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Tricritical Behavior in Rupture Induced by Disorder
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We discover a qualitatively new behavior for systems where the load transfer has limiting stress
amplification as in real fiber composites. We find that the disorder is a relevant field leading
to tricriticality, separating a first-order regime where rupture occurs without significant precursors
from a second-order regime where the macroscopic elastic coefficient exhibits power law behavior.
Our results are based on analytical analysis of fiber bundle models and numerical simulations of
a two-dimensional tensorial spring-block system in which stick-slip motion and fracture compete.
[S0031-9007(97)02698-7]
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There is growing evidence that rupture in random medidributed to all remaining fibers. This transfer might induce
can be viewed as a kind of critical phenomenon [1,2] as @econdary failures which in turn induce tertiary ruptures
result of the interplay between disorder and fracture meand so on. One is interested in the stress-strain character-
chanics, with proposed applications, in particular, to fibelistic as the applied force is increased, the properties of the
composites [3,4] and earthquakes [5]. Notwithstanding itsupture point and the precursory events prior to the com-
importance, we do not have a comprehensive understangiete breakdown. The solution of this problem is found by
ing of rupture phenomena but only a partial classificatiomoticing that the total bundle will not break under a Idad
[1,2,6]. From a theoretical point of view, rupture is con- if there aren fibers in the bundle, each of which can with-
trolled in principle by the infinite momertr?)|,... of the  standx, = F/n. x, andn are related, for largev, by
stress field and the difficulties emerge from the noncom#s = N[1 — P(x,)] leading toF(x,) = Nx,[1 — P(x,)].
mutation of the two limits(q — «, A — 0), whereA is  The numbek of fibers which have failed under the forge
the amount of disorder (see below for a precise definition)is thenk = N — n = NP(x,). Now, for a broad class of
In intuitive wording, the largest stress in the system is vendistribution P(x) extending down t®, the functionx[1 —
sensitive to the amount and type of disorder. Disorder is?(x)] presents a maximum & < x* < o, the solution
known to induce stress field distributions with fat tails [7]. of dx[1 — P(x)]/dx|.=~ = 0. As the behavior of"(x,)
Consider, for instance, a log-normal distribution with stan-close tax* is quadraticd®(x,) = F* — c¢(x* — x,)> where
dard deviatiomA and mearvy, then(c?)!/4 = gye2’4/2, ¢ is a constant, this implies that the ratie/dF of fiber fail-
which shows that the limi — 0 is singular for rupture ure diverges a$F* — F)~'/2, whereF* = x*[1 — P(x*)],

(g — ). This noncommutativity of limits is at the crux thus qualifying a critical mean-field behavior.

of some of the major outstanding problems in physics [8] However, if P(x) is such thatdx[1 — P(x)]/dx = 0
such as turbulence (viscosity 0; time— <) and quantum has no solution, the behavior will be completely different,
chaos g — 0; time— «). Here, we show that the amount with a sequence of a few fibers maybe breaking as the
of disorderA plays the role of a relevant field which makes load is applied followed by an abrupt global failure.
systems with limited stress amplification exhibit a tricriti- Correspondingly, the stress-strain characteristic exhibits a
cal transition as the disorder increases, from a Griffith-typaliscontinuity in its slope at the point of rupture. This
abrupt rupture (first-order) regime to a progressive damageualifies a first-order behavior. Notice that this is similar
(critical) regime. This is reminiscent of the critical behav-to the Ehrenfest’s classification of the order of phase
ior induced by quenched disorder in magnetic systems [9}ransitions, where the free energy is here replaced by the

We first document this behavior in a simple mean-fieldelastic energy.
model of rupture, known as the democratic fiber bundle Let us take, for instanceP(x) = 0 for 0 = x < x,
model [10]. It consists oV parallel fibers with identical P(x) = (x — x1)/A for x; = x = x; + A, andP(x) =
spring constants and identically independent random faili for x = x; + A, corresponding to the strength;
ure thresholdsy; distributed according to the cumulative uniformly distributed betweer, > 0 andx; + A. Then,
probability distributionP(X; < x) = P(x). Atotal force dx[1 — P(x)]/dx = (x; + A — 2x)/A, which has a root
F is applied to the system and is shared democraticallyn the intervalx; = x < x; + A if and only if A > x;.
among theV fibers. When the force on one fiber reachesin this case, we recover the previous mean-field critical
its threshold, the fiber ruptures and the stress is redidehavior. However, for weak disordex < x;, not a
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single fiber breaks down until the force reachés, at block model of surface fracture in which the stress can
which value the system ol fibers breaks suddenly. be released by spring breaksd block slips. We con-
This is an extreme illustration of a “first-order” behavior. sider the experimental situation where a balloon covered
The particular valueA = x;, F = Nx; thus plays the with paint or dry resin is progressively inflated [12]. An
role of a tricritical point in analogy with thermal phase industrial application is a metallic tank with carbon or
transitions [11]. This behavior holds for a large classkevlar fibers impregnated in a resin matrix wrapped up
of distributionsP(x): the condition thatix[1 — P(x)]/dx  around it which is slowly pressurized [3]. As a conse-
has no root is equivalent to the condition that the equatioguence, it elastically deforms, transferring tensile stress
dIn[1 — P(x)]/dx = —1/x has no solutions forany =  to the overlayer. Slipping (called fiber-metal delamina-
x < oo. This equation defines two domains: @)n[1 —  tion) and cracking can thus occur in the overlayer. We
P(x)]/dx < —1/xforallx = 0:this can occur, in particu- model this process by a 2D array of blocks which rep-
lar, if 1 — P(x) decays to zero faster tharix for largex, resents the overlayer on a coarse grained scale in con-
with the additional constraint that there exists a minimumtact with a surface with solid friction contact. The solid
strengthx; strictly positive. Notice that the distributions friction will limit stress amplification. Each block is
which extend down to zero are in this sense always in thénterconnected to its nearest neighbors via springs of
“large” disorder regime. (2¥ In[1 — P(x)]/dx > —1/x  unstretched lengthg and spring constant&. The po-
forall x = 0: this corresponds to distributions which decaysition of the blocks in ther and y directions are given
slower thanl/x. Take, for instance] — P(x) = (1 + by (ai + x;j,aj + y;j) wherel =i, j =L form a
x)~*. Then,dIn[1 — P(x)]/dx = —a/(1 + x) which  square lattice with lattice constants and wherex; ;,
remains strictly larger thar1/x if & < 1. vi,j fulfill x; ;,v; ; < a, so that Hooke’s law applies. In
Having established the existence of the tricritical be-[13] it was shown that thec component of the force
havior in this mean-field model, let us now turn ouron a blockto first orderin the displacements takes the

attention to a more realistic two-dimensional (2D) sprin|g—form
Fij = = K{(biv1j + bi—1j)xij = biv1jXi+1; = bi—1jxi—1; + s[(bij+1 + bij-1)xi;
= bijixij—1 — bijrixij+1] — asbiv1j — bi-1)}, (1)

and, by symmetryFiy,j follows by switchingx < y and | with 7. (2) The increasing tensile stress in turn gives
i — j. s=(a— ly)/a = 0is the strain of the network rise to stick-and-slip motion or/and cracking. A block is
without fluctuations X; ;,y;; = 0), and b;+; j+; = 1,0, assumed to stick until the total force applied on it exceeds
respectively, depending on whether a spring connects the threshold Fy, where after it slips to the zero-force
blocks(i,j) — (i = 1,j = 1) or not. Likewise the stress position, corresponding to local mechanical equilibrium

B in a spring is given by in the absence of friction. This thereby releases stresses
Biij—=1j) = K[(xij — xiv1; — sa)? on its neighbor blocks. A spring breaks irreversibly once
the stresB exceeds a thresholl. = «F [14].
+ 52 (vij = yiz1) 1 ) i i i
L i*lj : We define a time dependent apparent macroscopic

Initially x;; andy;; are chosgrj uniformly from th<=T iN- stress on the Systent,, (1), from the relations, p, (1) =
terval[—A, +A], thus A quantifies the amount of disor- £ (;)/¢(y), whereE(r) is the total elastic energy stored in
der which is on the initial displacements correspondingpe springs of the system at timgande(r) = a(r)/a(t =

to an effective initial disorder in the thresholds. Perl-o) is the macroscopic strain. We calculate an effective
odic boundary conditions are used in both thendy Young modulus, given by

directions. This corresponds to a torus topology, which is

an adequate approximation of a cylindrical tank, as both Yapp(t) = doapp(t)/de . (3)

are characterized by the absence of flexion. A spherical

topology has flexion, and we would thus need to enricht,,,(r) can be expressed &8c,p,(1)/do(1)](do/de),

the model by adding flexure deformation in the model, forwhereo is proportional to the first invariant (the trace) of
instance, by replacing the springs by beams. Howevethe real stress field in the systendo/de is the corre-
we do not expect this to modify our results as the dimensponding elastic modulus expected to exhibit a power law
sionality of the model does not influence qualitatively thebehavior if criticality is present, whilelo,p,(1)/do(t)
transition, as seen in the mean-field fiber bundle model. goes to a constant. Therefore, the measuremerifpfz)

The coupling of the overlayer to the substrate has twa@ives us direct access, if present, to the critical behavior of
effects when the substrate expands: (1) Tensile stress flse Young modulus of the system. As the strafp) is in-
transferred to the overlayer. This is taken into account bgreased, block slips and spring failures occur up to a point
imposing an increase in the average distamdeetween where the system is completely ruptured and the stress
the blocks so as to reflect the inflation of the balloon. Asnecessary to impose a constant small strain rate starts to
a definition of the timey, we let a(r) increase linearly decrease from a maximum. At this point, there is at least

2141



VOLUME 78, NUMBER 11 PHYSICAL REVIEW LETTERS 17 MRcH 1997

one large crack spanning the whole system. If global rupfact that the disorder is so relevant as to create the analog
ture occurs abruptly (first-order casey,,,(r) must ex-  of atricritical behavior can be tracked back to the existence
hibit a sharp maximum ant,,, (r) remains finite. If, on of solid friction on the blocks which ensures that the elastic
the other hand, the rupture is criticat,,, (r) will exhibit  forces in the springs are carried over a bounded distance
a progressive rounding with a smooth maximum, while(equal to the size of a slipping “avalanche”) during the
Yapp(?) vVanishes as a power laW,,, < [(e. — €)/e.]”  stress transfer induced by block motions.
on the approach to rupture &t. When « is large, the system responds initially to an
In Fig. 1 are shown the stress-strain curves from on@xpansion by the release of stress uniquely by block slips.
single realization for each different system size, wite=  The block slips give rise to a stress rearrangement, and a
0.75A., where A, is the maximal amplitude such that spatial coarsening phenomenon of the stress fBetdkes
att=0 B j)—(i+1,j=1) <F. and IIT“,-JI < Fy for all (i, j). place [15]. The enhanced correlations in théeld result
A. has been determined numerically for each run. Waen turn in a coherence when fracturing sets in, amounting
seta(t =0)=lo =1 andFs/K = 1 throughout this paper. to smoothing out the disorder, thus allowing for a large
Observe that the maximum stress a system can sustaindgack to develop in an abrupt way. For sufficiently large
an increasing function of and the range of values over «, the system breaks into two parts. This is the regime
which fracturing takes place decreasexascreases. For of first-order behavior. Notice that increasingin the
A =0.75A. and k < 2.9, the stress-strain curve presents(A/A.; k) phase diagram corresponds to decreasing the
a smooth maximum indicating a critical rupture. This isdisorder and changing at the same time the distribution
confirmed in Fig. 2, showing the vanishing of the apparendf disorder so that it becomes more correlated. This is
Young modulug,,, ase — €. from below. Each curveis therefore a more complicated route than just changing the
obtained by averaging ove¥ = 1000-5000 independent width of the threshold distribution as in the previous fiber
configurations with system siz& =30. €. has been bundle model.
estimated from the conditiod o, )/d€lc=e, = 0, where The value of the Young critical exponent for small
(---) stands for an ensemble average. Larger lattice sizes can be predicted from percolation theory. Indeed,
(L =50-400) with the same value oEN were used, but consider the limitx — 0, for which the blocks are stuck
for a given fixedLN we found the smallest lattice sizes to the substrate and cannot move. Only the springs
L (= 30) give the best statistics, which we attribute tocan fail, and they do so in a completely uncorrelated
the lack of self averaging. For smadl the exponenty ~ way, controlled by the initial random configuration of
approaches a value slightly larger thignwhile it decreases the blocks. We thus get an uncorrelated random dilution,
continuously to zero asc increases, as shown in the ending at the percolation threshold where a macroscopic
inset. It seems to vanish around=2.9, signaling the crack spans the system. In the presence of internal strain,
transformation of the critical regime to an abrupt “first- it was shown that the elastic constant decreases to zero
order” behavior. Keeping fixed and varyingA/A., we  when the dilution increases with an exponent given by the
find thaty stays constant, but the size of the critical regionscalar elasticity problem [16], equal to the conductance
increases with the magnitude&f A.. Itshrinksto zeroat exponent of percolation. Extensive numerical simulations
a threshold value function of which is shown in Fig. 3. give the valuel.300 for this exponent [17], which is in
This function gives the boundary in tHa/A.; k) plane  agreement with the extrapolation of our results#o# 0.
between the critical and first-order regime. As announced, It is important to understand that these properties be-
for fixed x < 2.9, increasing the disordes allows the long to systems with load transfer mechanisms limiting
system to go from a first-order to a critical regime. The
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FIG. 1. Stress-strain curves for different valueskofind for *
different system sizes = 50 (dotted line),100 (thin bold line),  FIG. 2. Macroscopic Young modulus vs reduced macroscopic
and 200 (bold line). The fracturing is stopped at different strain for different values ok = 0.5(¢), 0.75(+), 0.875(00),

€(¢) for different L in order to distinguish between the curves. 1.4(X), and 2.0(A). A/A. = 0.75. The inset shows the
(Notice that due to data collapse, the data for the varibus exponenty as a function ofkx. « = 0.5 is the smallest value
become indistinguishable far = 0.75,1.5,2.5). OneL = 400 for which the system initially has no bonds that exceed the
simulation has been done far= 4 (thick bold line). threshold.
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