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Drifting spatial structures in a system with oppositely driven species
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A system consisting of two conservative, oppositely driven species of particles with excluded volume
interactionalone is studied on a torus. The system undergoes a phase transition between homogeneous and
inhomogeneous phases, as the particle densities are varied. Focusing on the inhomogeneous phase with gen-
erally unequal numbers of the two species, the spatial structure is found to drift counterintuitively against the
majority species at a constant velocity that depends on the external field, system size, and particle densities.
Such dependences are derived from a coarse-grained continuum theory, and a microscopic mechanism for the
drift is explained. With virtually no tuning parameter, various theoretical predictions, notably a field-system-
size scaling, agree extremely well with the simulations.@S1063-651X~97!09707-9#

PACS number~s!: 64.60.Cn, 05.70.Fh, 66.30.Hs, 82.20.Mj
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I. INTRODUCTION

In the recent decade, there was considerable interest in
statistical mechanics of a variety of systems in stationary,
nonequilibrium, states. Notable examples include fast io
conductors, surface growth, electromigration, flux creep
superconductors, propagation of defects and cracks, ele
phoresis, and granular as well as traffic flow. Apart fro
practical applications, the interest lies in the need to estab
a sound foundation for nonequilibrium statistical mechan
on par with the Boltzmann-Gibbs formulation for systems
equilibrium. To pursue these goals, many authors have
posed simple models, just as Lenz and Ising did@1#, in order
to understand the phenomena of phase transitions of a m
net in thermal equilibrium. Along these lines, Katz, Lebo
itz, and Spohn@2# introduced the simpledriven Ising lattice
gas, as an ‘‘entry’’ into the physics of nonequilibrium stea
states. Since then, this field has steadily grown, so that t
now exists many variations and generalizations of the pr
model @3#.

One of the most natural generalizations are systems w
second species of particles. The simplest of these is a m
with equal numbers of oppositely ‘‘charged’’ particles
driven by a uniform external ‘‘electric’’ field and diffusing
on a periodic, square lattice@4#. With no interparticle inter-
actions, except the excluded volume constraint, this sys
exhibits a phase transition, for critical values of the parti
density and external field, from a homogeneous disorde
state with a sizable current to an inhomogeneous state w
minute current. Particles of the opposite charge impede e
other and ‘‘lock up’’ into a dense region. By symmetry, th
average location of this region is timeindependent. Since its
inception, a number of its properties are reasonably well
derstood@5–8#, while a variety of related ones have be
proposed@9–11#. However, none of these studies focused
a system withunequalnumbers of the two species. Assum
ing that a locked-up state still exists, one should not exp
the dense region to remain stationary. In particular, we
expect a larger number of the majority species to lie wit
this region, and so, naturally expect the block toadvance
561063-651X/97/56~1!/308~8!/$10.00
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with the majority. In this paper, we study such inhomog
neous states with both simulation and analytic techniqu
Perhaps the most surprising of the results is that, in the
dered phase, the spatial structure, as a whole, drifts i
directionoppositeto the intuitive picture above.

The remainder of this paper is organized as follows.
Sec. II, we provide specifications of this model and so
details of the Monte Carlo runs. We present the simulat
results of the counterintuitive motion of inhomogeneo
states and suggest its microscopic mechanism in Sec.
Section IV is devoted to the continuum mean-field approa
which was relatively successful in describing the char
neutral model@4,6,7# and will be reanalyzed for the mor
general case here. These theoretical predictions are
compared to the simulation data in Sec. V. Particular att
tion will be paid to the scaling of the drive with the syste
size, and the dependence of the drift velocity on control
rameters. We end with some concluding remarks in Sec.

II. A MODEL FOR DIFFUSION OF TWO,
OPPOSITELY BIASED, SPECIES

Generalizing the work of Ising, Potts@12# and Blume,
Emery, and Griffiths@13# introduced models which consiste
of only three or more states per site in order to descr
various systems such as magnets with spin one or higher
ternary mixtures. Along similar lines, the natural generaliz
tion of the driven Ising lattice gas@2# would be models of
several species of particles, driven far from equilibrium
some ‘‘external’’ field. Clearly, there are many physical sy
tems for which such models may be applicable. Here we w
focus on the simplest one@4#.

On a square lattice withLx3Ly sites, we placeN6 par-
ticles with ‘‘charge’’61. At each site, there will be at mos
one particle, regardless of its charge. Thus a configuratio
our model is completely specified by the set of occupat
numbers$n6(x,y)%, wheren6(x,y)51 or 0, if there is a
6 particle at site (x,y) or not. Apart from this excluded
volume constraint, there is no interaction between the p
ticles. However, there is an external ‘‘electric’’ fieldE, cho-
308 © 1997 The American Physical Society
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56 309DRIFTING SPATIAL STRUCTURES IN A SYSTEM . . .
sen to point in the1y direction, so that a1(2) particle is
biased against moving in the2(1)y direction. Specifically,
the system evolves by random updating. In each trial, a
of nearest neighbors is randomly chosen. If it is a partic
hole pair, then the particle hops into the hole with a pro
ability min$1,e6Eŷ•â% for the6 species, whereâ denotes the
direction of hopping.Lx3Ly such trials constitute one tim
step ~or one sweep!. Finally, we impose periodic boundar
conditions, so that our lattice is in fact a torus. For la
convenience, let us define the terms ‘‘overall mass dens
and ‘‘overall charge density,’’ given, respectively, by

m[
N11N2

LxLy
and q[

N12N2

LxLy
. ~1!

Clearly, forE50, there is in fact no distinction betwee
the two species. The system is purely diffusive and unin
esting. On the other hand, forE.0, particles of the opposite
charge impede each other. This mutual blocking is so se
that the system displays drastically different characteristic
the particle densities are high enough. In all previous stud
@4–6# of this model,q is restricted to zero for simplicity, so
that there are only two control parameters (E,m) besides the
system size. There, for fixedE, say, the steady state of th
system is disordered and homogeneous, providedm is small
enough. By symmetry, the two opposing particle currents
the same, on the average. Thus the~average! hole current
C is zero, while the~average! charge currentJ is nontrivial.
As m increases,J increases sublinearly, as a result of t
excluded volume constraint as well as the mutual blocki
Oncem rises beyond a critical valuemc(E), a phase transi-
tion occurs so that the system is ordered into an inhomo
neous state. In this state, three regions can be roughly i
tified: one particle-poor and two particle-rich zones, one
each species. As might be expected, these regions spa
transversedimension of the lattice (Lx), with each particle-
rich zone impeding the ‘‘forward motion’’ of the other spe
cies. For systems withO(1) aspect ratios, these zones a
purely transverse to the drive, i.e., the densities arehomoge-
neousin x. The current drops to vanishing values. IfE is
sufficiently large, this transition is extremely sharp and d
matic @4#. With larger aspect ratios, the system often loc
up into somewhat different states, with zones spanning b
x andy, i.e., wrapping around the torus with nontrivial wind
ing numbers@5#. The current still suffers a drop, though n
to vanishingly small amounts. In either case, once lock
occurs, these zones are stationary on the average,
C50 always.

In this paper, we will study systems withunequalnum-
bers of the two species. WithqÞ0, many of the previous
properties will be different, although we still expect the pre
ence of a phase transition. For example, in the homogen
state,C will not vanish, and propagating fluctuations a
possible. Deferring a comprehensive study of this model
later publication@14#, we will focus here only on theinho-
mogeneous state, in which the zones are expected to drift. A
we will demonstrate and explain, the system displays a co
terintuitive feature, i.e., the spatial structures drift in the
rection favored by theminority species. For example, th
inhomogeneities will drift in the negativey direction if q is
positive.
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III. DRIFTING STEADY-STATE STRUCTURES
FROM SIMULATIONS

Since our purpose here is to study the interesting prop
ties associated withunequalnumbers of the two species, w
carry out simulations with fixed particle densit
( r̄ 1[N1 /LxLy) for the1 species and varying density fo
the2 species (r̄ 2[N2 /LxLy, r̄ 1), corresponding to

q5 r̄ 12 r̄ 2.0.

The behavior for the case ofq,0 may be deduced simply b

symmetry. Specifically, we chooser̄ 15 1
4, Lx510, 20, and

40,Ly540, 160, and 320, andE ranging from about 0.1 to 1
These parameters are chosen in order to probe theq.0 re-
gion close to theq50 inhomogeneousstates near the trans
tion mentioned above, for we expect the properties to
more pronounced there. In contrast, the particles can ha
move deep in the locked-up phase at higher densities. Si
lations for differentLx’s show that the effect ofLx is negli-
gible, as found for the symmetric,q50 case@4#. Thus, un-
less Lx@Ly @5#, which we will not consider here, we ar
dealing with a system in which only one of the dimensio
plays an essential role.

Starting from the inhomogeneous state withr̄ 25 r̄ 1 , we
find a phase transition into a homogeneous state as we gr
ally decreaser̄ 2 with r̄ 1 held fixed. On the (q,m) plane,
the phase boundary between the homogeneous and inh
geneous states may be located this way, which is symme
about them axis. However, a detailed discussion of th
phase diagram is beyond the scope of this paper.

Focusing on the properties of theq.0 inhomogeneous
states, we find that the locked-up region of the two spec
drifts backwardswith respect to the driving direction for th
majority ~1! species at a definite velocityv that increases
with q but decreases withE, as shown in Fig. 1. Figure 2
shows a typical inhomogeneous configuration in the ste
state forq.0. The steady-state ensemble averages of
local density profiles for the two species,r1(y,t) and
r2(y,t), are measured. Due to the drift, they are functions

FIG. 1. The position of the center of massycm vs time for the
inhomogeneous state. The steady, backward drift velocity decre

with increasing average density of the minority phase.r̄ 150.25
andE50.1976, except where otherwise stated.
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310 56K.-T. LEUNG AND R. K. P. ZIA
u[y2vt alone. Figure 3 displays the steady-state den
profilesr6(u) for various values ofq.0.

To understand the microscopic mechanism for this ba
ward motion, it is instructive to consider the role of hol
inside the two particle-rich zones. The probability for a ho
to diffuse against the drive into these zones from the ou
zone boundaries is suppressed byE via e2E. Thus, provided

FIG. 2. A typical 403160 configuration in steady state showin
the blockage between the two species. The open~filled! squares
represent the upward~downward!, or 1 ~2! drifting species. Note
that there are more1 particles escaping through the blockage

cause the structure to driftdownwards. Here r̄ 15
1
4, r̄ 250.1, and

E50.1976.

FIG. 3. Steady-state density profiles of a 203160 system for

different r̄ 2 , at fixed r̄ 15
1
4 andE50.1976.r1(u) is on the left,

r2(u) is on the right, andu5y2vt.
ty

-

r

E is not too large, there are finite densities of holes inside
block. Forq50, these densities are on the average the sa
in the1 and2 zone. Forq.0, there are more holes in th
2 zone because it is thinner~its thickness given roughly by
r̄ 2Ly). With holes available on the inner (12) zone
boundary, a particle may escape from the block to
particle-poor region through the zone of theoppositespecies.
Driven alongE, then, it eventually returns to the outer ed
of its own zone due to periodic boundary conditions. Whe
particle leaves the inner zone boundary, a hole is left beh
which may drift in either direction towards an outer zo
boundary, returning to the hole-rich region. Forq50, on the
average, the number of holes impinging on an outer z
boundary equals the number of incoming particles. Th
apart from a migration of particles from the inner to the ou
zone edges, the cluster remains stationary. Forq.0, how-
ever, it is relatively easier for1 particles to migrate. This
results in more particles than holes impinging on the oute1
zone boundary, and the opposite for the2 zone. It is this
imbalance that causes the whole cluster to drift backwa
Of course it is clear from our argument thatv must vanish if
E5`. In order to see how this arises theoretically and
explore theE and q dependence ofv, we now turn our
attention to a continuum description.

IV. CONTINUUM MEAN-FIELD DESCRIPTION

Following previous studies of this model@4–8#, we rely
on a mean-field-type continuum theory to understand
macroscopic properties here. The equations of motion for
densities, first proposed in Ref.@4#, need no modification
and, for completeness, are summarized below~Sec. IV A!.
However, the overall constraint on the charge density will
different, leading to qualitatively new behavior such as dr
ing inhomogeneous solutions~Sec. IV B!.

A. Equations of motion

To describe the long-wavelength, low-frequency behav
of our model, we make use of the continuum approach
which discrete variables of both the lattice and occupat
numbers,n6(x,y), are replaced by continuous ones for t
densities and space-time:r6(r ,t). For r , we will continue to
write (x,y), which should not lead to any confusion, and
xP@0,Lx) , etc. The evolution equations of these densit
may be ‘‘derived’’ from the Master equation by taking th
continuum limits of the ‘‘mean-field’’ approximation in
which joint probabilities are factorized@10#, or they may
simply be postulated through considerations of symmetr
In the former approach, the parameters in the continu
equation can be related to the microscopic rates. Since
will not be concerned with the absolute time scale, one
rameter may be absorbed into the definition oft. In other
words, we will set the diffusion constant, for theundriven
case, to be unity. Only one parameter remains, associ
with the driving field. If the naive continuum limit approac
is taken, then it is

E[2 tanh~E/2!. ~2!

With these considerations, we study the following equ
tions of motion, written in the form of continuity equation
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]r6

]t
5¹•@f¹r62r6¹f7r6fEŷ#, ~3!

wheref[12r12r2 is the density of holes, andŷ denotes
a unit vector along they direction. Notice that the first two
terms in these equations describe free diffusion of two d
tinguishable species of particles. The last term correspo
to the Ohmic currents, withr6f being the usual density
dependent conductivity. It is also natural to consider the s
and difference of these equations. Definingc[r12r2 to
be the charge density, they take the form

]f

]t
5¹•@¹f1fcEŷ#, ~4!

]c

]t
5¹•@f¹c2c¹f2f~12f!Eŷ#. ~5!

These are precisely the equations in Ref.@4#. To apply to
our problem, we only need to impose

1

LxLy
E cdxdy5q.0 ~6!

instead ofq50. The other constraint,

1

LxLy
E fdxdy512m, ~7!

as well as the periodic boundary conditions for the densit
of course, remain unchanged.

We may simplify these equations further, by absorb
E into the scale ofy. There is no need to write new equ
tions, since we can simply dropE from Eqs.~4! and~5! while
keeping in mind thatLy must be replaced byELy . That the
drive provides an intrinsic length scale implies that the or
nary thermodynamic limit (Ly→`) must be taken along
with E→0, while holding the productELy fixed. However,
this simplification may be too confusing and will not be us
here. Due to the central role played byELy , let us define

«[ELy ~8!

for future convenience. Eqs.~4!–~7!, completely specify the
dynamics of our model.

B. Inhomogeneous steady states

Next we study steady-state solutions to these equat
which are spatiallyinhomogeneous. Since we expect t
densities to be time dependent, let us seek solutions wi
constant velocity,v, namely,f(x,y2vt) and c(x,y2vt).
Simplifying further, we note that all the states we observ
in simulations are homogeneous inx, so that we will restrict
ourselves to functions of the form

f~u! and c~u!, ~9!

whereu[y2vt. Inserting these into Eqs.~4! and ~5!, we
have

2v]f5]@]f1fcE#,

2v]c5]@f]c2c]f2f~12f!E#,
-
ds

m

s,

g

-

ns

a

d

where] stands ford/du. Integrating once, we obtain

]f1Efc`vf52C,
~10!

f]c2c]f2Ef~12f!`vc52J.

The constantsC andJ may be interpreted as the two stead
state currents for the holes and the charges, respectivel
themoving frame. In the ‘‘lab frame,’’ the currents should b
inhomogeneous, due to the anticipated drift of the block.
it stands, Eqs. ~10! contain three unknown constan
(v,C,J), which will have to be fixed by three conditions, i.e
solutions be of periodLy , Eqs.~6! and ~7!. However, ana-
lytically, (v,C,J) appear to play more the role of contro
parameters, while (Ly ,q,m) will emerge at the end. In this
way, the analytic approach is somewhat opposite to tha
simulations, where the latter~former! are the control~depen-
dent! variables.

To find the solutions, we follow previous studies and i
troduce variables which simplify the structure of these eq
tions:

x[1/f and c̃[cx. ~11!

Note that, unlike the physical densities which are bound
xP@1,̀ # and uc̃ u<x21P@0,̀ #. Now Eq. ~10! becomes

]x5Ec̃1vx1Cx2, ~12!

]c̃5E~x21!2Jx22vc̃x. ~13!

Eliminating c̃ , we again arrive at an ordinary differentia
equation for only one variable:

x92~x21!1 Ĵx25 v̂2x21 v̂Ĉx31F v̂xS 12
x

2D1Ĉx2G8,
~14!

whereĴ[J/E, etc. Also, the prime denotesd/duE, showing
again the central role played byE in setting the length scale
For clarity, on the right-hand side of this equation we ha
placed all the extra terms due toqÞ0.

Unlike in the neutral system, the interpretation of Eq.~14!
as a particle ‘‘moving’’ in a potential has to be modifie
since there are ‘‘velocity’’ ~i.e., x8) dependent ‘‘force’’
terms. In general, periodic ‘‘motion’’ would be impossible
Of course, here, we must insist on the existence of s
solutions. The consequence is a constraint on the last ter
Eq. ~14!. In particular, multiplying this equation byx8 and
integrating over the full period, we are led t
*(x8)2@ v̂(12x)12Ĉx#du50. Since we are concerne
with inhomogeneousstates, we can expect (x8)2 to be posi-
tive, except for isolated points. Thus it is possible to interp
(x8)2du/*(x8)2du as a new measure on the intervalu
P@0,Ly#, and define a type of average

^•••&[
*•••~x8!2du

*~x8!2du
. ~15!
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312 56K.-T. LEUNG AND R. K. P. ZIA
Using this notation, we may write a simple relationship b
tween the drift velocity and the hole current in the movi
frame

v^x21&52C^x&. ~16!

Since typicallyx.1, we conclude that the drift is in th
same direction as the hole current. A similar relationship
be found by integrating Eq.~12!, after multiplication byf.
The result is

2qE5v1Cx̄ , ~17!

where the bar is the normal average:

•••[
*•••du

Ly
. ~18!

EliminatingC between Eqs.~16! and ~17!, we see that

v
qE52S 11

^x21& x̄

2^x&
D 21

~19!

is negative definite. So, for example, if the majority spec
is positive~i.e., more particles are driven ‘‘upwards’’!, then
the drift of a block state will be ‘‘downwards.’’ This behav
ior is quite surprising, since we expect the particle-rich zo
to contain more particles of the majority species, so that
entire block should ‘‘advance’’ with the majority. Instea
the block drifts in theoppositedirection. On closer exami
nation, we find that, since the negative region~in this ex-
ample forq.0) is thinner, it is easier for positive particle
to penetrate the blockage. Then, due to the periodic boun
conditions, these particles pile up ‘‘behind’’ the positive r
gion. As a result, the entire block appears to drift ‘‘bac
wards.’’ This picture simply provides another perspective
the intutive arguements in Sec. III. Here we have proved
the structure ‘‘retrogrades.’’

Clearly, this analysis also leads toC/q being negative,
i.e., the holes moving contrary to the majority species, wh
is hardly surprising. Before closing this subsection,
should comment on a number of other constraints on
three unknowns (v,C,J), independent of the specific value
of (Ly ,q,m).

In order to have any periodic solution at all, there must
some form of restoring ‘‘force’’ in Eq.~14!. Examining the
‘‘potential’’ part of this ‘‘force,’’ i.e., (x21)
2( Ĵ2 v̂2)x21 v̂Ĉx3, we see that there would be no ‘‘well’
to trap the particle, unless

Ĵ. v̂2. ~20!

On the other hand, at leastJ2 v̂2, 1
4 is needed, even in the

neutral case. The cubic term further exacerbates the situa
The constraint that a ‘‘well’’ exists turns out to be

v̂Ĉ@4218~ Ĵ2 v̂2!127v̂Ĉ#,~ Ĵ2 v̂2!2@124~ Ĵ2 v̂2!#.
~21!

More information can be gleaned from regarding E
~12! and ~13! as flows in a ‘‘phase’’ plane. If a periodic
solution exists, it would correspond to a closed loop and,
-

n

s

e
e

ry

n
at

h

e

e

n.

.

y

continuity, there would be, generically, at least one foc
~fixed point with spiral orbits! lying within. In order to have
a physicalsolution, this fixed point must lie in the physica
region:xP@1,̀ # anduc̃ u<x21. Since any fixed point mus
lie on the curvec̃52( v̂x1Ĉx2), we obtain

~11 v̂ !2.24Ĉ. ~22!

Recalling that bothv̂ andĈ are negative, this confines bot
to be small quantities.

In our case, it is easy to check that there are three fi
points, one of which always lies outside the physical regi
Of the remaining two, one is a focus and the other a sad
Based on the characteristics of the neutral system, we ex
our solution curve to run in between these two fixed poin
Unlike the neutral case, however, the flow is not Hamilton
in general and, in particular, the focus is not necessaril
center~i.e., eigenvalues corresponding to the flow lineariz
about the fixed pointnot necessarily purely imaginary!.
Thus, there is no guarantee that we can find a periodic s
tion. One possible scenario is that a unique limit cycle ex
for anygiven (v,C,J), provided they respect the inequalitie
~20! and ~22!. Another is that (v,C,J) satisfy a specific re-
lation which allows for the existence of periodic solutions.
natural constraint to impose is that this fixed point be a c
ter, with its associated eigenvalues beingpure imaginary.
This condition is equivalent to setting the coefficient of t
lastx8 term in Eq.~14! to zero at that fixed point. This give
us an additional formula for the velocity,

v5
2C

12
1

x*

, ~23!

wherex* denotes the fixed-point value ofx at the center.
Using Eq.~10!, it is easy to see that the value of the densit
at any fixed point satisfies a cubic equation with parame
(v,C,J). Eliminatingx* by Eq.~23!, we then obtain a quin-
tic algebraic equation forv alone:

8Ĉm
3 132Ĉm

2 v̂142Ĉmv̂
212ĴĈmv̂

2118v̂313Ĵv̂32Ĉmv̂
4

22v̂550, ~24!

whereCm[2v2C is the mass current in the moving fram
However, though this scenario guarantees periodic solut
at the lowest order in the neighborhood of the fixed point,
are unable to prove that, beyond the linear level, this con
tion is either necessary or sufficient for the existence of
riodic solutions. There is, nevertheless, some numerical
dence that such solutions are available, as we will show
Sec. V. Equation~24! prescribes a surfacev(C,J) in the
C-J plane. Subject to numerical uncertainties, we find t
the parameters (v,C,J) generated by simulations indee
span a surface consistent with this scenario. Given the a
tional good agreement of the density profiles from numeri
solutions and simulations in Sec. V, this latter scenario
pears to be the more probable one.
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56 313DRIFTING SPATIAL STRUCTURES IN A SYSTEM . . .
V. FIELD-SIZE SCALING
AND COMPARISONS WITH SIMULATIONS

To determine how closely the continuum model cor
sponds to the discrete model, we subject our theoretical
dictions to the tests of simulations. The first is concern
with the scaling behavior in the system size and fi
strength. Choosing the alternative set of control parame
(Ly ,q,m) in favor of (v,C,J), Eqs.~12! and~13! imply that
the solutions for the densities obey a simple scaling form~cf.
@4,6,10#!:

x~u,E,Ly ,q,m!5F̃x~Eu,ELy ,q,m!5Fx~u/Ly ,ELy ,q,m!,

~25!

whereF̃x andFx are appropriate scaling functions. Simil
scaling form holds forc, of course. Monte Carlo simula
tions, with fixedr̄ 1 and varyingr̄ 2 , using a wide range o
Ly andE with fixed «5ELy show excellent agreement. A
example is shown in Fig. 4. One immediate implication
this result is that the thermodynamic limit has to be tak
with care, as phase transitions survive only in the dou
limits E→0 andLy→` with « held fixed.

A more stringent test is to check to what extent the d
actually satisfy the differential equations~12! and ~13!. In
the continuum description, it is more natural to use the c
rents in the moving frame because they are the integra
constants. In simulations, the~spatial and temporal! average
currents in the lab frame are more accessible. They are
lated. For example, the hole current in the lab frame is gi
by C1vf̄, which is greater thanC, in magnitude. Withno
tuning parameter, Eq. ~12! for the hole density fits the dat
very well @see Fig. 5~a!#, but there are appreciable discre
ancies in Eq.~13! for the charge density in the particle-ric
region @see the dashed line in Fig. 5~b!#. Similar discrepan-
cies were also observed in a closely related model consis
of two species driven along orthogonal directions@10#. In
that model, the asymmetry between the (12) and (21)
nearest-neighbor correlations along the field direction w
shown to give rise to additional cubic terms of the for
6lr1r2fEŷ in the currents for the6 species, which ente

FIG. 4. Predicted field-size scaling is confirmed by simulatio

for different E and Ly with fixed ELy . Lx520, r̄ 15
1
4, and

r̄ 250.16.
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inside the brackets on the right-hand side of Eq.~3!. Due to
the opposite signs, they cancel out in Eq.~4! for the hole~or
mass! density but contribute an extra term to Eq.~5! for the
charge density. These terms represent the lowest order
rections to our mean-field equations in Sec. IV. After suc
term 22lEr1r2x is added to the right-hand side of Eq
~13!, significant improvements are found, for a suitable p
portional constantl @the solid line in Fig. 5~b!#. Notice that
the value ofl may be estimated from the two-point densi
correlation functions@10#.

Further comparisons are concerned with the mean cur
and drift velocity. The mass current2C2vf̄ in the labora-
tory frame, finite forq.0, is simply given byfcE, which is
obtained by integrating the first of Eqs.~10!. Excellent agree-
ment with simulations is found, as shown in Fig. 6~a!. This
comparison does not involve thel correction terms. Other

s

FIG. 5. Typical tests of local properties of the continuum mod
against simulations for~a! the hole equation~12!, and~b! the charge
equation~13!, demonstrating the significance of the correction te

}lEr1r2x in the latter.Lx540,Ly5160,E50.1976,r̄ 15
1
4, and

r̄ 250.1.

FIG. 6. Comparison between theory and simulation for~a! the

mass current in the laboratory frame,2C2vf̄, and~b! the ~nega-
tive! drift velocity with and without the correction term, as a fun
tion of the average density of the minority species.Lx520,

Ly5160,E50.1976, andr̄ 15
1
4.
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predictions, such as Eqs.~19! and~23!, derived by using both
the hole and charge equations withoutl, do not agree as
well. Figure 6~b! exhibits increasing deviations asq in-
creases. The agreement, however, can again be signific
improved by including thel terms, with the same choice o
l'1.5 as in Fig. 5. WithlÞ0, Eq.~19! is slightly modified:

v
qE52S 11

2l1^x21&l x̄

2~12l!^x&l
D 21

, ~26!

where, similar to Eq.~15!,

^•••&l[
*•••~x8/xl!2du

*~x8/xl!2du
. ~27!

Also, Eq. ~23! becomes

v5
~22l!C

11
l21

x*

, ~28!

wherex* is approximated by the spatial maximumxmax in
Fig. 6, the error incurred is very small as both quantities
much greater than 1. Clearly, thel terms play an importan
role, so that a good understanding of their origin is desira
We have made some progress toward this goal, and m
sured several correlations as a confirmation. However, b
beyond both the aim and the scope of this paper, these re
will be deferred to another publication@14#.

The final convincing evidence for the quantitative agre
ment is a direct comparison of the density profiles. For s
plicity, we consider only the case ofl50. The fixed-point
condition mentioned near the end of Sec. IV picks ou
unique v for a given set of currents (J,C) via Eq. ~24!.
Equations~10! then contain no free parameter, and we c
obtain the profiles by numerical integration, using for i
stance the Runge-Kutta method@15#. A typical comparison
with the simulated profiles using the same set of parame
(q,m,Ly ,E) is presented in Fig. 7. The agreement for th
case of a rather smallq'0.09 is again excellent, even with
out l. We expect more deviations for largerq, where the

FIG. 7. Excellent agreement between theory and simulation

the density profiles.Ly5160,E50.1976, r̄ 150.272, r̄ 250.184,
andl50.
tly

e

e.
a-
g
lts
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rs

l terms can no longer be ignored. These comparisons
vide strong support to our claim that the continuum mod
which may be systematically refined if necessary, repres
a surprisingly accurate description of the simulated discr
model.

VI. CONCLUDING REMARKS

To summarize, we studied, using both Monte Carlo te
niques and the continuum mean-field method, a diffus
system of two species of particles, driven in opposite dir
tions by an external field. Withperiodicboundary conditions
imposed, this system settles into anonequilibriumstate with
a steady current. For simplicity, we restricted ourselves
noninteracting particles, apart from an excluded volume c
traint. Thus, as the particle densities increase, this sys
undergoes a phase transition, from a homogeneous d
dered phase with a high current to an inhomogeneous
with minute current. In the latter state, the two species
pede each other so much that they form a blockage of h
local-particle density. When the particle densities areun-
equal, this spatial structure displays a counterintuitive beh
ior. It drifts with a constant velocity, in a directionopposite
to that favored by the majority species. Remarkably, simu
tion results agree reasonably well with most aspects of
theory, especially the prediction ofELy scaling. On the
(q,m) plane, qualitative trends predicted by the linear stab
ity lines of the homogeneous solutions to the mean-fi
equations~12! and~13! are also consistent with simulation

On the other hand, there are clear signs of disagreem
mainly in connection with Eq.~13!. Since our theory is base
on mean-field assumptions, one avenue for improvemen
to take some correlations into account. The simplest ad
tion, involving cubic terms@10# in Eq. ~3! lead to significant
improvements. Encouraged by these findings, we are un
taking a comprehensive study, including a general phase
gram in the (q,m) plane, of the effects of such terms. In th
paper, we focused only on the drifting inhomogeneous st
Although we performed some analysis for thehomogeneous
state@14#, much remains to be investigated. For example
would be desirable to observe, in simulations, the drift
fluctuations from the uniform densities. Of course, as in
neutral case, we should expect long-range correlations@8#.

When restricted to one dimension~i.e., one column!, this
model is exactly soluable@16,17#, since the order of any
particular string of1’s and2 ’s is invariant, and no phase
transitions can occur. With open boundary conditions, it c
be mapped onto the Rubinstein-Duke model for elect
phoresis@18#, and more interesting phenomena can occ
Beyond the simple model studied here, there are many o
generalizations which may be relevant to a variety of phy
cal systems. We mention only a few here.

The existence of the inhomogeneous state depends
cially on the mutual blocking between the species. To fi
out the importance of this effect, we may introduce ‘‘charg
exchange’’ processes which take place at a fraction of
particle-hole exchange rate. As in the neutral case@11#, we
can expect to find the transition between the disordered
inhomogeneous states to be both continuous and discon
ous. It would be interesting to map out a complete ph
diagram in the (ELy ,m,q) space. Further, such a system c
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display interesting behavior even in one dimension@19#, es-
pecially with open boundaries@20#. In particular, it is closely
related to the model of ‘‘first and second class particle
~e.g., cars and trucks! moving on a ring, in which a first clas
particle is allowed to overtake a second class one with so
rate@21#. In that case, there are distinct phases, with prop
ties reminiscent of our inhomogeneous states. The qualita
vs quantitative similarities should be investigated.

Another generalization involves the two species be
driven in orthogonal directions. These models are motiva
by the phenomena of traffic flow in city blocks and display
considerable variety of phases@9,10#. However, we believe
that there are no studies withunequalnumbers of the two
species~though we are aware of a study with varying den
ties of athird species@22#!. As we showed in this paper, it i
likely that interesting behavior will be found if the speci
are not exactly balanced, which in view of the physical m
tivations should be the more generic cases to study.

In all the models mentioned so far, there isno interpar-
ticle interaction, except for the excluded volume constra
It is clearly important to ask what the effects of includin
such interactions are. In particular, even in the absenc
z

tt

ys

tt.

tt
’’

e
r-
ve

g
d

-

-

t.

of

external drives, there would be rich phase diagrams if in
actions were present@13,12#. Thus, it is natural to inquire
how the drive would modify these phase transitions. We
aware of only one study of a driven system with two inte
acting species@23#. Though the regime investigated was e
tremely limited, several interesting features were found.

Finally, we point out that, in physical systems such as f
ionic conductors, the two species may be of different mob
ties and different ‘‘charges.’’ These properties add two
mensions to the phase space, leading to seemingly end
horizons for future explorations.
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