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Tricritical Behavior in Rupture Induced by Disorder
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We discover a qualitatively new behavior for systems where the load transfer has limiting stress
amplification as in real fiber composites. We find that the disorder is a relevant field leading
to tricriticality, separating a first-order regime where rupture occurs without significant precursors
from a second-order regime where the macroscopic elastic coefficient exhibits power law behavior.
Our results are based on analytical analysis of fiber bundle models and numerical simulations of
a two-dimensional tensorial spring-block system in which stick-slip motion and fracture compete.
[S0031-9007(97)02698-7]
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There is growing evidence that rupture in random me
can be viewed as a kind of critical phenomenon [1,2] a
result of the interplay between disorder and fracture m
chanics, with proposed applications, in particular, to fib
composites [3,4] and earthquakes [5]. Notwithstanding
importance, we do not have a comprehensive understa
ing of rupture phenomena but only a partial classificati
[1,2,6]. From a theoretical point of view, rupture is co
trolled in principle by the infinite momentksqljq!` of the
stress field and the difficulties emerge from the nonco
mutation of the two limitssq ! `, D ! 0d, whereD is
the amount of disorder (see below for a precise definitio
In intuitive wording, the largest stress in the system is ve
sensitive to the amount and type of disorder. Disorde
known to induce stress field distributions with fat tails [7
Consider, for instance, a log-normal distribution with sta
dard deviationD and means0, thenksql1yq ­ s0eD2qy2,
which shows that the limitD ! 0 is singular for rupture
(q ! `). This noncommutativity of limits is at the crux
of some of the major outstanding problems in physics
such as turbulence (viscosity! 0; time! `) and quantum
chaos (h ! 0; time! `). Here, we show that the amoun
of disorderD plays the role of a relevant field which make
systems with limited stress amplification exhibit a tricrit
cal transition as the disorder increases, from a Griffith-ty
abrupt rupture (first-order) regime to a progressive dam
(critical) regime. This is reminiscent of the critical beha
ior induced by quenched disorder in magnetic systems

We first document this behavior in a simple mean-fie
model of rupture, known as the democratic fiber bun
model [10]. It consists ofN parallel fibers with identical
spring constants and identically independent random f
ure thresholdsXj distributed according to the cumulativ
probability distributionPsXj , xd ; Psxd. A total force
F is applied to the system and is shared democratic
among theN fibers. When the force on one fiber reach
its threshold, the fiber ruptures and the stress is re
0 0031-9007y97y78(11)y2140(4)$10.00
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tributed to all remaining fibers. This transfer might induc
secondary failures which in turn induce tertiary rupture
and so on. One is interested in the stress-strain charac
istic as the applied force is increased, the properties of t
rupture point and the precursory events prior to the com
plete breakdown. The solution of this problem is found b
noticing that the total bundle will not break under a loadF
if there aren fibers in the bundle, each of which can with-
standxn ; Fyn. xn and n are related, for largeN, by
n ­ Nf1 2 Psxndg leading toFsxnd ­ Nxnf1 2 Psxndg.
The numberk of fibers which have failed under the forceF
is thenk ­ N 2 n ­ NPsxnd. Now, for a broad class of
distributionPsxd extending down to0, the functionxf1 2

Psxdg presents a maximum at0 , xp , `, the solution
of dxf1 2 Psxdgydxjx­xp ­ 0. As the behavior ofFsxnd
close toxp is quadraticFsxnd ø Fp 2 csxp 2 xnd2 where
c is a constant, this implies that the ratedkydF of fiber fail-
ure diverges assFp 2 Fd21y2, whereFp ­ xpf1 2 Psxpdg,
thus qualifying a critical mean-field behavior.

However, if Psxd is such thatdxf1 2 Psxdgydx ­ 0
has no solution, the behavior will be completely differen
with a sequence of a few fibers maybe breaking as t
load is applied followed by an abrupt global failure
Correspondingly, the stress-strain characteristic exhibits
discontinuity in its slope at the point of rupture. This
qualifies a first-order behavior. Notice that this is simila
to the Ehrenfest’s classification of the order of phas
transitions, where the free energy is here replaced by t
elastic energy.

Let us take, for instance,Psxd ­ 0 for 0 # x , x1,
Psxd ­ sx 2 x1dyD for x1 # x # x1 1 D, and Psxd ­
1 for x $ x1 1 D, corresponding to the strengthsXj

uniformly distributed betweenx1 . 0 andx1 1 D. Then,
dxf1 2 Psxdgydx ­ sx1 1 D 2 2xdyD, which has a root
in the intervalx1 # x # x1 1 D if and only if D . x1.
In this case, we recover the previous mean-field critic
behavior. However, for weak disorderD , x1, not a
© 1997 The American Physical Society
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single fiber breaks down until the force reachesNx1 at
which value the system ofN fibers breaks suddenly
This is an extreme illustration of a “first-order” behavio
The particular valueD ­ x1, F ­ Nx1 thus plays the
role of a tricritical point in analogy with thermal phas
transitions [11]. This behavior holds for a large cla
of distributionsPsxd: the condition thatdxf1 2 Psxdgydx
has no root is equivalent to the condition that the equat
d lnf1 2 Psxdgydx ­ 21yx has no solutions for any0 #

x , `. This equation defines two domains: (1)d lnf1 2

Psxdgydx , 21yx for all x $ 0: this can occur, in particu-
lar, if 1 2 Psxd decays to zero faster than1yx for largex,
with the additional constraint that there exists a minimu
strengthx1 strictly positive. Notice that the distribution
which extend down to zero are in this sense always in
“large” disorder regime. (2)d lnf1 2 Psxdgydx . 21yx
for all x $ 0: this corresponds to distributions which deca
slower than1yx. Take, for instance,1 2 Psxd ­ s1 1

xd2a . Then, d lnf1 2 Psxdgydx ­ 2ays1 1 xd which
remains strictly larger than21yx if a , 1.

Having established the existence of the tricritical b
havior in this mean-field model, let us now turn o
attention to a more realistic two-dimensional (2D) sprin
t
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block model of surface fracture in which the stress c
be released by spring breaksand block slips. We con-
sider the experimental situation where a balloon cove
with paint or dry resin is progressively inflated [12]. A
industrial application is a metallic tank with carbon o
kevlar fibers impregnated in a resin matrix wrapped
around it which is slowly pressurized [3]. As a cons
quence, it elastically deforms, transferring tensile stre
to the overlayer. Slipping (called fiber-metal delamin
tion) and cracking can thus occur in the overlayer. W
model this process by a 2D array of blocks which re
resents the overlayer on a coarse grained scale in c
tact with a surface with solid friction contact. The soli
friction will limit stress amplification. Each block is
interconnected to its nearest neighbors via springs
unstretched lengthsl0 and spring constantsK . The po-
sition of the blocks in thex and y directions are given
by sa i 1 xi,j , a j 1 yi,jd where 1 # i, j # L form a
square lattice with lattice constantsa, and wherexi,j ,
yi,j fulfill xi,j , yi,j ø a, so that Hooke’s law applies. In
[13] it was shown that thex component of the force
on a block to first order in the displacements takes th
form
Fx
i,j ­ 2 Khsbi11,j 1 bi21,jdxi,j 2 bi11,jxi11,j 2 bi21,jxi21,j 1 sfsbi,j11 1 bi,j21dxi,j

2 bi,j21xi,j21 2 bi,j11xi,j11g 2 assbi11,j 2 bi21,jdj, (1)
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and, by symmetry,F
y
i,j follows by switchingx $ y and

i $ j. s ; sa 2 l0dya $ 0 is the strain of the network
without fluctuations (xi,j , yi,j ; 0), and bi61,j61 ­ 1, 0,
respectively, depending on whether a spring connects
blockssi, jd 2 si 6 1, j 6 1d or not. Likewise the stress
B in a spring is given by

Bsi,jd2si61,jd ­ Kfsxi,j 2 xi61,j 2 sad2

1 s2syi,j 2 yi61,jd2g1y2. (2)
Initially xi,j and yi,j are chosen uniformly from the in-
terval f2D, 1Dg, thusD quantifies the amount of disor-
der which is on the initial displacements correspondin
to an effective initial disorder in the thresholds. Per
odic boundary conditions are used in both thex and y
directions. This corresponds to a torus topology, which
an adequate approximation of a cylindrical tank, as bo
are characterized by the absence of flexion. A spheri
topology has flexion, and we would thus need to enri
the model by adding flexure deformation in the model, f
instance, by replacing the springs by beams. Howev
we do not expect this to modify our results as the dime
sionality of the model does not influence qualitatively th
transition, as seen in the mean-field fiber bundle model

The coupling of the overlayer to the substrate has tw
effects when the substrate expands: (1) Tensile stres
transferred to the overlayer. This is taken into account
imposing an increase in the average distancea between
the blocks so as to reflect the inflation of the balloon. A
a definition of the time,t, we let astd increase linearly
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with t. (2) The increasing tensile stress in turn give
rise to stick-and-slip motion or/and cracking. A block is
assumed to stick until the total force applied on it exceed
a thresholdFs, where after it slips to the zero-force
position, corresponding to local mechanical equilibrium
in the absence of friction. This thereby releases stress
on its neighbor blocks. A spring breaks irreversibly onc
the stressB exceeds a thresholdFc ; kFs [14].

We define a time dependent apparent macroscop
stress on the system,sappstd, from the relationsappstd ­
Estdyestd, whereEstd is the total elastic energy stored in
the springs of the system at timet, andestd ; astdyast ­
0d is the macroscopic strain. We calculate an effectiv
Young modulus, given by

Yappstd ; dsappstdyde . (3)

Yappstd can be expressed asfdsappstdydsstdg sdsyded,
wheres is proportional to the first invariant (the trace) of
the real stress field in the system.dsyde is the corre-
sponding elastic modulus expected to exhibit a power la
behavior if criticality is present, whiledsappstdydsstd
goes to a constant. Therefore, the measurement ofYappstd
gives us direct access, if present, to the critical behavior
the Young modulus of the system. As the strainestd is in-
creased, block slips and spring failures occur up to a poi
where the system is completely ruptured and the stre
necessary to impose a constant small strain rate starts
decrease from a maximum. At this point, there is at lea
2141
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one large crack spanning the whole system. If global ru
ture occurs abruptly (first-order case),sappstd must ex-
hibit a sharp maximum andYappstd remains finite. If, on
the other hand, the rupture is critical,sappstd will exhibit
a progressive rounding with a smooth maximum, whi
Yappstd vanishes as a power lawYapp ~ fsec 2 edyecgg

on the approach to rupture atec.
In Fig. 1 are shown the stress-strain curves from o

single realization for each different system size, withD ­
0.75Dc, where Dc is the maximal amplitude such that
at t ­ 0 Bsi,jd2si61,j61d , Fc and j $Fi,jj , Fs for all si, jd.
Dc has been determined numerically for each run. W
setast ­ 0d ­ lo ­ 1 andFsyK ­ 1 throughout this paper.
Observe that the maximum stress a system can sustai
an increasing function ofk and the range ofe values over
which fracturing takes place decreases ask increases. For
D ­ 0.75Dc and k , 2.9, the stress-strain curve present
a smooth maximum indicating a critical rupture. This i
confirmed in Fig. 2, showing the vanishing of the appare
Young modulusYapp ase ! ec from below. Each curve is
obtained by averaging overN ­ 1000 5000 independent
configurations with system sizeL ­ 30. ec has been
estimated from the conditiondksapplydeje­ec

­ 0, where
k· · ·l stands for an ensemble average. Larger lattice siz
sL ­ 50 400d with the same value ofLN were used, but
for a given fixedLN we found the smallest lattice sizes
L (­ 30) give the best statistics, which we attribute t
the lack of self averaging. For smallk, the exponentg
approaches a value slightly larger than1, while it decreases
continuously to zero ask increases, as shown in the
inset. It seems to vanish aroundk ­ 2.9, signaling the
transformation of the critical regime to an abrupt “first
order” behavior. Keepingk fixed and varyingDyDc, we
find thatg stays constant, but the size of the critical regio
increases with the magnitude ofDyDc. It shrinks to zero at
a threshold value function ofk which is shown in Fig. 3.
This function gives the boundary in thesDyDc; kd plane
between the critical and first-order regime. As announce
for fixed k , 2.9, increasing the disorderD allows the
system to go from a first-order to a critical regime. Th

FIG. 1. Stress-strain curves for different values ofk and for
different system sizesL ­ 50 (dotted line),100 (thin bold line),
and 200 (bold line). The fracturing is stopped at differen
estd for different L in order to distinguish between the curves
(Notice that due to data collapse, the data for the variousL
become indistinguishable fork ­ 0.75, 1.5, 2.5d. OneL ­ 400
simulation has been done fork ­ 4 (thick bold line).
2142
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fact that the disorder is so relevant as to create the analo
of a tricritical behavior can be tracked back to the existenc
of solid friction on the blocks which ensures that the elastic
forces in the springs are carried over a bounded distanc
(equal to the size of a slipping “avalanche”) during the
stress transfer induced by block motions.

When k is large, the system responds initially to an
expansion by the release of stress uniquely by block slips
The block slips give rise to a stress rearrangement, and
spatial coarsening phenomenon of the stress fieldB takes
place [15]. The enhanced correlations in theB field result
in turn in a coherence when fracturing sets in, amounting
to smoothing out the disorder, thus allowing for a large
crack to develop in an abrupt way. For sufficiently large
k, the system breaks into two parts. This is the regime
of first-order behavior. Notice that increasingk in the
sDyDc; kd phase diagram corresponds to decreasing th
disorder and changing at the same time the distributio
of disorder so that it becomes more correlated. This is
therefore a more complicated route than just changing th
width of the threshold distribution as in the previous fiber
bundle model.

The value of the Young critical exponentg for small
k can be predicted from percolation theory. Indeed
consider the limitk ! 0, for which the blocks are stuck
to the substrate and cannot move. Only the spring
can fail, and they do so in a completely uncorrelated
way, controlled by the initial random configuration of
the blocks. We thus get an uncorrelated random dilution
ending at the percolation threshold where a macroscop
crack spans the system. In the presence of internal strai
it was shown that the elastic constant decreases to ze
when the dilution increases with an exponent given by the
scalar elasticity problem [16], equal to the conductance
exponent of percolation. Extensive numerical simulations
give the value1.300 for this exponent [17], which is in
agreement with the extrapolation of our results fork ! 0.

It is important to understand that these properties be
long to systems with load transfer mechanisms limiting

FIG. 2. Macroscopic Young modulus vs reduced macroscopi
strain for different values ofk ­ 0.5s¶d, 0.75s1d, 0.875shd,
1.4s3d, and 2.0snd. DyDc ­ 0.75. The inset shows the
exponentg as a function ofk. k ø 0.5 is the smallest value
for which the system initially has no bonds that exceed the
threshold.
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FIG. 3. Phase diagram for criticality of the fracturing
DyDc ! 0 cannot be studied within the spring–block mode
since ambiguity in the updating rules for stress release affe
the fracturing.

stress amplification at crack tips. If no coupling or de
lay mechanism exists to regularize the divergence induc
by elasticity at the crack tips (with a stress diverging a
1y

p
r next to a crack tip), the first-order behavior is onl

observed for zero disorder described by the single-cra
Griffith criterion and any amount of disorder is relevant t
produce a critical behavior [1,2]. However, even in th
case, the amount of disorder remains of utmost importan
as it controls the size of the critical region, and therefo
its observability [18].

Extensive simulations exploring the large paramet
spacesK , Fs, Fcd and their respective disorder distribution
with the addition of cohesion, will allow us to classify the
qualitative features of concrete materials parameters, s
as fiber matrix cohesion, fiber tensile strength, and fib
matrix order, etc., which would be required for a system
fall within the first (respective, second) order regime. Th
will be reported elsewhere [19]. The existence of diffe
ent regimes for rupture, depending on the limiting stre
amplification and on disorder, opens the road to impo
tant potential applications for failure prediction purpose
such as in the time-to-failure approach [20]. We sugge
that the often observed power law distribution of acou
tic emission bursts of many materials upon stressing offe
an additional evidence of the critical nature of the dama
and cracking of heterogeneous materials [3,21]. Our
sults provide the foundation for understanding why som
systems exhibit clearer precursors before rupture than o
ers in which they may even be absent in certain cases
for quantifying the expected amount and style of precu
sory activity as a function of heterogeneity and range
interaction.
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