the kinetic Ising model in various sp
tial dimensions under the influence of an oscillating ma
netic field. We focus on the signal-to-noise ratioR as a mea-
sure of stochastic resonance for the spins in response to
external field. For all the dimensions we study,R exhibits a
clear maximum at a resonance temperature distinct from
equilibrium critical temperature. Various theoretical a
proaches to calculateR are discussed which, when proper
incorporating the critical slowing down atTc , agree with the
simulated results.

We have confined our attention to the case of weak fie
since strong fields induce more complex response tha
treatable by linear response theories. One such complica
is the saturation of the magnetization within one cycle
oscillation which would generate higher harmonics in t
power spectrum, thus invalidating even the usual definit
of SNR. Theoretically, we have also confined ourselv
mostly to T.Tc . Below Tc , localized excitations such a
nucleation of droplets may become important in certain
gion of the parameter space. They are more difficult
handle than a spatially uniform perturbation done here.

With respect to other resonance temperatures defined
means of the correlation function between magnetization
external field@1,2#, the present resonance temperature see
to be unrelated. Since, unlike the previous ones, it does
converge toTc in the small frequency limit, it offers a more
robust characterization of the phenomena of stochastic r
nance in kinetic Ising systems. We expect that experime
measurement of theR(T) curve performed on monodomai
magnetic particles with localized magnetic moments co
reveal this resonance temperature.
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FIG. 8. Result using the phenomenological approximation~20!
for the kinetic coefficient~solid line! in comparison with 2D simu-
lation data.
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