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We study the standard three-dimensional driven diffusive system on a simple cubic
lattice where particle jumping along a given lattice direction are biased by an infinitely
strong field, while those along other directions follow the usual Kawasaki dynamics.
Our goal is to determine which of the several existing theories for critical behavior is
valid. We analyze finite-size scaling properties using a range of system shapes and sizes
far exceeding previous studies. Four different analytic predictions are tested against the
numerical data. Binder and Wang’s prediction does not fit the data well. Among the
two slightly different versions of Leung, the one including the effects of a dangerous
irrelevant variable appears to be better. Recently proposed isotropic finite-size scaling is
inconsistent with our data from cubic systems, where systematic deviations are found,
especially in scaling at the critical temperature.
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1. Introduction

Over the last decade or so, there have been many investigations on nonequilibrium

systems. One of the most often studied is the driven diffusive system (DDS)1 for

its simplicity of formulation and richness of novel properties. In particular, it is one

of the few simple nonequilibrium systems showing phase transitions similar to that

of an equilibrium statistical-mechanical system. The distinction between DDS and

an equilibrium system is a subtle one. Although both reach a stationary state of

their respective stochastic dynamics in the long time limit, the DDS is generically

nonequilibrium, defined only through its dynamics, while an equilibrium system

can be alternatively characterized by a Hamiltonian independent of the choice of

dynamics. The standard DDS model is a lattice gas model governed by Kawasaki

dynamics with a driving field. The driving field biases the motion of the particles in

one preferred direction, so that under periodic boundary conditions it gives rise to

a current along that direction. The existence of a steady current is a manifestation

of the nonequilibrium nature of the stationary state. One physical realization of

1
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DDS is the superionic conductor. Certain flow properties of binary liquids under

gravity, though more complicated due to hydrodynamic modes, are also similar to

those of DDS.

In this paper we focus our attention on the critical behavior of the standard

DDS. Mean-field theories2 can give qualitative predictions of the phase transitions.

But one of the achievements of the field-theoretic treatment of DDS3,4 is the exact

determination of the set of critical exponents for all dimensions d ≥ 2. After some

initial controversies, the predictions in two dimensions have been generally con-

firmed by extensive Monte Carlo simulations5,6, with small deviations. The most

difficult aspect of such tests is the fact that two length scales are involved—the

correlation lengths (ξ‖ and ξ⊥) diverge differently in direction parallel to the field

and in direction perpendicular to the field. Thus, one has to deal with anisotropic

finite-size scaling with systems of various geometries.

From a field-theoretic point of view, the d = 2 model is more complicated than

in higher dimensions. This is because the usual φ4 coupling constant, denoted by

u, is a dangerous irrelevant variable for d > 2, but it becomes marginal in d = 2.

While scaling arguments can predict the effect of u on finite-size scaling for d > 2,5

there is little clue as to the existence and possible form of the associated logarithmic

corrections in d = 2. Perhaps this explains why the agreements between previous

tests5,6 and theory in d = 2 are not impeccable; small deviations from scaling may

be due to the presence of small logarithmic corrections. For this reason, a more

stringent yet practical test lies in d = 3.

Recently, the controversies regarding the nature of the critical point were re-

newed. Not only the confirmations in d = 25,6 but also the validity of the field-

theoretic approach itself have been questioned by Marro et al.7 Isotropic finite-size

scaling involving one scaling length was advocated. It is therefore our aim here

to try to answer those questions by conducting a comprehensive test of the field-

theoretic predictions in d = 3. Being free from the doubt of possible logarithmic

correction, consistencies between simulations and field theory would lend strong

support to the latter.

There are very old Monte Carlo simulation results8,9 of the three-dimensional

DDS. One of the discoveries by Monte Carlo as well as by analytic works is

the power-law long-range correlation of the particle density even in the high-

temperature disordered phase.1,9,10 This is shown as the manifestation of the viola-

tion of the fluctuation-dissipation theorem in DDS. But the question of the validity

of the field-theoretic results is far from answered. Monte Carlo simulation of the

DDS model is difficult for its long relaxation times and anisotropic correlations, due

to local conservation and the external drive, respectively. In this article, we report

a fairly extensive Monte Carlo study using anisotropic finite-size scaling analysis

similar to that in the two-dimensional case. A dominant feature of the anisotropies

is the appearance of an extra scaling variable, the “aspect ratio” S = L
1/λ
‖ /L⊥,

with λ = ν‖/ν⊥. The exponents ν⊥ and ν‖ are associated with the correlation

lengths ξ⊥ and ξ‖. Simple data collapse among different samples is possible only
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when they have the same value of S, then the ordinary finite-size scaling forms are

valid. There have been different predictions for the value of λ: In d = 3, field theory

predicts that λ = 8/3, whereas Binder and Wang11 obtained λ = 4. In this work,

we mainly concentrate on samples with one fixed S, using the value 8/3 for λ. The

results support the field-theoretic predictions. Due to the huge demand on com-

puter power, we could not study extensively the dependence on S, and the scaling

at Tc, but only have some limited checks. We also test the assumption of isotropic

scaling which corresponds to λ = 1. Inconsistencies are found.

2. The DDS Model and Simulation Technique

The model is defined on a simple cubic, fully periodic lattice of size L‖×L2
⊥. Each

site on the lattice has a spin σi = ±1. Equivalently, we can also consider the system

as a lattice gas with local occupation variables. The total magnetization is set

exactly at zero, and we assume ferromagnetic interaction among nearest neighbors

only, with a coupling constant J > 0. Equivalently, the particle occupation is half

filled and they attract each other. The system evolves according to the standard

Kawasaki dynamics of spin exchanges except with an extra ingredient due to an

external “electric” field. We associate a positively charged particle with an up spin

and a hole with a down spin. Particle hoppings along the electric field are favored.

Hereafter we will use the spin language. In simulation, we consider only the extreme

case of infinitely strong field, chosen to be in the +x direction. Thus, exchange is

always performed if we have a (+,−) pair along the +x direction and the exchange

for (−,+) is forbidden. When the exchanges are perpendicular to the field (which

happens 2/3 of the time), the field does not play any role. In that case, we compute

the change in energy ∆E due to the exchange, accepting it with the Metropolis

rate min(1, exp(−∆E/kT )). From now on, we will set J/k to one.

Since the model evolves very slowly via a conservative dynamics, a fast algorithm

is of the utmost importance for the present undertaking. We used a multi-spin coded

program to simulate 8 or 16 systems simultaneously, depending on the word length

of the given machine. The method is similar to that of Kawashima et al.,12 capable

of achieving a speed of about 0.1 µsec/(spin flip) with a typical workstation.

We define the order parameter as

φ =
1

2L‖L⊥
sin

(
π

L⊥

) √
|σ̃(0, 1, 0)|2 + |σ̃(0, 0, 1)|2, (1)

where

σ̃(l,m, n) =

L‖−1∑
x=0

L⊥−1∑
y=0

L⊥−1∑
z=0

σx,y,ze
2πilx
L‖ e

2πi(my+nz)
L⊥ . (2)

The normalization is chosen such that φ = 1 for a slab geometry (the completely

phase-separated configuration in the limit T → 0). The following quantities are
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calculated: (i) the averaged order parameter m = 〈φ〉, (ii) the “susceptibility”

proportional to the fluctuation of the order parameter,

χ =
L‖L⊥

T sin(π/L⊥)

[
〈φ2〉 − 〈φ〉2

]
, (3)

the susceptibility above the critical temperature,

χ′ =
L‖L⊥

T sin(π/L⊥)
〈φ2〉, (4)

and (iii) the fourth-order cumulant,

g = 2− 〈φ
4〉

〈φ2〉2
. (5)

Note that g goes from 0.5 to 1 as temperature T goes from ∞ to 0. We will not

report the results on χ′; it yields no additional information as 〈φ2〉 appears to scale

like 〈φ〉2.

The computations are performed on a variety of workstations, such as Alpha-

stations, Pentium clusters, IBM SP2, etc. Our main results are obtained from a set

of system sizes (L‖, L⊥) with (113, 18), (193, 22), (367, 28), and (524, 32), chosen

such that S = L
3/8
‖ /L⊥ is very close to a constant, ranging between 0.32703 to

0.32709. A second set with (59, 35), (102, 43), (122, 46), (161, 51), and (248, 60) are

used mainly to confirm the result for Tc. The value of S for this set varies from

0.13171 to 0.13182. Much more elongated geometries are also used to investigate

the L‖ →∞ behavior. A third set with cubic geometry, L = L⊥ = L‖ = 20, 30, 40,

50, 60, is used to test isotropic scaling. The lengths of runs are 106 to 108 Monte

Carlo steps per temperature, the longer for T closer to Tc. We monitor the results

until the system is well equilibrated before actually taking data. The total amount

of CPU time spent is of the order of seven years on one IBM SP2 node. This gives

an idea of the computational demand in achieving good statistics for this model.

3. Anisotropic Finite-Size Scaling

There have been two competing theories on the anisotropic finite-size scaling of

the DDS. The first is that of Binder and Wang.11 Their results are based on a

generalization of the one-dimensional Ginzburg-Landau type effective Hamiltonian

for the very elongated geometry. The second is due to Leung based on the field-

theoretic formulation.5

Encouraged by the finite-size scaling of the standard Ising model above its upper

critical dimension and the finite-size scaling at a Lifshitz point, Binder and Wang11

speculated on a scaling form for the driven diffusive model. The starting point

is the assumption of an effective functional for the local order parameter Ψ in a

quasi-one-dimensional geometry (L⊥ � L‖),

Heff (Ψ) = Ld−1
⊥

∫ L‖

0

dz

[
1

2

(
dκΨ

dzκ

)2

+
1

2
tΨ2 +

u0

4!
Ψ4

]
, (6)
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where the exponent κ−1 = 2 + (5 − d)/3 which characterizes the singular term is

introduced in such a way that the correlation-length exponent ν‖ as obtained by

field theory is reproduced at the Gaussian level. This leads to the scaling forms for

the susceptibility and magnetization in three dimensions11 at T = Tc

χ(Tc) = L
3/4
‖ χ̃(L

1/4
‖ /L⊥), (7)

m(Tc) = L
−3/8
‖ m̃(L

1/4
‖ /L⊥). (8)

On the other hand, Leung deduced the off-Tc finite-size scaling forms by gen-

eralizing the exact field-theoretic results for infinite system sizes to finite sizes.5

The derivation was based on a combination of the renormalization group argument

which treats 1/L⊥ and 1/L‖ as two independent relevant variables, and scaling ar-

guments which assume multiplicative singularities in the limit uL
−2θ/λ
‖ → 0. Here θ

is proportional to the anomalous dimension of u. The fact that θ = 1−(5−d)/3 ≥ 0

for d ≥ 2 prescribes the dangerous nature of u above two dimensions. The main

results read5

χ(T ) = L
7/8
‖ χ̃(L

3/8
‖ /L⊥, tL

7/8
‖ ), (9)

m(T ) = L
−7/16
‖ m̃(L

3/8
‖ /L⊥, tL

7/8
‖ ), (10)

g(T ) = g̃(L
3/8
‖ /L⊥, tL

7/8
‖ ), (11)

where t = (T − Tc)/Tc. If the contribution from the dangerous irrelevant variable

u was ignored, we would have instead

χ(T ) = L
3/4
‖ χ̃(L

3/8
‖ /L⊥, tL

3/4
‖ ), (12)

m(T ) = L
−1/2
‖ m̃(L

3/8
‖ /L⊥, tL

3/4
‖ ), (13)

g(T ) = g̃(L
3/8
‖ /L⊥, tL

3/4
‖ ). (14)

Although theoretically the effect of u is important, for completeness, we will also

test these predictions where u is ignored, as no additional simulation is needed.

The above results imply that the thermodynamic limit has to be taken carefully.

The field-theoretic results are understood to correspond to the case where L‖ ∝
Lλ⊥ → ∞. Besides this limit, the quasi-one-dimensional limit L‖ → ∞ with L⊥
held finite is also of interest (we assume that there exists a unique value of Tc for

these different ways of taking the thermodynamic limit.) Since χ does not depend

on L‖ in this case, from Eqs. (7), (9) and (12), we have three different predictions

for the susceptibility at Tc

Binder & Wang χ ∼ L3
⊥, (15)

Leung (with u) χ ∼ L7/3
⊥ , (16)

Leung (without u) χ ∼ L2
⊥. (17)

We will use Eqs. (7)–(17) to check which version of the predictions for scaling

describes the data from the computer simulation better.
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4. Anisotropic Scaling Results

An accurate determination of the critical temperature Tc is important for a quan-

titative analysis of the critical behavior. We determine Tc by the finite-size effect

of the location Tpeak of the susceptibility peak in χ. The data near peaks are fitted

with a parabola to derive their heights and locations. First we consider the predic-

tions in Eqs. (9) and (12). Following well-known argument, the shift of Tc due to

finite sizes is

Tpeak(L‖, S) = Tc + a(S)L−b‖ , (18)
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Fig. 1. The susceptibility peak location Tpeak(L‖, S) as a function of L−b‖ ; (a) b = 7/8, (b) b =

3/4. The system sizes (L‖, L⊥) are (113, 18), (193, 22), (367, 28), (524, 32) (•); and (102, 43),
(122, 46), (161, 51), (248, 60) (�). The limiting value Tpeak(L‖ →∞, S) is an estimate of Tc.
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Fig. 2. Scaling of the susceptibility maxima. The slope 7/8 is as predicted in Eq. (9), within
error from the best fit 0.86. For comparison the slope 3/4 as in Eq. (12) is also shown. The insert

shows the shift of the susceptibility peaks for (L‖, L⊥) being (113, 18), (193, 22), (367, 28), and
(524, 32) from left to right.

where a(S) is a scaling function, b = 7/8 or 3/4. When S = L
3/8
‖ /L⊥ is fixed, we

have the usual shift of the peak locations. Figure 1(a) shows Tpeak against L
−7/8
‖ ,

for two sets of data with S = 0.327 (first set, lower part) and S = 0.1317 (second

set, upper part), respectively. Least-square fit extrapolates to critical temperatures

4.859±0.005 (first set) and 4.869±0.005 (second set). If the exponent 3/4 is used in

Eq. (18), according to Eq. (12), the estimate shifts to higher values of 4.870±0.005

(first set) and 4.873± 0.005 (second set). Thus, while the extrapolated Tc from the

two sets of data agree within errors for both versions, the one with the exponent

3/4 without the dangerous irrelevant variable correction appears to be marginally

more consistent. The consistency in Tc for two different sets of data with fixed S is

a significant confirmation that λ = 8/3 is the correct anisotropic scaling exponent.

The peak heights are additional information which we can use. According to

Eq. (9) and (12), the peak height scales with system size as χmax ∼ L
7/8
‖ or

χmax ∼ L
3/4
‖ if the variable u is or is not taken into account. The nice feature

of the susceptibility maximum scaling is that it does not depend on the choice of

the second scaling variable tLc‖ in the scaling functions. In Fig. 2, we plot the height

versus L‖ in logarithmic scale. The insert shows shift of the susceptibility peaks.

Very nice linear behavior with a slope of 0.86 ± 0.02 is obtained. This is a solid

confirmation of Eq. (9).
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Fig. 3. The finite-size scaling of the fourth order cumulant g with the scaling variable (a) tL
7/8
‖

and Tc = 4.860; and (b) tL
3/4
‖ and Tc = 4.872. The system sizes (L‖, L⊥) are (113, 18) (�),

(193, 22) (4), (367, 28) (�), (524, 32) (◦).
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Fig. 4. The finite-size scaling of the order parameter m with the scaling variable (a) tL
7/8
‖ and

Tc = 4.860; and (b) tL
3/4
‖ and Tc = 4.872. The system sizes are the same as in the previous figure.
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Fig. 5. The finite-size scaling of the susceptibility χ with the scaling variable (a) tL
7/8
‖ and

Tc = 4.860; and (b) tL
3/4
‖ and Tc = 4.872. The system sizes are the same as in the previous figure.

For fixed S, the anisotropic finite-size scaling has the same form as the isotropic

scaling, involving a prefactor in L and just one scaling variable of the form tLc.

We first look at the scaling of the fourth order cumulant. This quantity has a

simple scaling since there is no prefactor. Figure 3(a) is the cumulant g plotted

against scaling variable tL
7/8
‖ . If the dangerous irrelevant variable u was ignored,
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Fig. 6. The scaling of the fourth-order cumulant at Tc = 4.860. The left set of curves with a = 1/4
refers to the prediction of Binder and Wang; the middle set with a = 3/8 is that of Leung; the
right set assumes isotropic scaling a = 1. Same symbol means the same transverse system size
L⊥ = 40, 30 and 20, from left to right.

the exponent c would be 3/4. The corresponding scaling plot is Fig. 3(b). Both of

them yield equally good data collapsing if different Tc are used.

The finite-size scaling of the order parameter is presented in Fig. 4. Excellent

scaling is found there when u is taken into account, using Eq. (10). The upper

branch is for t < 0 and the lower branch is for t > 0. Figure 4(a) shows that the

upper branch has a slope of about 0.5 for large value of tL
7/8
‖ , which is consistent

with the exponent β = 1/2. If u is ignored, using Eq. (13) instead, Fig. 4(b) shows

that the data collapse is not as good below Tc. Notice that the systematic deviation

in the tail of t < 0 is expected, since scaling is supposed to be valid only for large

system sizes and small t. For a system with fixed sizes, one expects deviation from

scaling to start at a certain value of the scaling variable |t|Lc‖ when T gets too far

from Tc, i.e., outside the critical region. The smaller L‖ is, the sooner the deviation

occurs. This systematic trend is clearly shown in Fig. 4.

The susceptibility data are shown in Fig. 5 in scaling form. The upper curve

with a peak is for t < 0 and the lower curve is for t > 0. The scaling is not as

good as that for the order parameter at low temperatures. Again, our explanation

for such deviations from scaling is that the low-T data may fall outside the critical

region. The size of the critical region could then be estimated to be about 10% of

Tc. This interpretation is supported by the same kind of deviation in the low-T

tails in χ and m in the equilibrium Ising model,13 where the exponents are known

exactly and thus cannot be the source of deviations. Similar behavior is also found

in two-dimensional DDS.6
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Fig. 7. The finite-size scaling of magnetization at Tc = 4.86 for (a) Binder and Wang scaling;
(b) Leung scaling with u; (c) Leung scaling without u. Same symbol means the same transverse
system size L⊥ = 60, 40, 30, 20 and 10, from left to right.
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Fig. 7. (Continued)

We now turn our attention to finite-size scaling at Tc, where only one scaling

variable of the form L
1/λ
‖ /L⊥ is left. We simulate a wide range of system sizes and

shapes, no longer restricting to ones with fixed L
3/8
‖ /L⊥. The exponent λ can be

determined when ensemble averages for different (L‖, L⊥) fall on one curve when

plotted against L
1/λ
‖ /L⊥. Since large systems take very long time to equilibrate

at Tc, we do not have very precise data. Nevertheless, it is sufficient to distinguish

among alternative predicted scaling forms. First, the fourth-order cumulant at Tc =

4.860 is presented in Fig. 6. The prediction of Leung with or without u term has

the same scaling variable L
3/8
‖ /L⊥, while that of Binder and Wang is L

1/4
‖ /L⊥.

Isotropic scaling variable is L‖/L⊥. The three sets of curves correspond to these

three cases. Leung’s scaling appears better. This plot also shows that for S ≈ 0.14

we get a maximum value in g. This value corresponds to geometries where two

correlation lengths have the same ratio to the respective linear dimensions. For the

assumption of L‖/L⊥ as scaling variable, the data clearly do not scale well. This

appears to be a strong evidence in favor of anisotropic scaling. The same type of

plots assuming Tc = 4.872 does not give good scaling for all the choices of the

scaling variables. This seems to imply that Tc = 4.860 is a better estimate for the

critical temperature.

In Fig. 7 we show the scaling of magnetization at Tc = 4.860. Figure 7(a) uses

Binder and Wang scaling, (b) Leung’s scaling with u correction, and (c) without

u correction. Case (a) has large deviations; case (b) generally scales better except

at large L
3/8
‖ /L⊥. The scaling assuming Tc = 4.872 (not shown) looks worse for
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Fig. 8. The finite-size scaling of susceptibility at Tc = 4.86 for (a) Binder and Wang scaling;
(b) Leung scaling with u; (c) Leung scaling without u. Same symbol means the same transverse
system size L⊥ = 60, 40, 30, 20 and 10, from left to right.
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Fig. 8. (Continued)

case (a), and better for (c) at large scaling variable. Case (b) scales the best in

both temperatures. This shows that the relative quality of scaling is not sensitive

to the choice of Tc within its extrapolated range. The scaling function m̃(x) has

the following asymptotic behaviors at large L‖ or L⊥ limit due to the sum of

magnetization of totally independent regions. For small x, m ∝ 1/L⊥, this implies

m̃(x) ∼ x for all three cases. for large x, we have m ∝ 1/L
1/2
‖ , thus m(x) ∼ xy ,

y = −1/2, −1/6, 0, respectively for case (a), (b), and (c). Unfortunately, all three

plots are more or less consistent with this asymptotic slopes and thus alone it cannot

give a sensitive test.

Figure 8 show the corresponding scaling plots for the susceptibility at the same

choice of Tc. The trend is the same as in m. Although all three cases satisfy

Eqs. (15)–(17) for large L
1/λ
‖ /L⊥, case (b) is most consistent with the notion of

a scaling function χ̃(x).

Finally, in Fig. 9, we do a separate test of the predictions of Eqs. (15)–(17) for

the very long geometry (L‖ → ∞, L⊥ finite). The critical temperature is taken

to be Tc ≈ 4.860. The L‖ → ∞ limit is obtained by systems (1280, 20), (960, 30),

(320, 40) together with smaller systems and extrapolated to large L‖, assuming a

1/L‖ convergence or similar power. The least-square fit to the data in Fig. 9 gives

exponent 2.27 ± 0.07, in good agreement with Leung’s scaling with u taken into

account. However, if Tc = 4.872 is used, the exponent reduces to 2.04± 0.09. Thus

the distinction with or without u-correction is not clear cut. On the other hand,

Binder and Wang’s scaling requires the exponent to be 3. This seems unlikely to
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Fig. 9. The susceptibility χ at Tc in the limit L‖ → ∞ as a function of the perpendicular
dimension L⊥ in logarithmic scales. The critical temperature used is Tc = 4.860 for the circles
and Tc = 4.872 for open squares.
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Fig. 10. The location of the susceptibility peak versus L−1/ν for ν = 0.67 and 1. The insert
shows the intersections of the fourth order cumulant g between different L.
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Fig. 11. Scaling of the magnetization for the cubic systems. The linear sizes are 20 (solid circle),
30 (square), 40 (�), 50 (4), 60 (N).
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Fig. 12. Scaling of the fourth order cumulants for the cubic systems. The system sizes are the
same as in the previous figure.
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Fig. 13. Scaling of the susceptibility for the cubic systems. The system sizes are the same as in
the previous figure.
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Fig. 14. Isotropic scaling for magnetization at Tc, using the same set of original data as in Fig. 7.
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be satisfied, due to the lack of data collapse in Fig. 8(a). This demonstrates that to

pass a consistency check at Tc requires both a good data collapse and the correct

asymptotic behaviors.

5. Isotropic Scaling

There have been arguments14 that DDS under infinitely large driving field could

follow the normal isotropic finite-size scaling with one single correlation length

exponent, although no specific prediction of scaling exponents are given. For com-

pleteness, we test it by analyzing cubic systems with L = 20, 30, 40, 50, and 60,

assuming the usual finite-size scaling:

χ(T ) = Lγ/νχ̃(tL1/ν), (19)

m(T ) = L−β/νm̃(tL1/ν), (20)

g(T ) = g̃(tL1/ν). (21)

A second scaling variable L‖/L⊥, equal to one in our data, is not explicitly written.

In Fig. 10, we plot the location Tpeak of the susceptibility peak versus L−1/ν with

two choices of ν. Values of ν outside this range result in unacceptable, nonlinear

behavior. This plot therefore gives us an idea of the bounds of Tc. Peak extrapolation

depends on the assumption on ν, varying from 4.86 to 4.90 for ν = 0.67 to 1. The

curve is not quite linear for any choice of ν; this is expected if the true behavior is

given by Eq. (18). The insert shows the intersections of the fourth-order cumulant.

The intersections shift towards higher values from 4.83 to 4.86 as L increases. If we

trust the larger system sizes, the estimate of Tc would be 4.86. This is the value

barely in agreement with the extrapolation.

Having determined Tc, the best off-Tc scaling is seen in m, achieved by choosing

Tc = 4.863, 1/ν = 1.53, and β/ν = 0.638 (see Fig. 11). However, this set of

parameters is not the best choice for g. Figure 12 shows that with the same Tc
and ν as for m. Due to the fact that g curves are not intersecting at a unique T ,

systematic deviations are observed no matter what values of Tc and ν are used.

Next, we determine γ/ν = 1.81 from the susceptibility peak height versus system

size. Relatively large deviation also occurs for the off-Tc susceptibility data (Fig. 13).

Even though the data more or less scale in tL1/ν with a suitable set of exponents,

we see systematic deviations and slight inconsistency among different quantities.

The quality of data collapsing is inferior to that of the anisotropic scaling except

perhaps form. Since the critical temperature estimated from isotropic scaling agrees

with that of anisotropic scaling, the same data obtained for the purpose of testing

anisotropic scaling at Tc can also be used to test isotropic scaling. The results do

not support the latter. We have already seen that the fourth order cumulant g does

not scale (Fig. 6, a = 1). In Fig. 14 we show mL
β/ν
⊥ versus L‖/L⊥ at Tc. If the

system is isotropic, it should scale. But clearly, we see large systematic deviations.
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Finally, in the quasi-one-dimensional limit, the equation analogous to Eqs. (15)–

(17) is χ ∝ L
γ/ν
⊥ = L1.8

⊥ , but the actual exponent from the data is much larger

(Fig. 9).

The reason for the above good fits off Tc and the poor fits at Tc is a consequence

of our fitting the former first. This warrants the crossing at L‖/L⊥ = 1 in Fig. 14.

The fact that there is no collapse elsewhere along the L‖/L⊥ axis is a clear indication

of the failure of the assumption of isotropic scaling. Thus, the moral of this exercise

is that an apparently good fit from a partial test may be dangerously misleading in

the case of scaling with two variables.

6. Conclusion

We have performed a large-scale simulation for the standard driven diffusive model.

We test the theoretical predictions of finite-size scaling against numerical data, as

carefully, critically and completely as we can. The task is to decide which of the var-

ious competing theories is the most consistent with the data. There have been four

theoretical proposals, characterized by different sets of finite-size scaling exponents.

Two kinds of scaling tests are performed: at and off the critical temperature. Both

are necessary because there are two scaling variables involved. The two versions

due to Leung, with and without the dangerous irrelevant variable correction, fit the

off-Tc data almost equally well if Tc is adjusted accordingly. As to the data taken

at Tc, while they do not have enough quality for us to perform a stringent test,

the scaling behavior and susceptibility peak heights clearly favor the one including

the dangerous irrelevant variable. Such tests also indicate that Binder and Wang

scaling may not be valid. Regarding the recent proposal based on isotropic scaling,

we find that the data can be cast in scaling forms with some effective exponents,

but its theoretical basis is more conjectural, and the quality of scaling is poorer

especially at Tc. Thus, taking into account all aspects of scaling, we conclude that

the field-theoretic prediction based on spatial anisotropies with dangerous irrelevant

variable corrections is the most satisfactory.
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